Analysis of Thymoquinone Content in Black Cumin Seeds Using Near-Infrared Reflectance Spectroscopy
Abstract
1. Introduction
2. Results
2.1. Development of a Two-Year Calibration Equation
2.2. Validation of the Two-Year Calibration Equation
2.3. Predictability of NIRS for Selection of High Thymoquinone Content
2.4. Significant Wavelength Regions
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Thymoquinone Extraction
4.3. Analysis of Thymoquinone Content by HPLC
4.4. Acquisition of NIRS Spectra
4.5. NIRS Calibration and Validation
4.6. Predictability of NIRS to the Selection of High Thymoquinone Content
4.7. Study of Significant Wavelength Regions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| TMQ | Thymoquinone |
| NIRS | Near-infrared Reflectance Spectroscopy |
| SEC | Standard Error of Calibration |
| SECV | Standard Error of Cross-validation |
| SEP | Standard Error of Prediction |
References
- Gupta, B.; Ghosh, K.K.; Gupta, R.C. Thymoquinone. In Nutraceuticals: Efficacy, Safety and Toxicity; Gupta, R.C., Ed.; Academic Press: London, UK, 2016; pp. 541–550. [Google Scholar] [CrossRef]
- Majdalawieh, A.F.; Yousef, S.M.; Abu-Yousef, I.A. Thymoquinone, a major constituent in Nigella sativa seeds, is a potential preventative and treatment option for atherosclerosis. Eur. J. Pharmacol. 2021, 909, 174420. [Google Scholar] [CrossRef]
- Shaukat, A.; Zaidi, A.; Anwar, H.; Kizilbash, N. Mechanism of the antidiabetic action of Nigella sativa and thymoquinone: A review. Front. Nutr. 2023, 10, 1126272. [Google Scholar] [CrossRef] [PubMed]
- Almajali, B.; Al-Jamal, H.A.N.; Taib, W.R.W.; Ismail, I.; Johan, M.F.; Doolaanea, A.A.; Ibrahim, W.N. Thymoquinone, as a novel therapeutic candidate of cancers. Pharmaceuticals 2021, 14, 369. [Google Scholar] [CrossRef]
- Darakhshan, S.; Pour, A.B.; Colagar, A.H.; Sisakhtnezhad, S. Thymoquinone and its therapeutic potentials. Pharmacol. Res. 2015, 95–96, 138–158. [Google Scholar] [CrossRef]
- Taborsky, J.; Kunt, M.; Kloucek, P.; Lachman, J.; Zeleny, V.; Kokoska, L. Identification of potential sources of thymoquinone and related compounds in Asteraceae, Cupressaceae, Lamiaceae, and Ranunculaceae families. Cent. Eur. J. Chem. 2012, 10, 1899–1906. [Google Scholar] [CrossRef]
- Ravi, Y.; Vethamoni, I.P.; Saxena, S.N.; Velmurugan, S.; Santanakrishnan, V.P.; Raveendran, M.; Bariya, H.; Harsh, M. Guesstimate of thymoquinone diversity in Nigella sativa L. genotypes and elite varieties collected from Indian states using HPTLC technique. Open Life Sci. 2023, 18, 20220536. [Google Scholar] [CrossRef] [PubMed]
- Thani, P.R.; Johnson, J.B.; Bhattarai, S.; Trotter, T.; Walsh, K.; Broszczak, D.; Naiker, M. An in-depth examination into how genotype, planting density, and time of sowing affect key phytochemical constituents in Nigella sativa seed. Seeds 2024, 3, 357–380. [Google Scholar] [CrossRef]
- Habib, N.; Choudhry, S. HPLC Quantification of thymoquinone extracted from Nigella sativa L. (Ranunculaceae) seeds and antibacterial activity of its extracts against Bacillus species. Evid.-Based Complement. Altern. Med. 2021, 2021, 6645680. [Google Scholar] [CrossRef]
- Mani, J.S.; Johnson, J.B.; Bhattarai, S.; Trottera, T.; Naiker, M. Phytochemistry and therapeutical potential of new Nigella sativa genotypes from Australia. J. Herbs Spices Med. Plants 2023, 29, 229–249. [Google Scholar] [CrossRef]
- Avula, B.; Wang, Y.H.; Ali, Z.; Khan, I.A. Quantitative determination of chemical constituents from seeds of Nigella sativa L. using HPLC-UV and identification by LC-ESI-TOF. J. AOAC Int. 2010, 93, 1778–1787. [Google Scholar] [CrossRef]
- Khaikin, E.; Chrubasik-Hausmann, S.; Kaya, S.; Zimmermann, B.F. Screening of thymoquinone content in commercial Nigella sativa products to identify a promising and safe study medication. Nutrients 2022, 14, 3501. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.K.; Shrestha, L.; Pokhrel, B.R.; Joshi, B.; Lamichhane, G.; Vidović, B.; Koirala, N. LC-MS based metabolite profiling, in-vitro antioxidant and in-vivo antihyperlipidemic activity of Nigella sativa extract. eFood 2023, 4, e107. [Google Scholar] [CrossRef]
- Osborne, B.G. Near-Infrared Spectroscopy in Food Analysis. In Encyclopedia of Analytical Chemistry, Online; Meyers, R.A., McGorrin, R.J., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 1–14. [Google Scholar] [CrossRef]
- Nagy, M.M.; Wang, S.; Farag, M.A. Quality analysis and authentication of nutraceuticals using near IR (NIR) spectroscopy: A comprehensive review of novel trends and applications. Trends Food Sci. Technol. 2022, 123, 290–309. [Google Scholar] [CrossRef]
- Banerjee, S.; Ghatak, B.; Naskar, H.; Ghosh, S.; Dhara, M.; Ali, B.; Das, N.; Tudu, B.; Bandyopadhyay, R. Discrimination of thymoquinone using near infrared spectroscopy technique. In Proceedings of the 2nd IEEE International Conference on Emerging Frontiers in Electrical and Electronic Technologies, Patna, India, 24–25 June 2022; pp. 462–463. [Google Scholar]
- Pasquini, C. Near infrared spectroscopy: A mature analytical technique with new perspectives—A review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef]
- Mayr, S.; Strasser, S.; Kirchler, C.G.; Meischl, F.; Stuppner, S.; Beć, K.B.; Grabska, J.; Sturm, S.; Stuppner, H.; Popp, M.A.; et al. Quantification of silymarin in Silybi mariani fructus: Challenging the analytical performance of benchtop vs. handheld nir spectrometers on whole seeds. Planta Med. 2022, 88, 20–32. [Google Scholar] [CrossRef]
- Jiao, W.C.; Li, Y.K.; Jia, M.; Wang, D.M.; Qi, K.; Wang, X.D. Quick determination of sesame lignans in sesame oil using a portable near-infrared spectrometer. Food Sci. Technol. Camp. 2023, 43, e104422. [Google Scholar] [CrossRef]
- Haruna, S.A.; Li, H.; Wei, W.; Geng, W.; Luo, X.; Zareef, M.; Adade, S.Y.S.A.; Ivane, N.M.A.; Isa, A.; Chen, Q. Simultaneous quantification of total flavonoids and phenolic content in raw peanut seeds via NIR spectroscopy coupled with integrated algorithms. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 285, 121854. [Google Scholar] [CrossRef]
- Redha, A.A.; Torquati, L.; Langston, F.; Nash, G.R.; Gidley, M.J.; Cozzolino, D. Determination of glucosinolates and isothiocyanates in glucosinolate-rich vegetables and oilseeds using infrared spectroscopy: A systematic review. Crit. Rev. Food Sci. Nutr. 2024, 64, 8248–8264. [Google Scholar] [CrossRef]
- Hernández-Hernández, C.; Fernández-Cabanás, V.M.; Rodríguez-Gutiérrez, G.; Fernández-Prior, A.; Morales-Sillero, A. Rapid screening of unground cocoa beans based on their content of bioactive compounds by NIR spectroscopy. Food Control 2022, 131, 108347. [Google Scholar] [CrossRef]
- Workman, J. Spectral interpretation. In Handbook of Near-Infrared Analysis, 4th ed.; Ciurczak, E.W., Igne, B., Workman, J., Burns, D.A., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 45–67. [Google Scholar]
- Williams, P.C.; Sobering, D.C. How do we do it: A brief summary of the methods we use in developing near-infrared calibration. In Near Infrared Spectroscopy: The Future Waves; Davis, A.M.C., Williams, P., Eds.; NIR Publications: Chichester, UK, 1996; pp. 185–188. [Google Scholar]
- Towett, E.K.; Alex, M.; Shepherd, K.D.; Polreich, S.; Aynekulu, E.; Maas, B.L. Applicability of near-infrared reflectance spectroscopy (NIRS) for determination of crude protein content in cowpea (Vigna unguiculata) leaves. Food Sci. Nutr. 2013, 1, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Bosquet, L.; Molero, G.; Bort, J.; Nogués, S.; Araus, J.L. High-throughput phenotyping and genomic selection: The frontiers of crop breeding converge. J. Integr. Plant Biol. 2012, 54, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, C.F.; Allen, J.A.; Leong, A.S.; Pallot, T.N.; Golder, T.M.; Golebiowski, T. An investigation of the stability of NIRS calibrations for the analysis of oil content in whole seed canola. In Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 26–29 September 1999. [Google Scholar]
- Elfadl, E.; Reinbrecht, C.; Claupein, W. Development of near infrared reflectance spectroscopy (NIRS) calibration model for estimation of oil content in a worldwide safflower germplasm collection. Int. J. Plant Prod. 2010, 4, 259–270. [Google Scholar]
- Sileoni, V.; Marconi, O.; Perretti, G.; Fantozzi, P. Evaluation of different validation strategies and long term effects in NIR calibration models. Food Chem. 2013, 141, 2639–2648. [Google Scholar] [CrossRef]
- Workman, J.; Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Miller, C.E.; Eichinger, B.E. Determination of crystallinity and morphology of fibrous and bulk poly(ethylene terephthalate) by near-infrared diffuse reflectance spectroscopy. Appl. Spectros. 1990, 44, 496–504. [Google Scholar] [CrossRef]
- Rodriguez-Macadaeg, F.; Armstrong, P.R.; Maghirang, E.B.; Scully, E.D.; Brabec, D.L.; Arthur, F.H.; Adviento-Borbe, A.D.; Yaptenco, K.F.; Suministrado, D.C. Developing a multi-spectral NIR LED-based instrument for the detection of pesticide residues containing chlorpyrifos-methyl in rough, brown, and milled rice. Sensors 2024, 24, 4055. [Google Scholar] [CrossRef] [PubMed]






| Type | Year | n | Mean | Range | SE a | R2 b |
|---|---|---|---|---|---|---|
| Calibration | 2021 | 288 | 7.75 | 0.68–14.46 | 0.84 | 0.96 |
| Cross-validation | 2021 | 288 | 7.75 | 0.68–14.46 | 0.97 | 0.94 |
| Validation | 2022 | 313 | 12.00 | 1.74–17.30 | 1.28 | 0.78 |
| Calibration | 2021 + 2022 | 601 | 10.04 | 0.68–17.30 | 1.10 | 0.92 |
| Cross-validation | 2021 + 2022 | 601 | 10.04 | 0.68–17.30 | 1.15 | 0.92 |
| Type | % 2023 Samples | N | Mean | Range | SE a | R2 b |
|---|---|---|---|---|---|---|
| (a) Validation | 100 | 179 | 8.75 | 1.08–13.49 | 1.18 | 0.85 |
| (b) Cross-validation | 25 | 646 | 9.92 | 0.68–17.30 | 1.12 | 0.92 |
| (b) Validation | 75 | 134 | 8.83 | 1.26–13.49 | 1.08 | 0.86 |
| (c) Cross-validation | 50 | 691 | 9.85 | 0.68–17.30 | 1.11 | 0.92 |
| (c) Validation | 50 | 89 | 8.70 | 1.08–13.49 | 1.01 | 0.88 |
| Selection Intensity | A | B | C |
|---|---|---|---|
| 5% | 67% | 89% | 100% |
| 10% | 56% | 89% | 89% |
| 15% | 67% | 81% | 85% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballesteros, Ó.; Velasco, L. Analysis of Thymoquinone Content in Black Cumin Seeds Using Near-Infrared Reflectance Spectroscopy. Molecules 2025, 30, 3985. https://doi.org/10.3390/molecules30193985
Ballesteros Ó, Velasco L. Analysis of Thymoquinone Content in Black Cumin Seeds Using Near-Infrared Reflectance Spectroscopy. Molecules. 2025; 30(19):3985. https://doi.org/10.3390/molecules30193985
Chicago/Turabian StyleBallesteros, Óscar, and Leonardo Velasco. 2025. "Analysis of Thymoquinone Content in Black Cumin Seeds Using Near-Infrared Reflectance Spectroscopy" Molecules 30, no. 19: 3985. https://doi.org/10.3390/molecules30193985
APA StyleBallesteros, Ó., & Velasco, L. (2025). Analysis of Thymoquinone Content in Black Cumin Seeds Using Near-Infrared Reflectance Spectroscopy. Molecules, 30(19), 3985. https://doi.org/10.3390/molecules30193985

