Carbon Dots as Multifunctional Nanomaterials: A Review on Antimicrobial Activities and Fluorescence-Based Microbial Detection
Abstract
1. Introduction
2. Antimicrobial Mechanism Expressed by Carbon Dots (CDs)
3. Antimicrobial Activities of Carbon Dots (CDs) Against Pathogenic Microorganisms
4. Fluorescence-Based Applications of CDs in Microbial Detection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, R.A.; Stripling, J.T.; Spellberg, B.; Centor, R.M. Short-Course Antibiotics for Common Infections: What Do We Know and Where Do We Go from Here? Clin. Microbiol. Infect. 2023, 29, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Bagre, A.; Patel, P.R.; Naqvi, S.; Jain, K. Emerging Concerns of Infectious Diseases and Drug Delivery Challenges. In Nanotheranostics for Treatment and Diagnosis of Infectious Diseases; Academic Press: Cambridge, MA, USA, 2022; pp. 1–23. [Google Scholar] [CrossRef]
- Gulumbe, B.H.; Abdulrahim, A.; Ahmad, S.K.; Lawan, K.A.; Danlami, M.B. WHO Report Signals Tuberculosis Resurgence: Addressing Systemic Failures and Revamping Control Strategies. Decod. Infect. Transm. 2025, 3, 100044. [Google Scholar] [CrossRef]
- Chong, W.H.; Saha, B.K.; Ramani, A.; Chopra, A. State-of-the-Art Review of Secondary Pulmonary Infections in Patients with COVID-19 Pneumonia. Infection 2021, 49, 591–605. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Oluwole, A.O.; Hernández-Rocamora, V.M.; Cao, Y.; Li, X.; Vollmer, W.; Robinson, C.V.; Bolla, J.R. Real-Time Biosynthetic Reaction Monitoring Informs the Mechanism of Action of Antibiotics. J. Am. Chem. Soc. 2024, 146, 7007–7017. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, S.; Bremmer, A.; Hu, Q. Convergence of Nanotechnology and Bacteriotherapy for Biomedical Applications. Adv. Sci. 2024, 11, 2309295. [Google Scholar] [CrossRef]
- Parvin, N.; Joo, S.W.; Mandal, T.K. Nanomaterial-Based Strategies to Combat Antibiotic Resistance: Mechanisms and Applications. Antibiotics 2025, 14, 207. [Google Scholar] [CrossRef]
- Wang, S.; Wang, D.; Wang, G.; Zhang, M.; Sun, Y.; Ding, J. Antibacterial Carbon Dots. Mater. Today Bio 2025, 30, 101383. [Google Scholar] [CrossRef]
- Hussen, N.H.; Hasan, A.H.; FaqiKhedr, Y.M.; Bogoyavlenskiy, A.; Bhat, A.R.; Jamalis, J. Carbon Dot Based Carbon Nanoparticles as Potent Antimicrobial, Antiviral, and Anticancer Agents. ACS Omega 2024, 9, 9849–9864. [Google Scholar] [CrossRef]
- Wang, B.; Cai, H.; Waterhouse, G.I.N.; Qu, X.; Yang, B.; Lu, S. Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review. Small Sci. 2022, 2, 2200012. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, Y.; Peng, H.; Zhou, J.; Zhang, Q.; Yan, J.; Liu, Y.; Guo, S.; Wu, X.; Li, B. Carbon Dots as a Novel Photosensitizer for Photodynamic Therapy of Cancer and Bacterial Infectious Diseases: Recent Advances. J. Nanobiotechnol. 2024, 22, 210. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Liang, W.; Meziani, M.J.; Sun, Y.-P.; Yang, L. Carbon Dots as Potent Antimicrobial Agents. Theranostics 2020, 10, 671–686. [Google Scholar] [CrossRef]
- Mansuriya, B.D.; Altintas, Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care—An Updated Review (2018–2021). Nanomaterials 2021, 11, 2525. [Google Scholar] [CrossRef]
- AlQurashi, D.M.; AlQurashi, T.F.; Alam, R.I.; Shaikh, S.; Tarkistani, M.A.M. Advanced Nanoparticles in Combating Antibiotic Resistance: Current Innovations and Future Directions. J. Nanotheranostics 2025, 6, 9. [Google Scholar] [CrossRef]
- Galinier, A.; Delan-Forino, C.; Foulquier, E.; Lakhal, H.; Pompeo, F. Recent Advances in Peptidoglycan Synthesis and Regulation in Bacteria. Biomolecules 2023, 13, 720. [Google Scholar] [CrossRef]
- Sturabotti, E.; Camilli, A.; Leonelli, F.; Vetica, F. Carbon Dots as Bioactive Antifungal Nanomaterials. ChemMedChem 2024, 19, e202400463. [Google Scholar] [CrossRef]
- Guo, B.; Liu, G.; Hu, C.; Lei, B.; Liu, Y. The Structural Characteristics and Mechanisms of Antimicrobial Carbon Dots: A Mini Review. Mater. Adv. 2022, 3, 7726–7741. [Google Scholar] [CrossRef]
- Sun, B.; Wu, F.; Zhang, Q.; Chu, X.; Wang, Z.; Huang, X.; Li, J.; Yao, C.; Zhou, N.; Shen, J. Insight into the Effect of Particle Size Distribution Differences on the Antibacterial Activity of Carbon Dots. J. Colloid Interface Sci. 2021, 584, 505–519. [Google Scholar] [CrossRef]
- Hui, L.; Huang, J.; Chen, G.; Zhu, Y.; Yang, L. Antibacterial Property of Graphene Quantum Dots (Both Source Material and Bacterial Shape Matter). ACS Appl. Mater. Interfaces 2016, 8, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.; Awan, U.A.; Ali, H.; Wahab, A.; Khan, S.U.; Naeem, M.; Ruslin, M.; Mustopa, A.Z.; Hasan, N. Carbon Dots: New Rising Stars in the Carbon Family for Diagnosis and Biomedical Applications. J. Nanotheranostics 2025, 6, 1. [Google Scholar] [CrossRef]
- Li, Y.-J.; Harroun, S.G.; Su, Y.-C.; Huang, C.-F.; Unnikrishnan, B.; Lin, H.-J.; Lin, C.-H.; Huang, C.-C. Synthesis of Self-Assembled Spermidine-Carbon Quantum Dots Effective against Multidrug-Resistant Bacteria. Adv. Healthc. Mater. 2016, 5, 2545–2554. [Google Scholar] [CrossRef]
- Bing, W.; Sun, H.; Yan, Z.; Ren, J.; Qu, X. Programmed Bacteria Death Induced by Carbon Dots with Different Surface Charge. Small 2016, 12, 4713–4718. [Google Scholar] [CrossRef] [PubMed]
- Sattarahmady, N.; Rezaie-Yazdi, M.; Tondro, G.H.; Akbari, N. Bactericidal Laser Ablation of Carbon Dots: An in Vitro Study on Wild-Type and Antibiotic-Resistant Staphylococcus aureus. J. Photochem. Photobiol. B Biol. 2017, 166, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Li, H.; Wang, H.; Yao, B.; Huang, H.; Liu, Y.; Kang, Z. Negatively Charged Carbon Nanodots with Bacteria Resistance Ability for High-Performance Antibiofilm Formation and Anticorrosion Coating Design. Small 2019, 15, 1900007. [Google Scholar] [CrossRef]
- Xia, W.; Wu, Z.; Hou, B.; Cheng, Z.; Bi, D.; Chen, L.; Chen, W.; Yuan, H.; Koole, L.H.; Qi, L. Inactivation of Antibiotic Resistant Bacteria by Nitrogen-Doped Carbon Quantum Dots through Spontaneous Generation of Intracellular and Extracellular Reactive Oxygen Species. Mater. Today Bio 2025, 30, 101428. [Google Scholar] [CrossRef]
- Demirci, S.; McNally, A.B.; Ayyala, R.S.; Lawson, L.B.; Sahiner, N. Synthesis and Characterization of Nitrogen-Doped Carbon Dots as Fluorescent Nanoprobes with Antimicrobial Properties and Skin Permeability. J. Drug Deliv. Sci. Technol. 2020, 59, 101889. [Google Scholar] [CrossRef]
- Divsalar, E.; Tajik, H.; Moradi, M.; Molaei, R. Carbon Dot-Based Antimicrobial Photosensitizer: Synthesis, Characterization and Antimicrobial Performance against Food Borne Pathogens. Food Biosci. 2023, 56, 103220. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, M.; Wang, Y.; Li, C.; Zhang, X.; Weng, S.; Li, Y. Carbon Dots with Selective Fluorescence Response to Hydroxyl Radical for Sensitive Detection of Bleomycin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 306, 123582. [Google Scholar] [CrossRef]
- Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal Nanoparticles: Understanding the Mechanisms behind Antibacterial Activity. J. Nanobiotechnol. 2017, 15, 65. [Google Scholar] [CrossRef]
- Checa, J.; Aran, J.M. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef]
- Meziani, M.J.; Dong, X.; Zhu, L.; Jones, L.P.; LeCroy, G.E.; Yang, F.; Wang, S.; Wang, P.; Zhao, Y.; Yang, L.; et al. Visible-Light-Activated Bactericidal Functions of Carbon “Quantum” Dots. ACS Appl. Mater. Interfaces 2016, 8, 10761–10766. [Google Scholar] [CrossRef] [PubMed]
- Ghirardello, M.; Ramos-Soriano, J.; Galan, M.C. Carbon Dots as an Emergent Class of Sustainable Antifungal Agents. ACS Nano 2025, 19, 24377–24403. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, S.; Zhang, M.; Zhang, Z.; Zhou, M.; Cao, J. Antifungal Performance and Mechanisms of Carbon Quantum Dots in Cellulosic Materials. ACS Nano 2025, 19, 14121–14136. [Google Scholar] [CrossRef]
- Nguyen, D.H.H.; El-Ramady, H.; Törős, G.; Muthu, A.; Elsakhawy, T.; Abdalla, N.; Alibrahem, W.; Kharrat Helu, N.; Prokisch, J. Food-Derived Carbon Dots: Formation, Detection, and Impact on Gut Microbiota. Foods 2025, 14, 2980. [Google Scholar] [CrossRef]
- de Oliveira, B.P.; de Castro Bessa, N.U.; do Nascimento, J.F.; de Paula Cavalcante, C.S.; dos Santos Fontenelle, R.O.; da Silva Abreu, F.O.M. Synthesis of Luminescent Chitosan-Based Carbon Dots for Candida albicans Bioimaging. Int. J. Biol. Macromol. 2023, 227, 805–814. [Google Scholar] [CrossRef]
- Wenzler, E.; Maximos, M.; Asempa, T.E.; Biehle, L.; Schuetz, A.N.; Hirsch, E.B. Antimicrobial Susceptibility Testing: An Updated Primer for Clinicians in the Era of Antimicrobial Resistance: Insights from the Society of Infectious Diseases Pharmacists. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2023, 43, 264–278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bai, X.; Deng, X.; Peng, K.; Zheng, Z.; Xiao, J.; Zhang, R.; Huang, Z.; Huang, J.; Chen, M.; et al. Long-Term Antibacterial Activity of Guanidinium Carbon Dots without Detectable Resistance for the Effective Treatment of Pneumonia Caused by Gram-Negative Bacteria. Carbon 2023, 213, 118229. [Google Scholar] [CrossRef]
- Chen, H.; Geng, X.; Ning, Q.; Shi, L.; Zhang, N.; He, S.; Zhao, M.; Zhang, J.; Li, Z.; Shi, J.; et al. Biophilic Positive Carbon Dot Exerts Antifungal Activity and Augments Corneal Permeation for Fungal Keratitis. Nano Lett. 2024, 24, 4044–4053. [Google Scholar] [CrossRef]
- Ezati, P.; Rhim, J.-W.; Molaei, R.; Priyadarshi, R.; Roy, S.; Min, S.; Kim, Y.H.; Lee, S.-G.; Han, S. Preparation and Characterization of B, S, and N-Doped Glucose Carbon Dots: Antibacterial, Antifungal, and Antioxidant Activity. Sustain. Mater. Technol. 2022, 32, e00397. [Google Scholar] [CrossRef]
- Sturabotti, E.; Camilli, A.; Georgian Moldoveanu, V.; Bonincontro, G.; Simonetti, G.; Valletta, A.; Serangeli, I.; Miranda, E.; Amato, F.; Giacomo Marrani, A.; et al. Targeting the Antifungal Activity of Carbon Dots against Candida albicans Biofilm Formation by Tailoring Their Surface Functional Groups. Chem.—A Eur. J. 2024, 30, e202303631. [Google Scholar] [CrossRef]
- Wang, L.; Wang, T.; Hao, R.; Wang, Y. Construction Strategy and Mechanism of a Novel Wood Preservative with Excellent Antifungal Effects. Molecules 2024, 29, 1013. [Google Scholar] [CrossRef]
- Pandey, A.; Devkota, A.; Yadegari, Z.; Dumenyo, K.; Taheri, A. Antibacterial Properties of Citric Acid/β-Alanine Carbon Dots against Gram-Negative Bacteria. Nanomaterials 2021, 11, 2012. [Google Scholar] [CrossRef] [PubMed]
- Suner, S.S.; Sahiner, M.; Ayyala, R.S.; Bhethanabotla, V.R.; Sahiner, N. Nitrogen-Doped Arginine Carbon Dots and Its Metal Nanoparticle Composites as Antibacterial Agent. C 2020, 6, 58. [Google Scholar] [CrossRef]
- Maruthapandi, M.; Saravanan, A.; Luong, J.H.T.; Gedanken, A. Antimicrobial Properties of the Polyaniline Composites against Pseudomonas Aeruginosa and Klebsiella pneumoniae. J. Funct. Biomater. 2020, 11, 59. [Google Scholar] [CrossRef]
- Maruthapandi, M.; Natan, M.; Jacobi, G.; Banin, E.; Luong, J.H.T.; Gedanken, A. Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus of Colloidal Polydopamine Prepared by Carbon Dot Stimulated Polymerization of Dopamine. Nanomaterials 2019, 9, 1731. [Google Scholar] [CrossRef]
- Marković, Z.M.; Budimir Filimonović, M.D.; Milivojević, D.D.; Kovač, J.; Todorović Marković, B.M. Antibacterial and Antibiofouling Activities of Carbon Polymerized Dots/Polyurethane and C60/Polyurethane Composite Films. J. Funct. Biomater. 2024, 15, 73. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Fan, Y.; Liu, Y.; Fan, X.; Sun, Y.; Cheng, G.; Cheng, J. Antibacterial Activity and Mechanism of Self-Assembly Spermidine-Capped Carbon Dots against Staphylococcus aureus. Foods 2024, 13, 67. [Google Scholar] [CrossRef]
- Marković, Z.M.; Milivojević, D.D.; Kovač, J.; Todorović Marković, B.M. Phloroglucinol-Based Carbon Quantum Dots/Polyurethane Composite Films: How Structure of Carbon Quantum Dots Affects Antibacterial and Antibiofouling Efficiency of Composite Films. Polymers 2024, 16, 1646. [Google Scholar] [CrossRef]
- Marković, Z.; Dorontić, S.; Jovanović, S.; Kovač, J.; Milivojević, D.; Marinković, D.; Mojsin, M.; Todorović Marković, B. Biocompatible Carbon Dots/Polyurethane Composites as Potential Agents for Combating Bacterial Biofilms: N-Doped Carbon Quantum Dots/Polyurethane and Gamma Ray-Modified Graphene Quantum Dots/Polyurethane Composites. Pharmaceutics 2024, 16, 1565. [Google Scholar] [CrossRef]
- Shi, W.; Li, J.; Pu, J.; Cheng, G.; Liu, Y.; Xiao, S.; Cao, J. Epigynum Auritum-Derived Near-Infrared Carbon Dots for Bioimaging and Antimicrobial Applications. Molecules 2025, 30, 422. [Google Scholar] [CrossRef]
- Lee, W.; Ko, S. Synthesis and Characterization of Lignocellulose-Based Carbon Quantum Dots (CQDs) and Their Antimicrobial and Antioxidant Functionalities. Molecules 2025, 30, 667. [Google Scholar] [CrossRef]
- Singh, B.; Adcock, A.F.; Dumra, S.; Collins, J.; Yang, L.; Bunker, C.E.; Qian, H.; Meziani, M.J.; Sun, Y.-P. Microwave-Assisted Carbonization Processing for Carbon Dot-like Nanomaterials with Antimicrobial Properties. Micro 2025, 5, 14. [Google Scholar] [CrossRef]
- Fiallos, N.; Acuña, S.; Correa-Otero, D.; Venegas-Toloza, M.; Beldarrain, T.; Burgos, J.; Fuentes, F.; Bustamante, F.; Christiansen, G.; Roa, V.; et al. Centrifugal Partition Chromatography Is a Powerful Tool for the Isolation of Antibiofilm Quantum Carbon Dots Synthesized by Hydrothermal Treatment of Avocado Peels. Molecules 2025, 30, 1525. [Google Scholar] [CrossRef]
- Shamkhali, L.; Mobarez, A.M.; Siadat, S.D.; Pajavand, H. Synergistic Antibacterial Effects of Carbon Dots Derived from Lactobacillus acidophilus Alone and in Combination against Carbapenem-Resistant Klebsiella pneumoniae. J. Infect. Public Health 2025, 18, 102724. [Google Scholar] [CrossRef] [PubMed]
- Azizi, J.; Hamedi, H.; Javanbakht, S.; Mohammadi, R. Green Synthesis of Zeolitic Imidazolate Frameworks/Marshmallow Extract-Derived Carbon Quantum Dots for Improved Antibacterial Properties. Surf. Interfaces 2025, 72, 107215. [Google Scholar] [CrossRef]
- Ansari, P.; Ghobadifard, M.; Mohebbi, S.; Ashengroph, M. The Performance of Metal Carbon-Based Quantum Dots as an Anti-Bacterial Factor in Green Conditions. J. Organomet. Chem. 2025, 1026, 123495. [Google Scholar] [CrossRef]
- Peng, J.; Wang, X.; Rehman, M.U.; Ikram, M.; Liu, G.; Wu, F. Garlic-Derived Carbon Dots Hydrogel as Potent and Controllable Antibacterial Agents. Inorg. Chem. Commun. 2025, 181, 115162. [Google Scholar] [CrossRef]
- Vijeata, A.; Ghawri, H.; Chaudhary, G.R.; Raj, K.; Chaudhary, S. Engineering Fungicidal Nitrogen-Doped Carbon Dots from Trillium govanianum Rhizomes: A Theoretical and Experimental Approach against Candida auris. Appl. Surf. Sci. 2025, 709, 163789. [Google Scholar] [CrossRef]
- Ponnusamy, A.; Buatong, J.; Prodpran, T.; Kim, J.T.; Rhim, J.-W.; Benjakul, S. Natural Polysaccharide-Derived Carbon Dots from Ginger, Galangal, and Turmeric Rhizome Peels: Spectral and Functional Properties, and Cytotoxicity Assessment. Int. J. Biol. Macromol. 2025, 321, 146132. [Google Scholar] [CrossRef]
- Li, P.; Zhao, G.; Meng, L.; Wei, J.; Chen, J.; Xu, Y.; Zhang, D.; Ke, X.; Li, Z. Ginkgo Leaf Derived Amphiphilic and Biocompatible Carbon Dots for Sterilization and MRSA Biofilm Destruction. Process Biochem. 2025, 154, 172–183. [Google Scholar] [CrossRef]
- El Ghacham, S.; Hejji, L.; Aoulad El Hadj Ali, Y.; Azzouz, A.; Pérez-Villarejo, L.; Tamegart, L.; Souhail, B.; Castro, E. Green-Synthesized Carbon Quantum Dots–Silver Nanocomposites for Broad-Spectrum Antimicrobial and Wound Healing Applications. J. Drug Deliv. Sci. Technol. 2025, 108, 106964. [Google Scholar] [CrossRef]
- Taheri, Z.; Mirjalili, M.H.; Shahsavarani, H.; Ghassempour, A.; Rahmandoust, M. Single-Step Synthesized Carbon Quantum Dots from Centella asiatica Hairy Roots: Photoluminescent, Biocompatibility, Antibacterial and Anticancer Activity. Ind. Crops Prod. 2025, 229, 120999. [Google Scholar] [CrossRef]
- Du, J.; Liu, S.; Hou, J.; Wu, X.; Si, H.; Guo, X.; Zhuo, S. Curcumin-Derived Water-Soluble Carbon Dots without Detectable Resistance: Dual Potentials for Antimicrobial Activity and Infected Wound Healing. Diam. Relat. Mater. 2025, 153, 112075. [Google Scholar] [CrossRef]
- Kim, Y.H.; Khan, A.; Ahn, J.M.; Lee, J.H.; Yoon, K.S.; Rhim, J.-W. Effect of Carbon Quantum Dots Derived from Tangerine Peel on Emetic and Diarrheal Type of Bacillus cereus of Packaged Tofu. Food Control 2025, 175, 111303. [Google Scholar] [CrossRef]
- Amirsoleimani, A.; Bahrami, Z.; Abdoos, H.; Kafshdouzan, K. Synthesis and Characterization of Zn-Doped Carbon Dots Derived from Calendula Officinalis and Glucose: Antibacterial and Photoluminescence Properties. Carbon Trends 2025, 20, 100537. [Google Scholar] [CrossRef]
- Pei, S.; Lu, Z.; Sun, W.; Yan, K.; Zhou, J.; Sun, C.; Huang, J.; Luo, K.; Yang, X. Preparation, Characterization, and Antibacterial Activity of Rhodiola Carbon Dots. Russ. J. Gen. Chem. 2024, 94, 1991–1996. [Google Scholar] [CrossRef]
- Somasundaram, M.; Bepari, A.; Hussain, S.A.; Alneghery, L.M.; Al-Zharani, M.; Nasr, F.A.; Qurtam, A.A.; Manickam, P.; Niazi, S.K. Synthesis, Characterization of Polyphenolic Flavonoid Silymarin Encapsulated Carbon Quantum Dots (SL-CQDs) and Its Anticancer, Antibacterial Potential in In Vitro. J. Inorg. Organomet. Polym. 2025, 35, 1627–1639. [Google Scholar] [CrossRef]
- Wen, M.; Fu, X.; Li, T.; Ouyang, F.; Zha, G.; Zhu, L. Synthesis of P-Doped Carbon Quantum Dots from Keratin and Their Antibacterial Activity. Russ. J. Gen. Chem. 2023, 93, 2371–2377. [Google Scholar] [CrossRef]
- Dutta, A.; Begum, W.; Sarkar, S.; Dam, S.; Mandal, U. Highly Luminescent Nitrogen Doped Carbon Quantum Dots for Mercury Ion Sensing with Antibacterial Activity. J. Fluoresc. 2025, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kajani, A.A.; Bordbar, A.-K.; Pouresmaeili, A.; Mehrgardi, M.A. Green and One-Step Synthesis of Fluorescent Carbon Dots with the Significant Antibacterial Effects. Iran. J. Sci. 2025, 49, 577–584. [Google Scholar] [CrossRef]
- Gomaa, I.; Aleid, G.; EL-Moslamy, S.H.; AlShammari, A.; Al-Marshedy, S.; Alshammary, F.; Gharkan, J.; Abdel-Hameed, R.; Kamoun, E.A. Synergistic Efficacy of ZnO Quantum Dots, Ag NPs, and Nitazoxanide Composite against Multidrug-Resistant Human Pathogens as New Trend of Revolutionizing Antimicrobial Treatment. Discov. Nano 2024, 19, 164. [Google Scholar] [CrossRef]
- Elkun, S.; Ghali, M.; Sharshar, T.; Mosaad, M.M. Green Synthesis of Fluorescent N-Doped Carbon Quantum Dots from Castor Seeds and Their Applications in Cell Imaging and pH Sensing. Sci. Rep. 2024, 14, 27927. [Google Scholar] [CrossRef]
- Navaneethan, R.D.; Ravitchandiran, A.; Subramania, A.K.; Elayaperumal, M.; Rajaram, R.; Angaiah, S. Green Synthesis of Luminescent Carbon Dots from Ficus Benghalensis Aerial Roots for Bioimaging. J. Fluoresc. 2025, 35, 5979–5989. [Google Scholar] [CrossRef]
- Zhang, H.; He, J.; Xiong, Y.; Mu, H.; Deng, Y.; Zhao, Q. Antibacterial Mechanism Analysis and Structural Design of Amino Acid-Based Carbon Dots. J. Mater. Sci. 2023, 58, 4954–4969. [Google Scholar] [CrossRef]
- Prathap, N.; Balla, P.; Shivakumar, M.S.; Periyasami, G.; Karuppiah, P.; Ramasamy, K.; Venkatesan, S. Prosopis juliflora Hydrothermal Synthesis of High Fluorescent Carbon Dots and Its Antibacterial and Bioimaging Applications. Sci. Rep. 2023, 13, 9676. [Google Scholar] [CrossRef]
- Arif, M.; Sharaf, M.; Samreen; Dong, Q.; Wang, L.; Chi, Z.; Liu, C.-G. Bacteria-Targeting Chitosan/Carbon Dots Nanocomposite with Membrane Disruptive Properties Improve Eradication Rate of Helicobacter Pylori. J. Biomater. Sci. Polym. Ed. 2021, 32, 2423–2447. [Google Scholar] [CrossRef] [PubMed]
- Belal, A.; Almalki, A.H.; Farghali, A.A.; Mahmoud, R.; Atta, R.R.; Allah, A.E.; Hassan, W.H.; Lee, S.; Kotp, A.A.; Essam, D.; et al. Nitrogen-Doped Carbon Quantum Dots as a Novel Treatment for Black Fungal Bone Infections (Mucormycosis): In Vitro and in Vivo Study. Artif. Cells Nanomed. Biotechnol. 2024, 52, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Pan, P.; Hu, T.; Chen, Z.; Ying, H.; Cheng, Y. Antibacterial and Enhanced Stability of Carbon Dot Based on L-Arginine Modified by HPMC. Fuller. Nanotub. Carbon Nanostruct. 2024, 32, 78–86. [Google Scholar] [CrossRef]
- Hossain, T.J. Methods for Screening and Evaluation of Antimicrobial Activity: A Review of Protocols, Advantages, and Limitations. Eur. J. Microbiol. Immunol. 2024, 14, 97–115. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Salvi, A.; Kharbanda, S.; Thakur, P.; Shandilya, M.; Thakur, A. Biomedical application of carbon quantum dots: A review. Carbon Trends 2024, 17, 100407. [Google Scholar] [CrossRef]
- Jaiswal, K.S.; Kadamannil, N.N.; Jelinek, R. Carbon nanomaterials in microbial sensing and bactericidal applications. Curr. Opin. Colloid Interface Sci. 2023, 66, 101719. [Google Scholar] [CrossRef]
- Qiu, H.; Yang, H.; Gao, X.; Nie, C.; Gu, Y.; Shen, Y. Inner filter effect-based fluorescence assays toward environmental pesticides and antibiotics. Coord. Chem. Rev. 2023, 493, 215305. [Google Scholar] [CrossRef]
- Hou, R.; He, L.; Ji, X.; Rong, X.; Yin, Y.; Li, X.; Weng, Y.; Zhao, X. Recent advances in fluorescent aptamer-based sensors for food safety analysis. Trends Food Sci. Technol. 2025, 160, 105023. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, Y.; Li, X.; Yang, D.; Yang, Y.; Yang, C.; Zhu, Y. Dual-Emission Carbon-Dot Ratiometric Fluorescence Sensor for Morphine Recognition in Biological Samples. Biosensors 2023, 13, 143. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, R.; Lin, G.; Roy, I.; Yong, K.-T. Functionalized Quantum Dots for Biosensing and Bioimaging and Concerns on Toxicity. ACS Appl. Mater. Interfaces 2013, 5, 2786–2799. [Google Scholar] [CrossRef] [PubMed]
- Zhong, D.; Zhuo, Y.; Feng, Y.; Yang, X. Employing carbon dots modified with vancomycin for assaying Gram-positive bacteria like Staphylococcus aureus. Biosens. Bioelectron. 2015, 74, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Fang, S.; Wu, T.; Zheng, C.; Zeng, Y.; He, J.; Zhang, Y.; Lu, Z. Aptamer-functionalized graphene quantum dots combined with artificial intelligence detect bacteria for urinary tract infections. Front. Cell. Infect. Microbiol. 2025, 15, 1555617. [Google Scholar] [CrossRef]
- Wang, S.; Liang, N.; Hu, X.; Li, W.; Guo, Z.; Zhang, X.; Huang, X.; Li, Z.; Zou, X.; Shi, J. Carbon dots and covalent organic frameworks based FRET immunosensor for sensitive detection of Escherichia coli O157:H7. Food Chem. 2024, 447, 138663. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, M.; Qi, J.; Zhu, L. Paper-based fluorescence sensor array with functionalized carbon quantum dots for bacterial discrimination using a machine learning algorithm. Anal. Bioanal. Chem. 2024, 416, 3139–3148. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Hou, X.; Ga, L.; Ai, J. Aptamer-carbon quantum dots and silver nanoparticles construct a FRET sensor for sensitive detection of E. coli. Biomed. Anal. 2024, 1, 162–173. [Google Scholar] [CrossRef]
- Yu, D.; Wang, L.; Zhou, H.; Zhang, X.; Wang, L.; Qiao, N. Fluorimetric Detection of Candida albicans Using Cornstalk N-Carbon Quantum Dots Modified with Amphotericin B. Bioconj. Chem. 2019, 30, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Yu, S.; Cai, J.; Wang, X. A ratiometric fluorescent platform based on xylan-derived carbon dots for detecting Vibrio parahaemolyticus. Ind. Crops Prod. 2025, 228, 120871. [Google Scholar] [CrossRef]
Source | Carbon Dots | Synthesis Method | Antimicrobial Methods | Microorganisms | Results | References |
---|---|---|---|---|---|---|
L-serine + phytic acid | SP-CDs and SN-CDs | Stage-melting method; nitrogen-doped | Broth microdilution (CLSI M38-A2) | Fusarium solani—clinical isolate | MIC SP-CDs = 2.5 µg/mL; MIC SN-CDs = 10 µg/mL | [39] |
Candida albicans—ATCC 10231 | MIC SP-CDs = 5.0 µg/mL; MIC SN-CDs = 20 µg/mL | |||||
Aspergillus fumigatus—ATCC 204305 | MIC SP-CDs = 5.0 µg/mL; MIC SN-CDs = 20 µg/mL | |||||
Glucose | GCD (Glucose Carbon Dots) | One-step hydrothermal method | Broth microdilution (CLSI) | Listeria monocytogenes—ATCC 19115 | MIC/MBC = 312/625 µg/mL | [40] |
Escherichia coli—ATCC 25922 | MIC/MBC = 625/1250 µg/mL | |||||
BGCD (Boron-doped, boric acid) | Listeria monocytogenes—ATCC 19115 | MIC/MBC = 312/655 µg/mL | ||||
Escherichia coli—ATCC 25922 | MIC/MBC = 156/312 µg/mL | |||||
Aspergillus fumigatus—ATCC 204305 | MIC/MFC = 156/625 µg/mL | |||||
Fusarium solani—clinical isolate | MIC/MFC = 312/655 µg/mL | |||||
Penicillium citrinum—ATCC 9849 | MIC/MFC = 156/312 µg/mL | |||||
Candida albicans—ATCC 10231 | MIC/MFC = 312/655 µg/mL | |||||
Rhodotorula rubra—ATCC 9312 | MIC/MFC = 156/625 µg/mL | |||||
SGCD (Sulfur-doped, sodium persulfate) | Listeria monocytogenes—ATCC 19115 | MIC/MBC = 19/78 µg/mL | ||||
Escherichia coli—ATCC 25922 | MIC/MBC = 156/312 µg/mL | |||||
Aspergillus fumigatus—ATCC 204305 | MIC/MFC = 312/625 µg/mL | |||||
Fusarium solani—clinical isolate | MIC/MFC = 54/108 µg/mL | |||||
Penicillium citrinum—ATCC 9849 | MIC/MFC = 156/312 µg/mL | |||||
Candida albicans—ATCC 10231 | MIC/MFC = 78/152 µg/mL | |||||
Rhodotorula rubra—ATCC 9312 | MIC/MFC = 19/27 µg/mL | |||||
NGCD (Nitrogen-doped, urea) | Listeria monocytogenes—ATCC 19115 | MIC/MBC = 19/27 µg/mL | ||||
Escherichia coli—ATCC 25922 | MIC/MBC = 19/156 µg/mL | |||||
Aspergillus fumigatus—ATCC 204305 | MIC/MFC = 19/39 µg/mL | |||||
Fusarium solani—clinical isolate | MIC/MFC = 78/152 µg/mL | |||||
Penicillium citrinum—ATCC 9849 | MIC/MFC = 19/39 µg/mL | |||||
Candida albicans—ATCC 10231 | MIC/MFC = 27/54 µg/mL | |||||
Rhodotorula rubra—ATCC 9312 | MIC/MFC = 19/27 µg/mL | |||||
D-glucosamine HCl + 1,3-diaminobenzene | CDs–NH2 (amine-rich) | Microwave-assisted (800 W, 3 min) | Broth microdilution (CLSI M27-A3) | Candida albicans ATCC 10231 | MIC = 397 µg/mL; Adhesion inhibition = 79% at 500 µg/mL; Biofilm inhibition (24 h) = 89%, (48 h) = 95% at 500 µg/mL; ≥70% biofilm inhibition from 125 µg/mL; Larvae survival = 90% at 5000 µg/mL, 80% at 500 µg/mL | [41] |
Urea + citric acid | CDs–CO2H/NH2 (neutral/negative) | Microwave-assisted (800 W, 30 min) | No MIC at ≤500 µg/mL; Adhesion/biofilm inhibition lower than CDs–NH2 | |||
D-glucose + polyacrylate sodium | CDs–CO2H (negative, no N-doping) | Microwave-assisted (800 W, 4 min) | No MIC at ≤500 µg/mL; Adhesion/biofilm inhibition lower than CDs–NH2 | |||
Chitosan quaternary ammonium salt (HACC) + urea + ethanolamine | N-doped carbon quantum dots (N-CQDs) | One-step hydrothermal method (optimal: m(HACC):m(urea):m(ethanolamine) = 1:2.5:1.5, 180 °C, 8 h) | Agar dilution | Coriolus versicolor | MIC HACC = 40 mg/mL; MIC N-CQDs = 1.8 mg/mL | [42] |
Citric acid + β-alanine | CA/β-alanine CDs | One-pot microwave-assisted synthesis (700 W, 3 min) | Agar well diffusion; MIC determination (0.5–10 mg/mL); light/dark incubation | Escherichia coli DH5α | ZOI: 11.75 ± 0.96 mm (19 mg/mL); MIC = 1 mg/mL; complete inhibition in 16 h (19 mg/mL) | [43] |
Pectobacterium carotovorum Ecc7 | 18.00 ± 0.82 mm (19 mg/mL); MIC = 5 mg/mL; complete inhibition in 5–6 h | |||||
Agrobacterium tumefaciens EHA101 | 19.33 ± 1.15 mm (19 mg/mL); MIC = 1 mg/mL; complete inhibition in 5–6 h | |||||
Agrobacterium rhizogenes K599 | 20.33 ± 0.58 mm (19 mg/mL); MIC = 1 mg/mL; complete inhibition in 5–6 h | |||||
Pseudomonas syringae pv. tomato DC3000 | 28.67 ± 0.58 mm (19 mg/mL); MIC = 5 mg/mL; complete inhibition in 5–6 h | |||||
Salmonella enterica subsp. enterica serovar Typhimurium 13311 | 20.67 ± 0.58 mm (19 mg/mL); MIC = 1 mg/mL; complete inhibition in 11 h | |||||
L-arginine + citric acid | N-doped arginine CDs (Arg CDs), Arg-Ag CDs, Arg-Cu CDs | One-pot, green microwave-assisted synthesis (2 min) for Arg CDs; in situ metal nanoparticle incorporation (Ag or Cu) via adsorption and NaBH4 reduction | Disc diffusion; broth microdilution | Staphylococcus aureus ATCC 6538 | Disk diffusion: 6 ± 1 mm (Arg CDs), 24 ± 1 mm (Arg-Ag CDs), 22 ± 1 mm (Arg-Cu CDs) MIC: 6.25 mg/mL (Arg CDs), 0.062 mg/mL (Arg-Ag CDs), 0.625 mg/mL (Arg-Cu CDs) MBC: 12.5 mg/mL (Arg CDs), 0.125 mg/mL (Arg-Ag CDs), 3.125 mg/mL (Arg-Cu CDs) | [44] |
Escherichia coli ATCC 8739 | Disk diffusion: 21 ± 2 mm (Arg CDs), 25 ± 1 mm (Arg-Ag CDs), 25 ± 1 mm (Arg-Cu CDs) MIC: 6.25 mg/mL (Arg CDs), 0.125 mg/mL (Arg-Ag CDs), 1.25 mg/mL (Arg-Cu CDs) MBC: 12.5 mg/mL (Arg CDs), 0.312 mg/mL (Arg-Ag CDs), 6.25 mg/mL (Arg-Cu CDs) | |||||
PEG-400 | CDs of PANI–CuO, PANI–TiO2, PANI–SiO2 (polymer–oxide composites) | Sonochemical decoration of CuO, TiO2, or SiO2 on PANI synthesized with CDs as initiator | CFU counting after mixing bacterial suspension with polymer composites; incubation at 37 °C with shaking | Pseudomonas aeruginosa—PAO1; Klebsiella pneumoniae—ATCC 700603 | P. aeruginosa: PANI–CuO (1 mg/mL) & PANI–TiO2 (1 mg/mL) eradicated in 6 h; PANI–SiO2 (1 mg/mL) in 12 h; PANI (0.78 mg/mL) modest effect; pure oxides (CuO, TiO2, SiO2 at 220 µg/mL) no effect. K. pneumoniae: PANI–TiO2 (1 mg/mL) eradicated in 6 h; PANI–SiO2 (1 mg/mL) in 12 h; PANI–CuO (1 mg/mL) no effect; pure oxides (CuO, TiO2, SiO2 at 220 µg/mL) no effect. | [45] |
Bovine serum albumin (BSA) | N-doped carbon dots (N@CDs) incorporated into polydopamine (PDA–N@CD composite) | Hydrothermal synthesis of N@CDs (BSA + NaOH, 180 °C, 6 h) | Viable cell count (CFU) after exposure in LB medium for 48 h | Staphylococcus aureus—ATCC 43300 | 0.5 mg/mL reduced MRSA CFU by ~3.5 logs; 0.125 mg/mL still significantly reduced viability | [46] |
Riboflavin + ethylenediamine | Carbon Polymerized Dots/Polyurethane (CPDs/PU) composite films | Solvothermal method; swelling–shrink encapsulation into polyurethane | ISO 22196 antibacterial test under blue light (470 nm, 1 h) | Klebsiella pneumoniae ATCC 13883 | Complete eradication (R = 5.45) | [47] |
Proteus mirabilis ATCC 14153 | Complete eradication (R = 5.52) | |||||
Salmonella enterica ATCC 13076 | Complete eradication (R = 4.81) | |||||
Enterococcus faecalis ATCC 29212 | Complete eradication (R = 5.53) | |||||
Enterococcus epidermidis ATCC 12228 | Complete eradication (R = 4.55) | |||||
Shigella flexneri ATCC 12022 | ~75% reduction (R = 2.10) | |||||
Pseudomonas aeruginosa ATCC 27853 | Complete eradication (R = 4.95) | |||||
Aspergillus niger ATCC 16404 | ~99% reduction (R = 2.06) | |||||
Fullerene C60 | C60/PU composite films | Swelling–shrink encapsulation into polyurethane | Klebsiella pneumoniae ATCC 13883 | Complete eradication (R = 5.45) | ||
Proteus mirabilis ATCC 14153 | Complete eradication (R = 5.52) | |||||
Salmonella enterica ATCC 13076 | Complete eradication (R = 4.81) | |||||
Enterococcus faecalis ATCC 29212 | Complete eradication (R = 5.53) | |||||
Enterococcus epidermidis ATCC 12228 | Minimal effect (R = 0.11) | |||||
Shigella flexneri ATCC 12022 | Complete eradication (R = 2.12) | |||||
Pseudomonas aeruginosa ATCC 27853 | Complete eradication (R = 4.95) | |||||
Aspergillus niger ATCC 16404 | Complete eradication (R = 5.47) | |||||
Spermidine | Spermidine-capped carbon dots (S-PCDs) | Hydrothermal, 220 °C, 3 h using PEI + spermidine in water. | MIC in 96-well microplate; Oxford-cup inhibition zone; growth curve (OD600), spread-plate CFU and time–kill assays. | Staphylococcus aureus (lab isolate) | MIC = 16 µg/mL; inhibition zone 22.2 mm (S-PCDs) vs. 27.3 mm (kanamycin); at 2× MIC zone 25.8 mm; time–kill: 2× MIC ≈ kill by 8 h, 4× MIC ≈ kill by 6 h. | [48] |
Phloroglucinol (1,3,5-trihydroxybenzene) | PHL-CQDs | One-step solvothermal method (ethanol + H2SO4, 180 °C, 12 h) | ISO 22196:2011 antibacterial activity test; biofilm inhibition assay | Staphylococcus aureus NCTC 6571; MRSA ATCC 43300; Enterococcus faecalis ATCC 29212; Pseudomonas aeruginosa ATCC 10332; Klebsiella pneumoniae ATCC BAA-2146; Listeria monocytogenes NCTC 11994; Escherichia coli NCTC 9001; Acinetobacter baumannii ATCC 19606; biofilms of S. aureus, E. coli, P. aeruginosa | R (log reduction): S. aureus = 2; MRSA = 7.7; E. faecalis = 2.3; P. aeruginosa = 0; K. pneumoniae = 1.3; L. monocytogenes = 0; E. coli = 5; A. baumannii = 5.4. Biofilms: S. aureus = 100% eradication; E. coli = ~75% reduction; P. aeruginosa = no effect | [49] |
Citric acid + urea | CAUR-CQDs | One-step solvothermal (bottom-up); encapsulated into polyurethane via swelling–encapsulation–shrink method | ISO 22196 (measurement of antibacterial activity on plastic surfaces) | Staphylococcus aureus NCTC 6571 | R = 5.2 | [50] |
MRSA ATCC 43300 | R = 4.3 | |||||
Enterococcus faecalis ATCC 29212 | R = 4.7 | |||||
Pseudomonas aeruginosa ATCC 10332 | R = 0.06 | |||||
Klebsiella pneumoniae ATCC BAA2146 | R = 5.3 | |||||
Listeria monocytogenes NCTC 11994 | R = 0.06 | |||||
Escherichia coli NCTC 9001 | R = 0.02 | |||||
Acinetobacter baumannii ATCC 19606 | R = 4.9 | |||||
Graphite electrodes (electrochemical method + gamma irradiation) | GQD50 | Electrochemical exfoliation (top-down) + gamma irradiation 50 kGy; encapsulated into polyurethane via swelling–encapsulation–shrink method | S. aureus NCTC 6571 | R = 0.13 | ||
MRSA ATCC 43300 | R = 0.5 | |||||
E. faecalis ATCC 29212 | R = 1.12 | |||||
P. aeruginosa ATCC 10332 | R = 0.05 | |||||
K. pneumoniae ATCC BAA2146 | R = 1.5 | |||||
L. monocytogenes NCTC 11994 | R = 1.04 | |||||
E. coli NCTC 9001 | R = 0.02 | |||||
A. baumannii ATCC 19606 | R = 0.96 | |||||
Epigynum auritum | Near-infrared (NIR)-CDs (Epigynum auritum-derived) | One-step solvothermal synthesis (branches and leaves of Epigynum auritum in acetone at 120 °C for 5 h) | Broth microdilution | Staphylococcus aureus—(strain not specified) | MIC = 8 µg/mL; MBC = 32 µg/mL; growth curves show complete inhibition at 2× MIC; μmax reduced from 0.29 h−1 (control) to 0 h−1 at 16 µg/mL | [51] |
Escherichia coli—(strain not specified) | MIC = 62 µg/mL; MBC = 124 µg/mL; growth curves show complete inhibition at 2× MIC; μmax reduced from 0.52 h−1 (control) to 0 h−1 at 124 µg/mL | |||||
Lignocellulose | Lignocellulose-based CQDs | One-step hydrothermal synthesis (220 °C, 12 h, 10 g/L) | Viable cell count after 24 h incubation | Escherichia coli ATCC 8739 | 0.5 mg/mL: 60.4 ± 4.1% reduction (3.9 ± 0.2 × 107 CFU/mL); ≥0.75 mg/mL: >99.9% inhibition (no viable bacteria) | [52] |
Polyethilenimine + citric acid | Low-C (~5–6% nanocarbon) | Microwave-assisted thermal carbonization (300 W, 4 min) | Visible-light-activated microtiter plate assay; LED light 1 h; viability by plating on LB agar | Listeria monocytogenes 10403S | Minimal reduction in viable cells at equivalent concentration to high-C | [53] |
Bacillus subtilis (laboratory model strain) | Significant inactivation under light; more susceptible than L. monocytogenes | |||||
High-C (~35–37% nanocarbon) | Microwave-assisted thermal carbonization (700 W, 4 min) | Listeria monocytogenes 10403S | Up to ~2 log reduction in viable cells at higher concentration | |||
Bacillus subtilis (laboratory model strain) | Effective inactivation under light exposure | |||||
Avocado peel | CQDs (CPC fractions) | Hydrothermal method (250 °C, 6 h) | Disk diffusion; MIC/MBC assays | Listeria monocytogenes ATCC 7644 | Inhibition zone = 8–13 mm; MIC = 1.25–5 mg/mL; MBC = 2.5–5 mg/mL | [54] |
Pseudomonas putida ATCC 12633 | Inhibition zone = 7–12 mm; MIC = 2.5–5 mg/mL; MBC = 5–10 mg/mL | |||||
Candida albicans ATCC 10231 | Inhibition zone = 9–14 mm; MIC = 2.5–5 mg/mL; MBC = 5–10 mg/mL | |||||
Biofilm inhibition assay | L. monocytogenes ATCC 7644 | Biofilm inhibition = 40–80%; biofilm eradication >50% for some fractions | ||||
P. putida ATCC 12633 | Biofilm inhibition = 40–80%; biofilm eradication >50% for some fractions | |||||
Lactobacillus acidophilus | L-C-dots | One-step hydrothermal method (200 °C, overnight) | Broth microdilution (CLSI) | K. pneumoniae ATCC 9997; Clinical carbapenem-resistant K. pneumoniae (CRKP) isolates | MIC L-C-dots = 50 mg/mL; Sub-MIC = 25 mg/mL; L-CFS MIC = 25 mg/mL | [55] |
96-well microtiter plate biofilm inhibition assay (crystal violet staining) | Significant biofilm inhibition at MIC and sub-MIC; % inhibition higher in L-CFS (p < 0.003) than L-C-dots (p < 0.034) | |||||
Checkerboard assay | Synergy in 3/5 isolates (FIC ≤ 0.5), additive in 2/5 (0.51–0.53); MIC of L-C-dots reduced from 50 mg/mL to as low as 0.78 mg/mL; meropenem from 125 µg/mL to 0.97 µg/mL in synergy cases | |||||
qPCR (gene expression) | fimH ↓ 0.852-fold (p < 0.029); mrkD ↓ 1.02-fold (p < 0.015) | |||||
Marshmallow leaves extract | Marshmallow-derived CDs (CDs), CDs/ZIF-8 nanocomposite | Hydrothermal synthesis of CDs from marshmallow leaves; in situ synthesis of ZIF-8 with 2-methylimidazole and Zn(NO3)2 in presence of CDs | Broth microdilution (MIC/MBC) | Staphylococcus aureus (Gram+) Escherichia coli (Gram–) | CDs: MIC = 1000 ppm, MBC > 1000 ppm ZIF-8: MIC = 250 ppm, MBC = 1000 ppm CDs/ZIF-8: MIC = 250 ppm, MBC = 1000 ppm | [56] |
Citric acid + ethylenediamine | N-CQDs | Hydrothermal (200 °C, 5 h) | Agar well diffusion; MIC (broth microdilution) | Staphylococcus aureus PTCC112 | Zone: 12 mm; MIC: 0.5 g/L | [57] |
Citric acid + ethylenediamine + Co2+ | Co-CQDs | Zone: 15 mm; MIC: >1 g/L | ||||
Citric acid + ethylenediamine + Fe2+ | Fe-CQDs | Zone: 11 mm; MIC: 0.5 g/L | ||||
Citric acid + ethylenediamine + Ni2+ | Ni-CQDs | Zone: 6 mm; MIC: >1 g/L | ||||
Citric acid + ethylenediamine + Cu2+ | Cu-CQDs | Zone: 10 mm; MIC: >1 g/L | ||||
Citric acid + ethylenediamine + Zn2+ | Zn-CQDs | Zone: 9 mm; MIC: >1 g/L | ||||
Citric acid + ethylenediamine | N-CQDs | Agar well diffusion; MIC (broth microdilution) | Escherichia coli PTCC1329 | Zone: 10 mm; MIC: 0.5 g/L | ||
Citric acid + ethylenediamine + Co2+ | Co-CQDs | Zone: 13 mm; MIC: >1 g/L | ||||
Citric acid + ethylenediamine + Fe2+ | Fe-CQDs | Zone: 11 mm; MIC: 0.5 g/L | ||||
Citric acid + ethylenediamine + Ni2+ | Ni-CQDs | Zone: 5 mm; MIC: >1 g/L | ||||
Citric acid + ethylenediamine + Cu2+ | Cu-CQDs | Zone: 9 mm; MIC: >1 g/L | ||||
Citric acid + ethylenediamine + Zn2+ | Zn-CQDs | Zone: 8 mm; MIC: >1 g/L | ||||
Garlic cloves | DSCDs (Garlic-derived carbon dots) | One-step hydrothermal (50 mL garlic juice, 200 °C, 4 h; filtered, dialyzed, freeze-dried) | MIC determination (broth microdilution) | Escherichia coli (generic), Staphylococcus aureus (generic), Pseudomonas aeruginosa (generic) | MIC: E. coli = 32 µg/mL, S. aureus = 64 µg/mL, P. aeruginosa = 128 µg/mL; Concentration-dependent bactericidal effect (300–2000 µg/mL) | [58] |
Trillium govanianum rhizomes | N-doped C-dots | One-step thermal calcination at 300 °C, followed by purification (centrifugation + dialysis) | Micro-broth dilution (resazurin assay) for MIC and MFC; Crystal violet biofilm inhibition assay; Bandage/Band-aid coating assay | Candida auris NCCPF-470197, NCCPF-470200, NCCPF-470203 | MIC = 0.625 mg/mL (all strains); MFC = 1.25 mg/mL (all strains); Biofilm inhibition highest in NCCPF-470203, followed by NCCPF-470197 and NCCPF-470200; C-dots coated band-aids showed higher antifungal activity than coated bandages | [59] |
Ginger rhizome peels | GiCD | Hydrothermal carbonization (200 °C, 6 h) | MIC and MBC assays (96-well microplate) | Listeria monocytogenes | MIC: 0.29 mg/mL; MBC: 0.58 mg/mL | [60] |
Staphylococcus aureus | MIC: 0.29 mg/mL; MBC: 0.58 mg/mL | |||||
Escherichia coli | MIC: 0.58 mg/mL; MBC: 1.16 mg/mL | |||||
Shigella sonnei | MIC: 0.58 mg/mL; MBC: 1.16 mg/mL | |||||
Pseudomonas aeruginosa | MIC: 0.58 mg/mL; MBC: 1.16 mg/mL | |||||
Shewanella putrefaciens | MIC: 0.58 mg/mL; MBC: 1.16 mg/mL | |||||
Antifungal assay (colony growth inhibition on agar) | Aspergillus parasiticus | Strongest inhibition among CDs; dose-dependent reduction, greatest at 3000 ppm | ||||
Aspergillus flavus | ~33% suppression at 3000 ppm | |||||
Galangal rhizome peels | GaCD | Hydrothermal carbonization (200 °C, 6 h) | MIC and MBC assays (96-well microplate) | Listeria monocytogenes | MIC: 1.08 mg/mL; MBC: 2.16 mg/mL | |
Staphylococcus aureus | MIC: 1.08 mg/mL; MBC: 2.16 mg/mL | |||||
Escherichia coli | MIC: 2.16 mg/mL; MBC: 4.32 mg/mL | |||||
Shigella sonnei | MIC: 2.16 mg/mL; MBC: 4.32 mg/mL | |||||
Pseudomonas aeruginosa | MIC: 2.16 mg/mL; MBC: 4.32 mg/mL | |||||
Shewanella putrefaciens | MIC: 2.16 mg/mL; MBC: 4.32 mg/mL | |||||
Antifungal assay | Aspergillus parasiticus | Inhibition observed but less than GiCD; effect plateaued across concentrations | ||||
Aspergillus flavus | ~33% suppression at 3000 ppm | |||||
Turmeric rhizome peels | TuCD | Hydrothermal carbonization (200 °C, 6 h) | MIC and MBC assays (96-well microplate) | Listeria monocytogenes | MIC: 0.59 mg/mL; MBC: 1.19 mg/mL | |
Staphylococcus aureus | MIC: 0.59 mg/mL; MBC: 1.19 mg/mL | |||||
Escherichia coli | MIC: 1.19 mg/mL; MBC: 2.37 mg/mL | |||||
Shigella sonnei | MIC: 1.19 mg/mL; MBC: 2.37 mg/mL | |||||
Pseudomonas aeruginosa | MIC: 1.19 mg/mL; MBC: 2.37 mg/mL | |||||
Shewanella putrefaciens | MIC: 1.19 mg/mL; MBC: 2.37 mg/mL | |||||
Antifungal assay | Aspergillus parasiticus | Moderate inhibition; less than GiCD | ||||
Aspergillus flavus | ~33% suppression at 3000 ppm | |||||
Ginkgo biloba leaves | GLCDs (Ginkgo Leaf Carbon Dots), nitrogen self-doped | One-step solvothermal method (180 °C, 3 h) + extraction | MIC assay (turbidimetric, 96-well); Bactericidal kinetics; ONPG assay; Nucleic acid leakage; ROS detection (DCFH-DA); SOD and CAT enzyme inhibition; TTC assay; Cytochrome oxidase inhibition; Biofilm disruption assay (crystal violet, SEM, optical microscopy) | Staphylococcus aureus (MRSA) ATCC 43300 | MIC = 250 µg/mL; Complete eradication at 750 µg/mL in 240 min; Dose-dependent biofilm inhibition (98% destruction at 512 µg/mL); Increased membrane permeability (ONPG), nucleic acid leakage, ROS generation; Inhibition of SOD, CAT, and cytochrome oxidase activity (~80% at >350 µg/mL); Stronger biofilm destruction than vancomycin; High biocompatibility (low cytotoxicity, minimal hemolysis) | [61] |
Watermelon peel | CQDs@AgNPs nanocomposites | Green hydrothermal synthesis of CQDs from dried watermelon peel + chemical reduction in AgNPs | Disk diffusion; MIC and MBC via microtiter plate method with MTT assay | Candida albicans (—), Escherichia coli (ATCC/PHTM), Staphylococcus aureus (ATCC/PHTM), Acinetobacter baumannii (ATCC/PHTM), Klebsiella pneumoniae (ATCC/PHTM) | Candida albicans—MIC 15 mg/mL, MBC 15 mg/mL (bacteriostatic); Escherichia coli—MIC 0.117 mg/mL, MBC 0.117 mg/mL (bactericidal); Staphylococcus aureus—MIC 3.75 mg/mL, MBC 3.75 mg/mL (bacteriostatic); Acinetobacter baumannii—MIC 3.75 mg/mL, MBC 3.75 mg/mL (bactericidal); and Klebsiella pneumoniae—MIC 3.75 mg/mL, MBC 3.75 mg/mL (bactericidal). | [62] |
Centella asiatica hairy roots (transgenic line carrying Arabidopsis thaliana squalene synthase gene—At-SS1cDNA) | Carbon quantum dots (CQDs) | One-pot green hydrothermal method (190 °C, 10 h) | Disk diffusion and broth microdilution (MIC) | Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853 | MIC: S. aureus = 0.25 mg/mL, P. aeruginosa = 1 mg/mL, E. coli = 2 mg/mL; Zone of inhibition: S. aureus = 18–22 mm, P. aeruginosa = 16–18 mm, E. coli = 11–13 mm | [63] |
Curcumin + Na2EDTA | E-CDs | One-step hydrothermal method (180 °C, 6 h) | Broth microdilution, plate counting, disc diffusion, biofilm assay (CVS) | Staphylococcus aureus—ATCC 25923 | MIC = 40 ppm; Plate counting: no colonies after treatment; Disc diffusion (300 µg) = 22 mm; Biofilm inhibition = 83.4% (remaining biomass 16.6%) | [64] |
Escherichia coli—ATCC 25922 | MIC = 150 ppm; Plate counting: no colonies after treatment; Disc diffusion (300 µg) < 22 mm (smaller than S. aureus); Biofilm inhibition > 60% (remaining biomass < 40%); | |||||
Tangerine peel | CQDs | Hydrothermal carbonization (190 °C, 7 h) | MIC/MBC determination; time–kill assay; tofu preservation test | Bacillus cereus (diarrheal type, ATCC 11778; emetic type, NCCP 14796) | MIC/MBC (µg/mL): diarrheal type = 1400/1600; emetic type = 1800/2400. CQDs at 2400 µg/mL in tofu soaking water killed diarrheal strain within 9 h and emetic strain within 12 h. Greater resistance in emetic strain. CQDs delayed growth (extended lag time) and reduced maximum population density, especially at 4 °C and 10 °C. | [65] |
Glucose | CDG, ZnCDG | Hydrothermal (200 °C, 8 h) | Colony counting; well diffusion; MIC/MBC | Staphylococcus aureus ATCC 29213; Escherichia coli ATCC 35218 | ZnCDG showed highest activity: complete kill at 2.5–5 mg/mL, inhibition zones 38 mm (S. aureus) and 32 mm (E. coli), MIC/MBC = 0.3125/0.625 mg/mL (S. aureus), 0.625/1.25 mg/mL (E. coli). Zinc doping improved activity over undoped CDG. | [66] |
Calendula officinalis | CDC, ZnCDC | Hydrothermal (180 °C, 24 h) | Colony counting; well diffusion | S. aureus ATCC 29213; E. coli ATCC 35218 | ZnCDC showed complete kill at 5 mg/mL, smaller inhibition zones than ZnCDG. Antimicrobial trend: ZnCDG > ZnCDC > CDG > CDC. Zinc doping plus smaller particle size correlated with higher activity. | |
Rhodiola (Rhodiola spp.) | R-CDs | One-pot hydrothermal method (180 °C, 8 h) | MTT staining-based MIC assay (96-well plate, 12 h incubation) | Escherichia coli JM109 (Gram–) Staphylococcus aureus ATCC 6538 (Gram+) | MIC = 0.7 mg/mL (both) | [67] |
Banana peel + silymarin | SL-CQDs | Hydrothermal method (200 °C, 24 h) | Agar well diffusion; broth microdilution (resazurin) | Bacillus subtilis; Staphylococcus aureus; Escherichia coli; Pseudomonas aeruginosa | MIC = 2 µg/mL for all tested strains; Zone of inhibition (100 µg/mL): B. subtilis = 6 mm; S. aureus = 7 mm; E. coli = 9 mm; P. aeruginosa = 10 mm | [68] |
Keratin (human hair) | P-doped Carbon Quantum Dots (P-CQDs) | One-step hydrothermal method (180 °C, 8 h) | Broth microdilution (96-well plate, MTT assay) | Staphylococcus aureus (Gram-positive) ATCC—strain not specified; Escherichia coli (Gram-negative) ATCC—strain not specified | MIC: 0.19 mg/mL (S. aureus), 0.31 mg/mL (E. coli) | [69] |
Citric acid + N-phenyl orthophenylenediamine | NCQDs (Nitrogen-doped Carbon Quantum Dots) | One-step hydrothermal method (180 °C, 8 h) | Agar well diffusion; Broth microdilution (MIC for S. aureus) | Escherichia coli BL21 DE3; Pseudomonas aeruginosa; Bacillus subtilis; Staphylococcus aureus | Zone of inhibition (mm, mean ± SD): E. coli = 11.33 ± 0.47; P. aeruginosa = 10.33 ± 0.47; B. subtilis = 13.33 ± 0.47; S. aureus = 14.33 ± 0.49. Most effective against S. aureus; MIC = 2–3 mg/mL | [70] |
Taxus baccata extract (carbon source) + ethylenediamine (nitrogen source) | T. baccata–CDs | Biogenic hydrothermal synthesis at 150 °C for 6 h | Agar disk diffusion, MIC, MBC | Staphylococcus aureus ATCC 25923 | Inhibition zones: 19 mm (10 µg), 33 mm (25 µg); MIC = 40 µg/mL; MBC = 80 µg/mL | [71] |
Escherichia coli ATCC 25922 | Inhibition zones: 15 mm (10 µg), 23 mm (25 µg); MIC = 160 µg/mL; MBC = 640 µg/mL | |||||
Zn(NO3)2·6H2O and AgNO3 with nitazoxanide | ZnO-QDs (7 nm), Ag NPs (67 nm) incorporated with nitazoxanide (NAZ) | Separate synthesis of ZnO-QDs and Ag NPs via precipitation | Agar-well diffusion; Biofilm inhibition (microdilution); MIC and MBC (broth microdilution); Time-kill assay | Salmonella paratyphi, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus epidermidis, Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Candida krusei, C. glabrata, C. albicans, C. parapsilosis | Agar-well diffusion: Largest zones—B. subtilis 35.25 mm, S. aureus 29.15 mm, B. cereus 27.17 mm, S. epidermidis 25.72 mm, P. aeruginosa 20.53 mm, C. glabrata 17.65 mm; moderate–low against others. Biofilm inhibition: Highest—B. subtilis 98.54%, S. aureus 97.98%, S. epidermidis 95.31%, B. cereus 93.45%, others 65–89%. MIC/MBC: Effective at 90–150 μg/mL for most pathogens; rapid kill in time-kill assay within 48 h. | [72] |
Castor seeds | N-CQD1, N-CQD2 | Hydrothermal method (180 °C and 220 °C, 24 h) | Agar disk diffusion; MIC (broth microdilution) | Staphylococcus aureus—ATCC 6538 | N-CQD1: IZ = 30.0 ± 0.1 mm; MIC = 15.62 µg/mLN-CQD2: IZ = 30.0 ± 0.2 mm; MIC = 15.62 µg/mL | [73] |
Methicillin-resistant S. aureus (MRSA) | N-CQD1: IZ = 24.0 ± 0.1 mm; MIC = 31.25 µg/mLN-CQD2: IZ = 29.0 ± 0.2 mm; MIC = 15.62 µg/mL | |||||
Escherichia coli—ATCC 8739 | N-CQD1: IZ = 25.0 ± 0.2 mm; MIC = 31.25 µg/mLN-CQD2: IZ = 27.0 ± 0.1 mm; MIC = 31.25 µg/mL | |||||
Klebsiella pneumoniae—ATCC 13883 | N-CQD1: IZ = 25.0 ± 0.2 mm; MIC = 62.50 µg/mLN-CQD2: IZ = 26.0 ± 0.2 mm; MIC = 62.50 µg/mL | |||||
Candida albicans—ATCC 10221 | N-CQD1: IZ = 30.0 ± 0.2 mm; MIC = 15.62 µg/mLN-CQD2: IZ = 31.0 ± 0.1 mm; MIC = 15.62 µg/mL | |||||
Ficus benghalensis aerial roots | FB-CQDs | One-step hydrothermal) + citric acid; | Broth microdilution (96-well plate) | Escherichia coli ATCC 35218; Staphylococcus aureus | Tested at 12 concentrations (1:1 to 1:2028 v/v); no detectable MIC—both strains grew even at highest concentration; attributed to high carbonization temperature reducing antimicrobial activity | [74] |
Amino acids (arginine, alanine, aspartic acid) and diethylenetriamine (DETA) | Arg-CDs | Hydrothermal method (210 °C, 6 h, pH = 12) | Plate countingmethod | Escherichia coli ATCC 25923, Staphylococcus aureus ATCC 29213 | At 50,000 µg/mL (E. coli, S. aureus) antibacterial rate reached 100%; no MIC/MBC reported | [75] |
Amino acids (alanine) | Ala-CDs | Hydrothermal method | Escherichia coli ATCC 25923, Staphylococcus aureus ATCC 29213 | no MIC/MBC reported | ||
Amino acids (aspartic acid) | Asp-CDs | Hydrothermal method | Escherichia coli ATCC 25923, Staphylococcus aureus ATCC 29213 | |||
Amino acids (arginine, optimized synthesis) | Arg-CDs-Op | Hydrothermal method (optimized: 210 °C, 6 h, pH = 12) | MIC/MBC assays | E. coli ATCC 25923, S. aureus ATCC 29213 | MIC = 2000 µg/mL (E. coli), MIC = 19,000 µg/mL (S. aureus) | |
Amino acids (arginine) + DETA | DETA-Arg-CDs | One-pot hydrothermal synthesis 210 °C, 6 h, pH = 12) | MIC/MBC assays; inhibition zone test; time-kill curve | E. coli ATCC 25923, S. aureus ATCC 29213 | MIC = 8 µg/mL (E. coli), MIC = 4 µg/mL (S. aureus); MBC = 16 µg/mL (E. coli), MBC = 8 µg/mL (S. aureus); killed > 90% E. coli in 5 min and S. aureus in 2 min; inhibition zone radius: 1.5 cm (E. coli), 1.75 cm (S. aureus) | |
Prosopis juliflora leaves | PJ-CDs | Hydrothermal method | Agar well diffusion (zone of inhibition), broth microdilution | Staphylococcus aureus ATCC 25923; Escherichia coli ATCC 25923 | MIC (S. aureus) = 1.50 mg/mL; Zone of inhibition (S. aureus) = 18 mm; No inhibition against E. coli | [76] |
Ammonium citrate | CDs conjugated to thiolated-ureido-chitosan/PMLA nanoparticles (UCPM-NPs) loaded with amoxicillin (AMX-UCPM-NPs) | Heating ammonium citrate at 180 °C, 2 h) + ionic gelation for NPs + carbodiimide coupling | Bacterial viability assay (OD590), LIVE/DEAD staining, membrane permeability assay (NPN uptake) | Helicobacter pylori ATCC 26695 (in vitro) | MIC AMX-UCPM-NPs (AMX) = 0.5 mg/mL → complete eradication; free AMX, AMX-CPM-NPs, CDs, and CDs + AMX less effective | [77] |
Blank UCPM-NPs (no AMX) | Membrane permeability assay (NPN uptake) | H. pylori ATCC 26695 (in vitro) | Strong membrane permeabilization (↑RFU) via ROS and pore formation; confirmed by TEM/SEM | |||
AMX-UCPM-NPs | Viability assay in mucus barrier model | H. pylori ATCC 26695 (in vitro, mucus layer) | 91.5% viability reduction despite mucus; higher efficacy than AMX-CPM-NPs | |||
AMX-UCPM-NPs | In vivo infection model (oral gavage, 7 days) | H. pylori SS1 (mouse model) | 7.5 mg/kg/day AMX dose → effective eradication, normal gastric histology, reduced ulcers | |||
Citric acid (carbon source) + urea (nitrogen source) | Nitrogen-doped carbon quantum dots (N/CQDs) | Microwave-assisted synthesis (2:1 mass ratio citric acid:urea, 450 W, 10 min, dialysis) | MIC, MFC, sorbitol assay, agar diffusion, antifungal inhibition %, in vivo wound healing and CFU count | Mucor indicus CNRMA 03894, Candida albicans RCMB 05035, Aspergillus flavus RCMB 02782, A. fumigatus RCMB 02564, A. niger RCMB 02568, Penicillium notatum NCPF 2881 | MIC (µg/mL): M. indicus 52, C. albicans 52, A. flavus 208, A. fumigatus 333, A. niger 208, P. notatum 52; MFC (µg/mL): M. indicus 3, C. albicans 4, P. notatum 4; Sorbitol MIC: M. indicus 8, C. albicans 10, P. notatum 13; Inhibition %: M. indicus 98%, C. albicans 83%; Significant wound healing and CFU reduction in vivo | [78] |
Phenol + melamine + formaldehyde | Nitrogen-doped mesoporous carbon (N/MC) | Hydrothermal synthesis (130 °C, 12 h) + drying (60 °C, 12 h) | MIC (µg/mL): M. indicus 52, C. albicans 250, A. flavus 250, A. fumigatus 500, A. niger 250, P. notatum 250; MFC (µg/mL): M. indicus 2, P. notatum 14; Sorbitol MIC: M. indicus 26; Inhibition %: M. indicus 98%, C. albicans 83%; Significant wound healing and CFU reduction in vivo (less effective than N/CQDs for fungal clearance) | |||
L-arginine | CDs-Arg and CDs-P (HPMC-modified CDs-Arg) | Hydrothermal synthesis at 200 °C for 4 h; modification with hydroxypropyl methylcellulose (7.5%, 15%, 30%) | Broth dilution MIC determination; Disk diffusion (inhibition zone) | Staphylococcus aureus—ATCC 6538 | MIC = 1.25% (both CDs-Arg and CDs-P); Inhibition zone: CDs-Arg = 2.2 mm (5%), 2.1 mm (2.5%), 1.4 mm (1.25%); CDs-P = 2.0 mm (5%), 1.9 mm (2.5%), 1.0 mm (1.25%) | [79] |
Escherichia coli—ATCC 8099 | MIC = 1.25% (both CDs-Arg and CDs-P); Inhibition zone: CDs-Arg = 2.0 mm (5%), 1.1 mm (2.5%), 1.0 mm (1.25%); CDs-P = 1.8 mm (5%), 1.4 mm (2.5%), 0.9 mm (1.25%) |
Target (Matrix) | Probe Design and Mechanism | Read Out Time | Linear Range/LOD | Notable Features | References |
---|---|---|---|---|---|
Gram-positive bacteria (buffer) | Vancomycin-CDs. Surface binding with turn-on imaging | <30 min | Imaging (qualitative), LOD reported for cell counts in follow-ups | Classic antibiotic guided gram typing with CDs | [89] |
E. coli (culture/imagery) | Aptamer functionalized Graphene QDs (GQDs), binding with fluorescence and AI image analysis | 30–60 min | Correlated intensity and CFU (image based) | Demonstrates coupling to AI for quantitative counting | [90] |
E. coli O157:H7 (foods) | CD-COF PRET sensor, target disrupts FRET | ≤30 min | Sub-100 CFU mL−1, wide linear range (report specific) | High sensitivity, food matric compatible | [91] |
Mixed bacteria (paper device) | Paper sensor array of functionalized CDs + ML classifier | Minutes | Species level discrimination, confusion matrix accuracy reported | Portable, label pattern recognition | [92] |
E. coli (water/food) | CQD-Aptamer + AgNP IFE/FRET platform, target restores CD emission | 30 min | nM-pM (oligo surrogates) or CFU mL−1, low LODs | Green CQDs synthesis, robust IFE/FRET switching | [93] |
Candida albicans (biofluids) | N-CQDs turn on assay. Surface interaction enhances emission | <30 min | nM-µM labels/CFU mL−1 detection (report-specific) | Rapid fungal sensing, good biocompatibility | [94] |
Vibrio parahaemolyticus (foods) | Xylan derived ratiometric CD platform (dual band) | ≤40 min | Ratiometric calibration, low LOD (report specific) | Matrix tolerant quantitation via internal referencing | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romulo, A.; Suryoprabowo, S.; Setiarto, R.H.B.; Guo, Y. Carbon Dots as Multifunctional Nanomaterials: A Review on Antimicrobial Activities and Fluorescence-Based Microbial Detection. Molecules 2025, 30, 3969. https://doi.org/10.3390/molecules30193969
Romulo A, Suryoprabowo S, Setiarto RHB, Guo Y. Carbon Dots as Multifunctional Nanomaterials: A Review on Antimicrobial Activities and Fluorescence-Based Microbial Detection. Molecules. 2025; 30(19):3969. https://doi.org/10.3390/molecules30193969
Chicago/Turabian StyleRomulo, Andreas, Steven Suryoprabowo, Raden Haryo Bimo Setiarto, and Yahui Guo. 2025. "Carbon Dots as Multifunctional Nanomaterials: A Review on Antimicrobial Activities and Fluorescence-Based Microbial Detection" Molecules 30, no. 19: 3969. https://doi.org/10.3390/molecules30193969
APA StyleRomulo, A., Suryoprabowo, S., Setiarto, R. H. B., & Guo, Y. (2025). Carbon Dots as Multifunctional Nanomaterials: A Review on Antimicrobial Activities and Fluorescence-Based Microbial Detection. Molecules, 30(19), 3969. https://doi.org/10.3390/molecules30193969