Antioxidant and Photoprotective Capacity of Secondary Metabolites Isolated from Pseudocyphellaria berberina
Abstract
1. Introduction
2. Results
2.1. Chemistry
2.2. Photoprotective Activity
2.3. Antioxidant Activity
2.4. Cytotoxicity
2.5. In Silico Estimation of Skin Permeation and Application of 1 to 4 as Topical Dermatological Agents
3. Discussion
4. Materials and Methods
4.1. Lichen Material
4.2. Isolation of Compounds
4.3. Photoprotective Activity
4.3.1. UVB Photoprotective Activity
4.3.2. UVA Photoprotective Activity
4.4. Antioxidant Activity
4.5. Cytotoxicity Assay
4.5.1. Cell Culture
4.5.2. Treatment with Lichen Compounds and Extract
4.5.3. Resazurin Reduction Assay
4.6. In Silico Estimation of Skin Permeation and Application of Metabolites 1 to 4 as Topical Dermatological Agents
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.P.; Woodside, L.A.; Kaphingst, K.A.; Jensen, J.D.; Hamilton, J.G.; Kohlmann, W.; Haaland, B.; Brintz, B.J.; Phillips, S.M.; Hay, J.L. The risk information and skin-cancer education for undergraduate prevention (RISE-UP) study: Protocol for a trial of personalized sun protection interventions for skin cancer prevention among undergraduate students. Contemp. Clin. Trials 2024, 147, 107728. [Google Scholar] [CrossRef]
- Roky, A.H.; Islam, M.M.; Ahasan, A.M.F.; Mostaq, M.S.; Mahmud, M.Z.; Amin, M.N.; Mahmud, A. Overview of skin cancer types and prevalence rates across continents. Cancer Pathogenesis and Therapy. Chin. Med. Assoc. 2024, 3, 89–100. [Google Scholar]
- Marzo-Castillejo, M.; Bartolomé-Moreno, C.; Bellas-Beceiro, B.; Melús-Palazón, E.; Vela-Vallespín, C. PAPPS Expert Groups. Cancer prevention recommendations: Update 2022. Aten. Primaria 2022, 54, 102440. [Google Scholar] [CrossRef]
- Guerra Tapia, A. Indicaciones y aplicaciones de la fotoprotección. Medicine 2018, 12, 2811–2814. [Google Scholar] [CrossRef]
- Zhivagui, M.; Hoda, A.; Valenzuela, N.; Yeh, Y.Y.; Dai, J.; He, Y.; Nandi, S.P.; Otlu, B.; Van Houten, B.; Alexandrov, L.B. DNA damage and somatic mutations in mammalian cells after irradiation with a nail polish dryer. Nat. Commun. 2023, 14, 1424. [Google Scholar] [CrossRef] [PubMed]
- Akköse, Ü.; Adebali, O. The interplay of 3D genome organization with UV-induced DNA damage and repair. J. Biol. Chem. 2023, 299, 104679. [Google Scholar] [CrossRef] [PubMed]
- de Jager, T.L.; Cockrell, A.E.; Du Plessis, S.S. Ultraviolet light induced generation of reactive oxygen species. In Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2017; pp. 15–23. [Google Scholar]
- Russo, A.; Piovano, M.; Lombardo, L.; Garbarino, J.; Cardile, V. Lichen metabolites prevent UV light and nitric oxide-mediated plasmid DNA damage and induce apoptosis in human melanoma cells. Life Sci. 2008, 83, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Mota, M.D.; Costa, R.Y.S.; Guedes, A.A.A.S.; Silva, L.C.R.C.E.; Chinalia, F.A. Guava-fruit extract can improve the UV-protection efficiency of synthetic filters in sun cream formulations. J. Photochem. Photobiol. B 2019, 201, 111639. [Google Scholar] [CrossRef]
- Shin, M.H.; Lee, Y.; Kim, M.K.; Lee, D.H.; Chung, J.H. UV increases skin-derived 1α,25-dihydroxyvitamin D3 production, leading to MMP-1 expression by altering the balance of vitamin D and cholesterol synthesis from 7-dehydrocholesterol. J. Steroid Biochem. Mol. Biol. 2019, 195, 105449. [Google Scholar] [CrossRef]
- Magaji, B.; Singh, P.; Skelton, A.A.; Martincigh, B.S. Synthesis, photostability and antibacterial activity of a series of symmetrical α,β-unsaturated ketones as potential UV filters. J. Photochem. Photobiol. A Chem. 2023, 445, 115018. [Google Scholar] [CrossRef]
- Yañez, O.; Osorio, M.I.; Osorio, E.; Tiznado, W.; Ruíz, L.; García, C.; Nagles, O.; Simirgiotis, M.J.; Castañeta, G.; Areche, C.; et al. Antioxidant activity and enzymatic of lichen substances: A study based on cyclic voltammetry and theoretical. Chem. Biol. Interact. 2023, 372, 110357. [Google Scholar] [CrossRef]
- Culberson, C.F.; Elix, J.A. Lichen Substances. In Methods in Plant Biochemistry; Elsevier: Amsterdam, The Netherlands, 1989; pp. 509–535. [Google Scholar]
- Bellio, P.; Segatore, B.; Mancini, A.; Di Pietro, L.; Bottoni, C.; Sabatini, A.; Brisdelli, F.; Piovano, M.; Nicoletti, M.; Amicosante, G.; et al. Interaction between lichen secondary metabolites and antibiotics against clinical isolates methicillin-resistant Staphylococcus aureus strains. Phytomedicine 2015, 22, 223–230. [Google Scholar] [CrossRef]
- Müller, K. Pharmaceutically relevant metabolites from lichens. Appl. Microbiol. Biotechnol. 2001, 56, 9–16. [Google Scholar] [CrossRef]
- Zambare, V.P.; Christopher, L.P. Biopharmaceutical potential of lichens. Pharm. Biol. 2012, 50, 778–798. [Google Scholar] [CrossRef]
- Molnár, K.; Farkas, E. Current results on biological activities of lichen secondary metabolites: A review. Z. Fur Nat. Forsch. C 2010, 65, 157–173. [Google Scholar] [CrossRef]
- Solhaug, K.A.; Gauslaa, Y. Secondary Lichen Compounds as Protection Against Excess Solar Radiation and Herbivores. In Progress in Botany 73; Lüttge, U., Beyschlag, W., Büdel, B., Francis, D., Eds.; Springer: Berlin, Germany, 2012; pp. 283–304. [Google Scholar]
- Nguyen, K.H.; Chollet-Krugler, M.; Gouault, N.; Tomasi, S. UV-protectant metabolites from lichens and their symbiotic partners. Nat. Prod. Rep. 2013, 30, 1490–1508. [Google Scholar] [CrossRef] [PubMed]
- Rubio, C.; Saavedra, M.; Cuéllar, M.; Díaz, R.; Quilhot, W. Epiphytic lichens of Conguillío National Park, southern Chile Líquenes epífitos en el Parque Nacional Conguillío, sur de Chile. Gayana Bot. 2013, 70, 66–81. [Google Scholar] [CrossRef]
- Huneck, S.; Yoshimura, I. Identification of Lichen Substances; Springer Nature: Dordrecht, The Netherlands, 1996; pp. 4–5. [Google Scholar]
- Elix, J.A.; Wardlaw, J.H.; Obermayer, W. 2-hydroxyvirensic acid, a new depsidone from the lichen Sulcaria sulcata. Aust. J. Chem. 2000, 53, 233–235. [Google Scholar] [CrossRef]
- Piovano, M.; Chamy, M.C.; Garbarino, J.A. Liquenes Chilenos XXXI: Adiciones a la quimica de Pseudocyphellaria. Bol. Soc. Chil. Quím. 2001, 46, 23–27. [Google Scholar]
- Panyakaew, J.; Chalom, S.; Sookkhee, S.; Saiai, A.; Chandet, N.; Meepowpan, P.; Thavornyutikarn, P.; Mungkornasawakul, P. Kaempferia Sp. Extracts as UV Protecting and Antioxidant Agents in Sunscreen. J. Herbs Spices Med. Plants 2021, 27, 37–56. [Google Scholar] [CrossRef]
- Diffey, B.L. A method for broad spectrum classification of sunscreens. Int. J. Cosmet. Sci. 1994, 16, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Potts, R.; Guy, R. Predicting skin Permeability. Pharm. Res. 1992, 9, 663–669. [Google Scholar] [CrossRef]
- Food and Drug Administration. Labeling and effectiveness testing; sunscreen drug products for over-the-counter human use. Final Rule Fed. Regist. 2011, 76, 35620–35665. [Google Scholar]
- Hidalgo, M.E.; Fernández, E.; Ponce, M.; Rubio, C.; Quilhot, W. Photophysical, photochemical, and thermodynamic properties of shikimic acid derivatives: Calycin and rhizocarpic acid (lichens). J. Photochem. Photobiol. B 2002, 66, 213–217. [Google Scholar] [CrossRef]
- Santos, L.L.; Wu, E.L.; Grinias, K.M.; Koetting, M.C.; Jain, P. Developability profile framework for lead candidate selection in topical dermatology. Int. J. Pharm. 2021, 604, 120750. [Google Scholar] [CrossRef] [PubMed]
- James, P.J.C.; Vuong, D.; Moggach, S.A.; Lacey, E.; Piggott, M.J. Synthesis, Characterization, and Bioactivity of the Lichen Pigments Pulvinamide, Rhizocarpic Acid, and Epanorin and Congeners. J. Nat. Prod. 2023, 86, 550–556. [Google Scholar] [CrossRef]
- Ahmed, Z.; Langer, P. Synthesis of natural pulvinic acids based on a “[3+2] cyclization-Suzuki cross-coupling” strategy. Tetrahedron 2005, 61, 2055–2263. [Google Scholar] [CrossRef]
- Nadal, B.; Thetiot-Laurent, S.A.L.; Pin, S.; Renault, J.P.; Cressier, D.; Rima, G.; Le Roux, A.; Meunier, S.; Wagner, A.; Lion, C.; et al. Synthesis and antioxidant properties of pulvinic acids analogues. Bioorg. Med. Chem. 2010, 18, 7931–7939. [Google Scholar] [CrossRef]
- Mansur, J.S.; Breder, M.N.R.; Manzur, M.C.A.; Azulay, R.D. Determinação Do Fator De Proteção Solar Por Espectrofotometria. Bras Dermatol Rio De Jan. 1986, 61, 121–124. [Google Scholar]
- Núñez-Arango, L.M.; Rojas, J.L.; Valencia-Islas, N.A.; Cerbón, M.; González-Sánchez, I. Metabolites from the Andean paramo lichen Cladonia cf. didyma and their effect as photoprotective and antioxidant agents. Nat. Prod. Res. 2024, 38, 3989–3997. [Google Scholar] [CrossRef] [PubMed]
- Sayre, R.M.; Agin, P.P.; Levee, G.J.; Maruiwe, E. A comparison of in vivo and in vitro testing of sunscreening formulas. Photochem. Photobiol. 1979, 29, 559–566. [Google Scholar] [CrossRef]
- Food and Drug Administration. Department of Health and Human Services Food and Drug Administration 21 CFR Parts 347 and 352. Fed. Regist. 2007, 72, 49070–49122. [Google Scholar]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of DPH, A.BTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 2023, 1, 233. [Google Scholar]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Zaiontz, C. Real Statistics Using Excel. 2023. Available online: https://real-statistics.com/#:~:text=What%20is%20Real%20Statistics%20Using,using%20built%2Din%20Excel%20capabilities (accessed on 15 November 2024).
UVA Photoprotection a | ||
---|---|---|
λcrit. (nm) ± SD | UVA/UVB-r ± SD | |
PBSA | 326.80 (0.44) * | 0.141 (0.004) no UVA |
AVO | 378.44 (0.22) **** | 1.740 (0.173) **** maximum |
Eu4360 | 353.19 (1.68) *** | 0.452 (0.009) ** good |
AE | 389.09 (0.84) **** | 1.118 (0.010) **** maximum |
1 | 342.51 (1.15) ** | 0.308 (0.002) * moderate |
2 | 358.33 (0.32) *** | 0.425 (0.006) ** good |
3 | 364.68 (2.29) *** | 0.549 (0.003) ** good |
4 | 391.08 (0.35) **** | 1.353 (0.031) **** maximum |
5 | NA b | NA b |
Sample | Skin Permeability Coefficient | Partition Coefficient (P) | Gibbs Free Energy of Transfer | Polar Surface Area | Molecular Weight | # Aromatic Rings |
---|---|---|---|---|---|---|
Log kp (cm s−1) | cLog P | ΔtG° (kJ mol−1) | TPSA Å2 | MW Da | Ar# | |
PBSA | –6.56 | 2.34 | –13.37 | 91.43 | 274.30 | 3 |
Eu4360 | –5.00 | 2.75 | –15.71 | 46.53 | 228.24 | 2 |
AVO | –4.81 | 4.07 | –23.23 | 43.37 | 310.39 | 2 |
1 | –4.47 | 4.57 | –26.11 | 64.99 | 358.43 | 2 |
2 | –5.68 | 3.33 | –19.02 | 119.36 | 406.77 | 3 |
3 | –5.16 | 3.40 | –20.60 | 130.36 | 402.39 | 2 |
4 | –6.31 | 2.61 | –14.87 | 72.83 | 306.27 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubio, C.; Ramírez, J.; Rojas, J.L.; Valencia-Islas, N.A.; Campos, C.; Quiñones, N. Antioxidant and Photoprotective Capacity of Secondary Metabolites Isolated from Pseudocyphellaria berberina. Molecules 2025, 30, 3833. https://doi.org/10.3390/molecules30183833
Rubio C, Ramírez J, Rojas JL, Valencia-Islas NA, Campos C, Quiñones N. Antioxidant and Photoprotective Capacity of Secondary Metabolites Isolated from Pseudocyphellaria berberina. Molecules. 2025; 30(18):3833. https://doi.org/10.3390/molecules30183833
Chicago/Turabian StyleRubio, Cecilia, Javiera Ramírez, José L. Rojas, Norma A. Valencia-Islas, Carolina Campos, and Natalia Quiñones. 2025. "Antioxidant and Photoprotective Capacity of Secondary Metabolites Isolated from Pseudocyphellaria berberina" Molecules 30, no. 18: 3833. https://doi.org/10.3390/molecules30183833
APA StyleRubio, C., Ramírez, J., Rojas, J. L., Valencia-Islas, N. A., Campos, C., & Quiñones, N. (2025). Antioxidant and Photoprotective Capacity of Secondary Metabolites Isolated from Pseudocyphellaria berberina. Molecules, 30(18), 3833. https://doi.org/10.3390/molecules30183833