The Effect of Oxidative Modification of Activated Carbon on Adsorption of Aromatic Compounds from Aqueous Solutions
Abstract
1. Introduction
2. Results and Discussions
2.1. Carbon Characterization
2.2. Adsorption Properties of Modified Carbons
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Carbon Sample Preparation
3.3. Carbon Sample Characterization
3.4. Adsorption Isotherm Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mattson, J.A.; Mark, H.B.; Malbin, M.D.; Weber, W.J.; Crittenden, J.C. Surface chemistry of active carbon: Specific adsorption of phenols. J. Colloid Interface Sci. 1969, 31, 116–130. [Google Scholar] [CrossRef]
- Derylo-Marczewska, A.; Swiatkowski, A.; Buczek, B.; Biniak, S. Adsorption equilibria in the systems: Aqueous solutions of organics—Oxidized activated carbon samples obtained from different parts of granules. Fuel 2006, 85, 410–417. [Google Scholar] [CrossRef]
- Arafat, H.A.; Franz, M.; Pinto, N.G. Effect of salt on the mechanism of adsorption of aromatics on activated carbon. Langmuir 1999, 15, 5997–6003. [Google Scholar] [CrossRef]
- Derylo-Marczewska, A.; Goworek, J.; Swiatkowski, A.; Buczek, B. Influence of differences in porous structure within granules of activated carbon on adsorption of aromatics from aqueous solutions. Carbon 2004, 42, 301–306. [Google Scholar] [CrossRef]
- Moreno-Castilla, C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 2004, 42, 83–94. [Google Scholar] [CrossRef]
- Radovic, L.R.; Moreno-Castilla, C.; Rivero Utrilla, J. Carbon materials as adsorbents in aqueous solutions. Chem. Phys. Carbon 2000, 27, 227–405. [Google Scholar]
- Muller, E.; Gubbins, K. Molecular simulation study of hydrophilic and hydrophobic behavior of activated carbon surfaces. Carbon 1998, 36, 1433–1438. [Google Scholar] [CrossRef]
- Derylo-Marczewska, A.; Swiatkowski, A.; Grajek, H.; Biniak, S.; Witkiewicz, Z. Changes in the surface chemistry and adsorptive properties of active carbon previously oxidized and heat-treated at various temperatures. III. Studies of organic solutes adsorption from aqueous solutions. Adsorpt. Sci. Technol. 2005, 23, 867–879. [Google Scholar] [CrossRef]
- Jaramillo, J.; Álvarez, P.M.; Gómez-Serrano, V. Oxidation of activated carbon by dry and wet methods: Surface chemistry and textural modifications. Fuel Process. Technol. 2010, 91, 1768–1775. [Google Scholar] [CrossRef]
- Buczek, B.; Biniak, S.; Świątkowski, A. Oxygen distribution within oxidised active carbon granules. Fuel 1999, 78, 1443–1448. [Google Scholar] [CrossRef]
- Derylo-Marczewska, A.; Buczek, B.; Swiatkowski, A. Effect of oxygen surface groups on adsorption of benzene derivatives from aqueous solutions onto active carbon samples. Appl. Surf. Sci. 2011, 257, 9466–9472. [Google Scholar] [CrossRef]
- Valdés, H.; Sánchez-Polo, M.; Rivera-Utrilla, J.; Zaror, C.A. Effect of Ozone Treatment on Surface Properties of Activated Carbon. Langmuir 2002, 18, 2111–2116. [Google Scholar] [CrossRef]
- Álvarez, P.M.; García-Araya, J.F.; Beltrán, F.J.; Masa, F.J.; Medina, F. Ozonation of activated carbons: Effect on the adsorption of selected phenolic compounds from aqueous solutions. J. Colloid Interface Sci. 2005, 283, 503–512. [Google Scholar] [CrossRef]
- Derylo Marczewska, A.; Skrzypczyńska, K.; Kuśmierek, K.; Świątkowski, A.; Zienkiewicz Strzałka, M. The adsorptive properties of oxidized activated carbons and their applications as carbon paste electrode modifiers. Adsorption 2019, 25, 357–366. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, Y.; Sun, X.; Tian, F.; Sun, F.; Liang, C.; You, W.; Han, C.; Li, C. Activated Carbons Chemically Modified by Concentrated H2SO4 for the Adsorption of the Pollutants from Wastewater and the Dibenzothiophene from Fuel Oils. Langmuir 2003, 19, 731–736. [Google Scholar] [CrossRef]
- Strelko, V., Jr.; Malik, D.J. Characterization and Metal Sorptive Properties of Oxidized Active Carbon. J. Colloid Interface Sci. 2002, 250, 213–220. [Google Scholar] [CrossRef]
- Chingombe, P.; Saha, B.; Wakeman, R.J. Effect of surface modification of an engineered activated carbon on the sorption of 2,4-dichlorophenoxy acetic acid and benazolin from water. J. Colloid Interface Sci. 2006, 297, 434–442. [Google Scholar] [CrossRef]
- Wibowo, N.; Setyadhi, L.; Wibowo, D.; Setiawan, J.; Ismadji, S. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: Influence of surface chemistry on adsorption. J. Hazard. Mater. 2007, 146, 237–242. [Google Scholar] [CrossRef]
- Sultana, M.; Rownok, M.H.; Sabrin, M.; Rahaman, M.H.; Alam, S.M.N. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Clean. Eng. Technol. 2022, 6, 100382. [Google Scholar] [CrossRef]
- Togibasa, O.; Mumfaijah, M.; Allo, Y.K.; Dahlan, K.; Ansanay, Y.O. The effect of chemical activating agent on the properties of activated carbon from sago waste. Appl. Sci. 2021, 11, 11640. [Google Scholar] [CrossRef]
- Abegunde, S.M.; Idowu, K.S.; Adejuwon, O.M.; Adeyemi-Adejolu, T. A review on the influence of chemical modification on the performance of adsorbents. Resour. Environ. Sustain. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Rehman, A.; Park, M.; Park, S.J. Current progress on the surface chemical modification of carbonaceous materials. Coatings 2019, 9, 103. [Google Scholar] [CrossRef]
- Pego, M.; Carvalho, J.; Guedes, D. Surface modifications of activated carbon and its impact on application. Surf. Rev. Lett. 2019, 26, 1830006. [Google Scholar] [CrossRef]
- Asasian Kolur, N.; Sharifian, S.; Kaghazchi, T. Investigation of sulfuric acid-treated activated carbon properties. Turk. J. Chem. 2019, 43, 663–675. [Google Scholar] [CrossRef]
- Figueiredo, J.L.; Pereira, M.F.R.; Freitas, M.M.A.; Órfão, J.J.M. Modification of the surface chemistry of activated carbons. Carbon 1999, 37, 1379–1389. [Google Scholar] [CrossRef]
- Kulaishin, S.A.; Vedenyapina, M.D.; Kurmysheva, A.Y. Influence of the Surface Characteristics of Activated Carbon on the Adsorption of Herbicides (A Review). Solid Fuel Chem. 2022, 56, 181–198. [Google Scholar] [CrossRef]
- Ania, C.O.; Parra, J.B.; Pis, J.J. Influence of oxygen-containing functional groups on active carbon adsorption of selected organic compounds. Fuel Process. Technol. 2002, 79, 265–271. [Google Scholar] [CrossRef]
- El-Hendawy, A.N.A. Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon 2003, 41, 713–722. [Google Scholar] [CrossRef]
- Villacañas, F.; Pereira, M.F.R.; Órfão, J.J.M.; Figueiredo, J.L. Adsorption of simple aromatic compounds on activated carbons. J. Colloid Interface Sci. 2006, 293, 128–136. [Google Scholar] [CrossRef]
- Nevskaia, D.M.; Castillejos-Lopez, E.; Munoz, V.; Guerrero-Ruiz, A. Adsorption of Aromatic Compounds from Water by Treated Carbon Materials. Environ. Sci. Technol. 2004, 38, 5786–5796. [Google Scholar] [CrossRef]
- Marczewski, A.W.; Jaroniec, M. A new isotherm equation for single-solute adsorption from dilute solutions on energetically heterogeneous solids—Short communication. Monatshefte Für Chem.—Chem. Mon. 1983, 114, 711–715. [Google Scholar] [CrossRef]
Carbon Sample * | SBET, m2/g | Vmi, cm3/g | Vt, cm3/g | Total Oxygen wt.% | pH of Carbon Slurry | HCl Uptake meq/g | NaOH Uptake meq/g | Δm/m, % | |
---|---|---|---|---|---|---|---|---|---|
150–400 °C | 400–600 °C | ||||||||
F-NM | 1050 | 0.512 | 0.628 | 2.26 | 7.40 | 0.020 | 0.220 | 0.82 | 0.33 |
F-NA | 975 | 0.457 | 0.554 | 17.54 | 3.51 | 0.291 | 2.212 | 5.77 | 4.25 |
F-SA | 940 | 0.442 | 0.542 | 3.78 | 3.75 | 0.178 | 0.813 | 3.13 | 0.45 |
F-Oz | 935 | 0.441 | 0.540 | 17.34 | 4.53 | 0.203 | 0.808 | 2.77 | 1.77 |
Element | F-NM | F-NA | F-SA | F-Oz |
---|---|---|---|---|
%wt. | ||||
C | 95.26 | 82.07 | 90.98 | 81.94 |
O | 2.26 | 17.54 | 3.78 | 17.34 |
S | 1.47 | 0.27 | 3.92 | 0.42 |
Cl | 1.02 | 0.11 | 1.32 | 0.31 |
Adsorbate | Molecular Weight [g/mol] | Solubility in H2O [mmol/L] | Ionization Constant (pKa) |
---|---|---|---|
toluene (T) | 92.14 | 5.43 | - |
4-nitrotoluene (NT) | 137.14 | 3.21 | - |
nitrobenzene (NB) | 123.11 | 15.43 | - |
4-nitrobenzoic acid (4-NBA) | 167.12 | 2.51 | 3.44 |
Adsorption System | Isotherm Type | am | m | n | K | R2 |
---|---|---|---|---|---|---|
T/F-400 | L | 5.28 | 1 | 1 | 8.22 | 0.88 |
T/F-NM | GF | 6.20 | 0.21 | 1 | 0.42 | 0.96 |
T/F-NA | GF | 4.20 | 0.23 | 1 | 0.54 | 0.83 |
T/F-SA | GF | 5.10 | 0.39 | 1 | 4.13 | 0.94 |
T/F-Oz | GF | 5.51 | 0.32 | 1 | 0.72 | 0.94 |
NT/F-400 | GF | 3.45 | 0.33 | 1 | 5.14 | 0.98 |
NT/F-NM | GF | 3.75 | 0.87 | 1 | 15.9 | 0.94 |
NT/F-NA | GF | 3.90 | 0.41 | 1 | 0.54 | 0.95 |
NT/F-SA | GF | 3.93 | 0.33 | 1 | 2.05 | 0.93 |
NT/F-Oz | GF | 5.02 | 0.32 | 1 | 5.10 | 0.82 |
NB/F-400 | GL | 4.01 | 0.66 | 0.72 | 6.82 | 0.99 |
NB/F-NM | GL | 5.11 | 0.36 | 0.53 | 1.56 | 0.99 |
NB/F-NA | GL | 3.59 | 0.39 | 0.65 | 0.12 | 0.99 |
NB/F-SA | GF | 4.12 | 0.34 | 1 | 1.38 | 0.99 |
NB/F-Oz | GL | 4.85 | 0.47 | 0.45 | 3.75 | 0.99 |
4-NBA/F-400 | GF | 3.02 | 0.30 | 1 | 1.15 | 0.81 |
4-NBA/F-NM | GF | 3.50 | 0.28 | 1 | 1.20 | 0.93 |
4-NBA/F-NA | GF | 2.84 | 0.30 | 1 | 0.33 | 0.98 |
4-NBA/F-SA | GL | 2.94 | 0.58 | 0.61 | 32.03 | 0.95 |
4-NBA/F-Oz | GL | 3.82 | 0.44 | 0.40 | 6.32 | 0.94 |
Activated Carbon | SBET [m2/g] | Adsorption Capacity [mmol/g] | Ref. | |||
---|---|---|---|---|---|---|
Adsorbate | ||||||
Phenol | Chlorophenol | Nitrophenol | Aniline | |||
Norit RS 08 | [30] | |||||
-deashed, heat treated (He 900 °C) | 1080 | 3.29 | 3.19 | 2.52 | 3.20 | |
and oxidized with HNO3 (10 wt%) | 873 | 1.75 | 1.85 | 1.78 | 2.01 | |
Phenol | Nitrobenzene | Aniline | ||||
Norit C Gran | 1317 | 1.30 | 1.70 | 1.70 | [29] | |
Norit ROX 08 | 1047 | 2.10 | 1.97 | 1.96 | ||
-oxidized with HNO3 (5 M) | 883 | 1.90 | 1.60 | 2.10 | ||
-and heat treated (H2 700 °C) | 940 | 1.82 | 1.53 | 1.79 | ||
Toluene | Nitrotoluene | Nitrobenzene | 4-Nitrobenzoic acid | |||
F-400 | 997 | 5.28 | 3.45 | 4.01 | 3.02 | This work |
-deashed | 1050 | 6.20 | 3.75 | 5.11 | 3.50 | |
-oxidized with conc. HNO3 | 975 | 4.20 | 3.90 | 3.59 | 2.84 | |
-oxidized with conc. H2SO4 | 940 | 5.10 | 3.93 | 4.12 | 2.94 | |
-oxidized with O3 | 935 | 5.51 | 5.02 | 4.85 | 3.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derylo-Marczewska, A.; Swiatkowski, A.; Trykowski, G.; Biniak, S. The Effect of Oxidative Modification of Activated Carbon on Adsorption of Aromatic Compounds from Aqueous Solutions. Molecules 2025, 30, 3810. https://doi.org/10.3390/molecules30183810
Derylo-Marczewska A, Swiatkowski A, Trykowski G, Biniak S. The Effect of Oxidative Modification of Activated Carbon on Adsorption of Aromatic Compounds from Aqueous Solutions. Molecules. 2025; 30(18):3810. https://doi.org/10.3390/molecules30183810
Chicago/Turabian StyleDerylo-Marczewska, Anna, Andrzej Swiatkowski, Grzegorz Trykowski, and Stanislaw Biniak. 2025. "The Effect of Oxidative Modification of Activated Carbon on Adsorption of Aromatic Compounds from Aqueous Solutions" Molecules 30, no. 18: 3810. https://doi.org/10.3390/molecules30183810
APA StyleDerylo-Marczewska, A., Swiatkowski, A., Trykowski, G., & Biniak, S. (2025). The Effect of Oxidative Modification of Activated Carbon on Adsorption of Aromatic Compounds from Aqueous Solutions. Molecules, 30(18), 3810. https://doi.org/10.3390/molecules30183810