Comparative Analysis of the Metabolomic Profile of Honeysuckle Lonicera caerulea L. from Four Eurasian Regions by Using HPLC-ESI-MS and ESI-MS/MS Analysis
Abstract
1. Introduction
2. Results and Discussion
2.1. Optimization of HPLC Conditions
2.2. Tentative Identification of Compounds from the Extracts of Honeysuckle Berries
2.3. Metabolite Profile of Studied Honeysuckle Berries
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals and Reagents
3.3. Extraction
3.4. Liquid Chromatography
3.5. Mass Spectrometry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Approximate Comparison of Chemical Constituents Identified in L. caerulea and L. caerulea ssp. Kamtschatica Varieties Obtained from Two Different Regions
Class of Compounds | Identification | Formula | Calculated Mass | Observed Mass [M − H]− | Observed Mass [M + H]+ | MS/MS Stage 1 Fragmentation | MS/MS Stage 2 Fragmentation | MS/MS Stage 3 Fragmentation | References | |
---|---|---|---|---|---|---|---|---|---|---|
1 | Flavone | Formononetin [Biochanin B] | C16H12O4 | 268.264 | 269 | 256; 212; 195; 173 | 240; 193 | Dryopteris [88]; Glycyrrhiza glabra [62]; Huolisu Oral Liquid [63]; Dracocephalum jacutense [64] | ||
2 | Flavone | Apigenin [5,7-Dixydroxy-2-(40Hydroxyphenyl)-4H-Chromen-4-One] | C15H10O5 | 270.236 | 271 | 243; 153 | 197; 161 | Inula graveolens [43]; Ribes meyeri [50]; Ribes triste [67]; Jatropha [68] | ||
3 | Flavone | Prunetin [Padmakastein] | C16H12O5 | 284.263 | 285 | 239; 201; 185 | 157 | Triticum aestivum [20]; Zea mays [89]; Rosa rugosa [69]; Rosa amblyotis [70] | ||
4 | Flavone | Luteolin [Tetrahydroxyflavone] | C15H10O6 | 286.236 | 287 | 271; 245; 187; 137 | 271 | Dryopteris [88]; Inula graveolens [43]; Ribes meyeri [50]; Rosa rugosa [70]; Rosa rugosa [69]; Jatropha [68] | ||
5 | Flavone | 2′-Hydroxygenistein | C15H10O6 | 286.2363 | 287 | 231 | 165 | Mexican lupine species [71] | ||
6 | Pentahydroxyflavone | Herbacetin [3,5,7,8-Tetrahydroxy-2-(4-hydro- xyphenyl)-4H-chromen-4-one] | C15H10O7 | 302.2357 | 303 | 203 | 175 | Triticum aestivum [20]; Ocimum [90] | ||
7 | Flavone | Nepetin [6-Methoxyluteolin] | C16H12O7 | 316.2623 | 317 | 302; 285; 229; 139 | 274; 153 | 217; 175; 153 | Honey [39]; Ribes pauciflorum [67] | |
8 | Flavone | Jaceosidin [5,7,4′-trihydroxy-6′,5’-dimethoxyflavone] | C17H14O7 | 330.2889 | 331 | 289 | 271 | Artemisia argyl [91]; Mentha [92]; Rosa acicularis [70] | ||
9 | Isoflavone | Sophoraisoflavone A | C20H16O6 | 352.3374 | 353 | 335 | 317; 243; 137 | 191 | Chinese herbal formula Jian-Pi-Yi-Shen pill [93] | |
10 | Flavone | Dihydroxy-tetramethoxy(iso)flavone | C19H18O8 | 374.3414 | 375 | 345 | 245 | 175; 227 | Propolis [94] | |
11 | Flavone | Apigenin-7-O-β-D-glucopyranoside | C21H20O10 | 432.3775 | 431 | 385; 223 | 153 | Eucalyptus Globulus [95] | ||
12 | Flavone | Luteolin 7-O-glucoside [Cynaroside] | C21H20O11 | 448.3769 | 449 | 287 | 213 | 185 | Lonicera henryi [19]; Lonicera japonica [18] | |
13 | Flavone | Diosmetin O-hexoside | C22H22O11 | 462.4035 | 463 | 301 | 286 | 258 | Andean blueberry [96] | |
14 | Flavone | Lonicerin [Luteolin-7-O-Rhamnoside; Veronicastroside; Luteolin-7-Rhamnoglucoside] | C27H30O15 | 594.5181 | 595 | 287; 449 | 269; 241; 213 | 213; 185 | Lonicera japonica [18]; Ribes triste [67]; Rosa rugosa [70] | |
15 | Flavone | Luteolin 7-O-(6-O-rhamnosyl-hexoside) | C27H30O15 | 594.5181 | 595 | 449 | 213 | 213; 157 | Lonicera henryi [19]; Rosa rugosa [70] | |
16 | Isoflavone | Luteolin 3′,7-O-diglucoside | C27H30O16 | 610.5175 | 611 | 449; 287 | 287; 199; 137 | 271 | Triticum aestivum [20]; Mexican lupine species [71]; Loropetalum chinense [97] | |
17 | Flavone | Chrysoeriol O-diglucoside | C28H32O16 | 624.5441 | 625 | 301; 463 | 286 | 258 | Mexican lupine species [71] | |
18 | Flavonol | Kaempferol | C15H10O6 | 286.2363 | 287 | 269; 149 | 239; 181 | Inula graveolens [43]; Juglans mandshurica [44]; Lonicera japonica [18]; Ribes meyeri [50]; Andean blueberry [96]; Ribes triste [67] | ||
19 | Flavonol | Rhamnocitrin | C16H12O6 | 300.2629 | 301 | 273 | 245 | 217; 177; 131 | Astragali radix [98] | |
20 | Flavonol | Quercetin | C15H10O7 | 302.2357 | 303 | 257; 146 | 229 | 201; 145 | Ribes meyeri [50]; Propolis [94] | |
21 | Flavonol | Hesperitin [Hesperetin] | C16H14O6 | 302.2788 | 303 | 285; 165 | 257 | 229; 145 | Andean blueberry [96]; Ribes triste [67]; Rosa rugosa [70]; Rhinacanthus nasutus [58] | |
22 | Flavonol | Isorhamnetin [Isorhamnetol; Quercetin 3′-Methyl ether] | C16H12O7 | 316.2623 | 318 | 302; 285; 229 | 274 | 217; 175; 153 | Inula viscosa [99]; Andean blueberry [96]; Ribes triste [67]; Rosa rugosa [70]; Phoenix dactylifera [100]; Cyperus laevigatus [101] | |
23 | Flavonol | Myricetin | C15H10O8 | 318.2351 | 319 | 273; 219 | 191 | 209 | Juglans mandshurica [44]; Andean blueberry [96] | |
24 | Flavonol | Astragalin [Kaempferol 3-O-glucoside] | C21H20O11 | 448.3769 | 449 | 287 | 287; 229 | 203 | Juglans mandshurica [44]; Lonicera japonica [18]; Ribes meyeri [50]; Spondias purpurea [102] | |
25 | Flavonol | Kaempferol-3-O-hexoside | C21H20O11 | 448.3769 | 449 | 287 | 287; 231 | 230; 111 | Andean blueberry [96]; Cuphea ignea [103] | |
26 | Flavonol | Quercetin-3-O-hexoside | C21H20O12 | 464.3763 | 463 | 301 | 255; 229; 179; 151 | 185; 147 | Cranberry [104]; Cherimoya; Strawberry [105]; Rosa rugosa [70] | |
27 | Flavonol | Hyperoside (Quercetin 3-O-galactoside; Quercetin-3-O-beta-D-galactopyranoside) | C21H20O12 | 464.3763 | 465 | 303 | 285; 257; 229; 201; 165; 137 | 229; 201 | Dryopteris [88]; Lonicera japonica [18]; Cranberry [106]; Andean blueberry [96] | |
28 | Flavonol | Quercetin 3-glucoside | C21H20O12 | 464.3763 | 463 | 301 | 255; 229; 179; 151 | 185; 147 | Ribes meyeri [50]; Lonicera henryi [19]; Lonicera japonica [18]; Spondias purpurea [102]; Andean blueberry [96]; Rosa rugosa [70] | |
29 | Flavonol | Taxifolin-3-O-hexoside [Dihydroquercetin-3-O-hexoside] | C21H22O12 | 466.3922 | 465 | 285 | 241 | 198 | Rubus ulmifolius [26]; Andean blueberry [96]; Chilean currants [25]; Euphorbia hirta [107] | |
30 | Flavonol | Quercetin 3-(6-O-acetyl)glucoside [Quercetin 3-O-6”-acetylglucoside] | C23H22O13 | 506.413 | 507 | 303 | 285; 257; 229; 195; 165 | 229; 201; 173 | Malus toringoides [108]; Rapeseed petals [42] | |
31 | Flavonol | Isorhamnetin acetylglucoside | C24H24O13 | 520.4468 | 521 | 317 | 302; 285; 229; 165 | 274; 153 | Pear [109]; Senecio clivicolus [65] | |
32 | Flavonol | Kaempferol 3-O-rutinoside | C27H30O15 | 594.5181 | 595 | 449; 287 | 287 | 287 | Ribes meyeri [50]; Lonicera japonica [18]; Spondias purpurea [102] | |
33 | Flavonol | Kaempferol glucosyl-rhamnoside | C27H30O15 | 594.5181 | 595 | 449; 287 | 287 | 287 | Ribes nigrum [110] | |
34 | Flavonol | Quercetin 3-O-pentosyl hexoside | C26H28O16 | 596.4909 | 597 | 465; 303 | 257 | 229 | F. pottsii [52]; Spondias purpurea [102] | |
35 | Flavonol | Quercetin 3-O-arabinoglucoside | C26H28O16 | 596.4909 | 597 | 465; 303 | 257 | 229 | Spondias purpurea [102] | |
36 | Flavonol | Rutin (Quercetin 3-O-rutinoside) | C27H30O16 | 610.5175 | 611 | 303 | 257; 165 | 229 | Rubus occidentalis [66]; Ribes meyeri [50]; Lonicera henryi [19]; Lonicera japonica [18] | |
37 | Flavonol | Kaempferol-3,7-Di-O-glucoside | C27H30O16 | 610.5175 | 6111 | 287; 449 | 287; 213 | 213 | Taraxacum officinale [111]; Rapeseed petals [42] | |
38 | Flavonol | Isorhamnetin 3-O-(6”-O-rhamnosyl-hexoside) | C28H32O16 | 624.5441 | 625 | 317 | 302 | Lonicera henryi [19] | ||
39 | Flavonol | Kaempferol derivative | C27H32O17 | 628.5328 | 627 | 465; 285 | 285 | 241 | Cuphea ignea [103] | |
40 | Flavonol | Kaempferol O-acetyl hexosyl-rhamnoside | C29H32O16 | 636.5548 | 637 | 287 | 219 | 171 | A. cordifolia [52] | |
41 | Flavonol | Rhamnosyl-hexosyl-acyl-quercetin | C29H30O17 | 650.5383 | 651 | 301; 258 | 286 | 258 | Phoenix dactylifera [100] | |
42 | Flavonol | Dimethylquercetin-3-O-dehexoside | C29H34O17 | 654.5701 | 653 | 507; 353 | 329 | Capsicum annuum [112] | ||
43 | Flavonol | Quercetin deoxyhexosyl deoxyhexosyl hexoside | C33H40O20 | 756.6587 | 755 | 300; 489; 737 | 271 | 243 | Ribes meyeri [50] | |
44 | Flavonol | Quercetin pentosyl hexoside hexoside | C32H38O21 | 758.6315 | 758 | 670; 479; 319 | 415 | F. glaucescens, A. cordifolia [52] | ||
45 | Flavonol | Quercetin-3-O-rhamnoside derivative | C42H40O22 | 896.7538 | 897 | 735 | 573; 447; 287 | 287 | Carpinus betulus [47] | |
46 | Flavan-3-ol | Epiafzelechin [(epi)Afzelechin] | C15H14O5 | 274.2687 | 275 | 245; 219; 175 | 215; 193; 175; 157; 127 | 175; 157; 145 | Cassia abbreviata [113]; F. glaucescens; A. cordifolia [52] | |
47 | Flavan-3-ol | Catechin | C15H14O6 | 290.2681 | 291 | 261; 157 | 191 | 173 | Ribes meyeri [50]; Ribes magellanicum [25] | |
48 | Flavan-3-ol | (Epi)-catechin | C15H14O6 | 290.2681 | 291 | 273; 137 | Rubus occidentalis [66]; Cranberry [106]; Vaccinium myrtillus [114]; Andean blueberry [96] | |||
49 | Flavan-3-ol | Gallocatechin | C15H14O7 | 306.2675 | 307 | 289; 261; 187; 123 | 243; 201; 173; 135 | 215; 187; 145 | Carpinus betulus [47]; G. linguiforme, A. cordifolia [52]; Ribes meyeri [50]; Rosa rugosa [70]; Embelia [54] | |
50 | Flavan-3-ol | (Epi)-Gallocatechin | C15H14O7 | 306.2675 | 307 | 289; 261; 187 | 243; 173; 135 | 215; 187; 145 | Ribes meyeri [50]; Ribes magellanicum [25]; Vaccinium myrtillus [114]; Loropetalum chinense [97] | |
51 | Flavan-3-ol | (Epi)-catechin derivative 1 | 379.234 | 379 | 261 | 233 | 151 | PubChem | ||
52 | Flavan-3-ol | (Epi)-afzelechin derivative | C18H16O10 | 392.3136 | 393 | 275; 245; 215 | 245; 175 | 175; 127 | Zostera marina [115] | |
53 | Flavan-3-ol | (Epi)-catechin derivative 2 | C18H16O11 | 408.3130 | 409 | 291; 275 | 261; 242; 208; 173 | 244; 214; 191; 173; 160; 124 | PubChem | |
54 | Flavan-3-ol | (Epi)-catechin derivative 3 | 424.378 | 425 | 291 | 261; 191 | 191 | PubChem | ||
55 | Flavan-3-ol | (-)-Epicatechin Gallate [(-)-Epicatechin-3-O-Gallate; L-Epicatechin Gallate] | C22H18O10 | 442.3723 | 441 | 330; 205 | 149 | G. linguiforme [52]; Cassia abbreviates [113]; Ribes meyeri [50]; Chinese herbal formula Jian-Pi-Yi-Shen pill [93] | ||
56 | Flavan-3-ol | (epi)Catechin O-hexoside | C21H24O11 | 452.4087 | 453 | 289; 129 | 129 | 111 | Andean blueberry [96] | |
57 | Flavan-3-ol | (Epi)gallocatechin-(epi)catechin dimer | C30H26O13 | 594.5286 | 595 | 577; 409; 247 | 229 | 183 | Carao tree seeds [116] | |
58 | Tannin | Proanthocyanidin B1 [Procyanidin Dimer B1; (-)-epicatechin-(4beta->8)-(+)-catechin] | C30H26O12 | 578.5202 | 579 | 409; 291 | 287 | 245 | Vaccinium myrtillus [114]; Andean blueberry [96]; strawberry [29] | |
59 | Tannin | Proanthocyanidin B-type | C30H26O13 | 594.5196 | 595 | 287; 449 | 213 | Actinidia chinensis [57] | ||
60 | Ellagitannin | Di-O-galloyl-HHDP-glucose [Pedunculagin II] | C34H26O22 | 786.5570 | 786 | 599; 761 | 301 | Eugenia caryophyllata [117]; Cuphea ignea [103] | ||
61 | Dimeric proanthocyanidin | Epigallocatechin gallate dimer | C44H34O22 | 914.7276 | 915 | 735; 573; 423; 329 | 573; 447; 287 | 447; 287 | Rhodiola rosea [118] | |
62 | Anthocyanin | Anthocyanidin [cyanidin chloride; Cyanidin] | C15H11O6+ | 287.2442 | 287 | 286; 270; 247; 205 | 221 | 201 | F. herrerae, G. linguiforme [52]; Andean blueberry [96]; Phoenix dactylifera [100] | |
63 | Anthocyanin | Delphinidin | C15H11O7 | 303.2436 | 303 | 257; 165 | 229 | A. cordifolia, G. linguiforme [52] | ||
64 | Anthocyanin | Petunidin | C16H13O7+ | 317.2702 | 318 | 256 | 238; 113 | 238 | A. cordifolia; C. edulis; G. linguiforme [52] | |
65 | Anthocyanin | Cyanidin-3-O-glucoside [Cyanidin 3-O-beta-D-Glucoside] | C21H21O11+ | 449.3848 | 449 | 287 | 213 | 185 | Ribes magellanicum [25]; Berberis ilicifolia; Berberis empetrifolia; Ribes magellanicum; Ribes cucullatum; Myrteola nummalaria; Gaultheria mucronata; Gaultheria antarctica; Rubus geoides; Fuchsia magellanica [27] | |
66 | Anthocyanin | Cyanidin-3-O-hexoside | C21H21O11+ | 449.3849 | 449 | 287 | 213; 137 | 185; 157 | Dryopteris [88]; Andean blueberry [96]; Ribes dikuscha [67]; Rosa acicularis [70] | |
67 | Anthocyanin | Cyanidin-3-O-beta-galactoside | C21H21O11 | 449.3848 | 449 | 287 | 287; 213 | 185 | Black soybean [21]; Gaultheria mucronata; Fuchsia magellanica [27]; Rapeseed petals [42] | |
68 | Anthocyanin | Peonidin-3-O-glucoside | C22H23O11 + | 463.4114 | 463 | 301 | 286 | 258 | Black soybean [21]; Berberis ilicifolia; Berberis empetrifolia; Fuchsia magellanica [27]; Andean blueberry [96] | |
69 | Anthocyanin | Delphinidin 3-O-glucoside [Mirtillin] | C21H21O12+ | 465.3905 | 465 | 303 | 285; 257; 229; 195; 165; 137 | 229; 201 | Dryopteris [88]; Ribes magellanicum [25]; Berberis ilicifolia; Berberis empetrifolia; Ribes magellanicum; Ribes cucullatum; Fuchsia magellanica [27]; Rosa rugosa [70] | |
70 | Anthocyanin | Delphinidin 3-O-hexoside | C21H21O12+ | 465.3905 | 463 | 301 | 255; 229; 179; 151 | 185; 147 | Dryopteris [88]; Andean blueberry [96]; Rosa rugosa [70] | |
71 | Anthocyanin | Delphinidin 3-O-beta-galactoside | C21H21O12+ | 465.3905 | 465 | 303 | 285; 257; 229; 165; 137 | 229; 201 | Dryopteris [88]; Gaultheria micronata; Gaultheria antarctica; Fuchsia magellanica [27]; Rosa rugosa [70] | |
72 | Anthocyanin | Delphinidin 3-acetylglucoside [Delphinidin-3-O-(6-O-acetyl)glucoside] | C23H23O13+ | 507.4209 | 507 | 303 | 257 | 229 | Vitis vinifera [31]; Vines [32]; Grape [40] | |
73 | Anthocyanin | Delphinidin-3-O-(6”-O-acetyl)hexoside | C23H23O13+ | 507.4209 | 507 | 303 | 285; 257; 229; 195 | 229; 201; 173 | Vitis vinifera [30] | |
74 | Anthocyanin | Petunidin 3-O-(6-O-acetyl)glucoside | C24H25O13 | 521.451 | 521 | 317 | 302 | 274 | Vitis vinifera [31]; Vines [32]; Grape [40] | |
75 | Anthocyanin | Cyanidin-3-O-rutinoside [Keracyanin; Antirrhinin; Sambucin] | C27H31O15 | 595.526 | 595 | 287; 449 | 213 | Ribes magellanicum [25]; Berberis microphylla [28]; Berberis ilicifolia; Berberis empetrifolia; Ribes magellanicum; Ribes cucullatum [27]; Ribes triste [67] | ||
76 | Anthocyanin | Delphinidin 3-O-Beta-D-sambubioside | C26H29O16 | 597.4989 | 597 | 303; 465; 229 | 229; 165 | 201; 172 | Berberis microphylla [28]; Red currant [24]; Ribes dikuscha; Ribes triste [67] | |
77 | Anthocyanin | Delphinidin 3-O-[2-O-(Beta-xylosyl)-beta-galactoside] | C26H29O16 | 597.4989 | 597 | 303 | 257; 165 | 229; 201; 161 | Red Kiwifruit [23] | |
78 | Anthocyanin | Peonidin 3-O-rutinoside | C28H33O15 | 609.5526 | 609 | 463; 301 | 286 | Gaultheria mucronata; Gaultheria antarctica; Fuchsia magellanica [27]; Black currant, Gooseberry [24]; Aristotelia chilensis [119] | ||
79 | Anthocyanin | Peonidin 3-O-(6-O-p-coumaroyl)glucoside | C31H29O13 | 609.554 | 609 | 301; 542 | 258 | Grape [40] Vines [32]; Vitis vinifera [31] | ||
80 | Anthocyanin | Delphinidin 3-O-rutinoside [Tulipanin; Delphinidin 3-Rhamnosyl-Glucoside] | C27H31O16 | 611.5254 | 611 | 465; 303 | 229 | 201 | Dryopteris [88]; Vigna angularis [120]; Black currant [24]; Berberis ilicifolia; Berberis empetrifolia; Ribes magellanicum; Fuchsia magellanica [27]; Berberis microphylla [28] | |
81 | Anthocyanin | Delphinidin 3-O-(6-O-p-coumaroyl) glucoside | C30H27O14 | 611.5270 | 611 | 465; 303 | 229 | 201 | Dryopteris [88]; Vigna angularis [120]; Grape [40] Vitis vinifera [31]; Vines [32]; Ribes triste [67] | |
82 | Anthocyanin | Cyanidin 3,5-O-diglucoside | C27H31O16 | 611.5335 | 611 | 287; 449 | 213 | 185 | Grape [40]; Muscadine pomace [41]; Berberis microphylla [28]; Rapeseed petals [42]; Lonicera caerulea [16] | |
83 | Hydroxycinnamic acid | 4-Hydroxybenzoic acid [PHBA; Benzoic acid; p-Hydroxybenzoic acid] | C7H6O3 | 138.1207 | 139 | 111 | Inula graveolens [43]; Ocimum [90]; Taraxacum formosanum [121]; Bituminaria [122]; Eucalyptus Globulus [95] | |||
84 | Hydroxybenzoic acid (Phenolic acid) | Protocatechuic acid | C7H6O4 | 154.1201 | 155 | 127 | Ribes meyeri [50]; Lonicera japonica [18] | |||
85 | Hydroxycinnamic acid | 3,4-Dihydroxyhydrocinnamic acid [Dihydrocaffeic acid] | C9H10O4 | 182.1733 | 183 | 155 | 127 | 145 | Eucalyptus Globulus [95]; Chilean currants [25] | |
86 | Dihydroxybenzoic acid | Ethyl protocatechuate [3,4-Dihydroxybenzoic Acid Ethyl Ester] | C9H10O4 | 182.1733 | 183 | 155 | 111 | Dryopteris [88]; Ocimum [90] | ||
87 | Phenolic acid | Methylgallic acid [Methyl gallate; Methyl 3,4,5-trihydroxybenzoate] | C8H8O5 | 184.1461 | 185 | 155; 127 | 127 | 117 | Papaya [105]; Andean blueberry [96]; Ribes triste [67]; Phyllanthus [123] | |
88 | Phenolic acid | Hydroxy methoxy dimethylbenzoic acid | C10H12O4 | 196.1999 | 197 | 160 | 151 | F. herrerae; F. glaucescens, G. linguiforme [52] | ||
89 | Phenolic acid | 2,3,4,5,6-pentahydroxybenzoic acid | C7H6O7 | 202.1183 | 203 | 156 | 129 | Jatropha [68] | ||
90 | Hydroxycinnamic acid | Hydroxyferulic acid | C10H10O5 | 210.1834 | 211 | 193 | 75; 147 | 157; 129 | Andean blueberry [96]; Rosa davurica [124] | |
91 | Hydroxybenzoic acid (Phenolic acid) | Ellagic acid [Benzoaric acid; Elagostasine] | C14H6O8 | 302.1926 | 301 | 257 | 229 | 201 | Juglans mandshurica [44]; Eucalyptus [125]; Eucalyptus Globulus [95] | |
92 | Phenolic acid | p-Coumaroylquinic acid | C16H18O8 | 338.3093 | 339 | 321; 121 | 320 | Vaccinium myrtillus [114]; Andean blueberry [96]; Ribes magellanicum [25]; Ribes meyeri [50] | ||
93 | Hydroxycinnamic acid; | Chlorogenic acid [3-O-Caffeoylquinic acid] | C16H18O9 | 354.3087 | 353 | 191 | 127 | Ribes magellanicum [25]; Lonicera henryi [19]; Cranberry [106]; Lonicera japonica [18]; Vaccinium myrtillus [114]; Spondias purpurea [102]; Andean blueberry [96] | ||
94 | Hydroxycinnamic acid | Neochlorogenic acid [5-O-Caffeoylquinic acid] | C16H18O9 | 354.3088 | 353 | 191 | 173 | 126 | Lonicera henryi [19]; Ribes magellanicum [25]; Lonicera japonica [18]; Vaccinium myrtillus [114]; Andean blueberry [96] | |
95 | Hydroxycinnamic acid; | 3-O-Hydroxydihydrocaffeoylquinic acid | C16H20O10 | 372.3240 | 371 | 191 | 173; 127 | Lonicera henryi [19] | ||
96 | Phenolic acid | Caffeoylquinic acid derivative | 382.6633 | 381 | 179; 135 | 135 | Vaccinium myrtillus [114] | |||
97 | Phenolic acid | Ferulic acid-O-hexoside derivative | C21H22O11 | 450.3928 | 449 | 269; 151 | 225; 151 | strawberry [29]; Cuphea ignea [103] | ||
98 | Phenolic acid | Ellagic acid-O-hexoside | C20H16O13 | 464.3332 | 463 | 301 | 255; 229; 179; 151 | 185; 147 | Carpinus betulus [47]; Punica granatum [126] | |
99 | Phenolic acid | Dicaffeoyl shiikimic acid | C25H22O11 | 498.4356 | 499 | 163; 319 | 145 | 117 | Andean blueberry [96] | |
100 | Phenolic acid | p-Coumaroyl malonyldihexose | 574.8314 | 575 | 413; 335; 188 | 395; 340; 226; 188 | 346; 290; 211 | Vaccinium myrtillus [114] | ||
101 | Phenolic acid | Feruloyl-O-p-coumaroyl-O-caffeoylshikimic acid | 676 | 677 | 513; 367 | 349; 266 | Phoenix dactylifera [100] | |||
102 | Caffeic acid isoprenyl ester | C14H16O4 | 248.2744 | 249 | 203; 157 | 157 | 129 | Eucalyptus [125]; Brazilian propolis [127]; Ribes triste [67] | ||
103 | Dihydrochalcone | Phloretin [Dihydronaringenin] | C15H14O5 | 274.2687 | 275 | 257 | 230 | 229 | Malus toringoides [108]; G. linguiforme [52]; Punica granatum [126] | |
104 | Stilbene | Pinosylvin [ 3,5-Stilbenediol; Trans-3,5-Dihydroxystilbene] | C14H12O2 | 212.2439 | 213 | 167; 139 | 139 | Pinus resinosa [128]; Pinus sylvestris [129] | ||
105 | Stilbene | Resveratrol [trans-Resveratrol; 3,4′,5-Trihydroxystilbene; Stilbentriol] | C14H12O3 | 228.2433 | 229 | 211 | 183; 127 | 138 | Embelia [54]; A. cordifolia; F. glaucescens; G. linguiforme [52]; | |
106 | Hydroxycoumarin | Esculetin [3,7-Dihydroxylcoumarin; Cichorigenin; Aesculetin] | C9H6O4 | 178.1415 | 179 | 151 | 122 | Actinidia chinensis [57]; Rhinacanthus nasutus [58]; Basilic; Rosemary; Salvia; Thymus vulgaris [59] | ||
107 | Coumarin | 4-Methylesculetin [4-Methyl-6,7-Dihydroxycoumarin] | C10H8O4 | 192.1681 | 193 | 147 | 129 | 110 | Artemisia annua [130] | |
108 | Coumarin | Fraxetin | C10H8O5 | 208.1675 | 209 | 191 | 117 | Embelia [54]; Actinidia chinensis [57]; Jatropha [68] | ||
109 | Isocoumarin | Coriandrone | C13H10O5 | 246.2155 | 247 | 230; 201; 173; 145 | 145 | Ventilago denticulata [131] | ||
110 | Lignan | Syringaresinol | C22H26O8 | 418.4436 | 419 | 255 | 239 | 211 | Magnolia [132]; Triticum aestivum [133] | |
Others | ||||||||||
111 | Aliphatic amino acid | L-Threonine [(2S, 3R)-2-Amino-3-Hydroxybutanoic acid] | C4H9NO3 | 119.1192 | 120 | Triticum aestivum [134]; Medicago truncatula [135]; Soybean [136]; Soybean leaves [137]; Lonicera japonica [18] | ||||
112 | Non-proteinogenic L-alpha-amino acid | L-Pyroglutamic acid [Pidolic acid; 5-Oxo-L-Proline] | C5H7NO3 | 129.1140 | 130 | 111 | Potato leaves [46]; Huolisu Oral Liquid [63]; Lonicera caerulea [16]; Ribes pauciflorum [67] | |||
113 | Organic acid | Malic acid [DL-Malic acid] | C4H6O5 | 134.0874 | 133 | 115 | Inula graveolens [43]; Punica granatum [126]; Ribes meyeri [50]; Ribes pauciflorum [67] | |||
114 | Aliphatic amino acid | L-glutamic acid; GLUTAMIC ACID; Glutaminol | C5H10N2O3 | 146.1445 | 147 | 130 | Triticum aestivum [134]; Soybean leaves [137]; Lonicera japonica [18]; Rosa acicularis [70] | |||
115 | Phenylethanoid | 3,4-Dihydroxyphenylethanol [Hydroxytyrosol] | C8H10O3 | 154.1632 | 155 | 127 | 144 | Grape [40]; G. linguiforme [52] | ||
116 | Amino acid | L-Histidine | C6H9N3O2 | 155.1546 | 156 | 129 | 110 | Lonicera japonica [18]; Actinidia deliciosa [138] | ||
117 | Indole alkaloid | Indole-3-acetonitrile | C10H8N2 | 156.1839 | 157 | 129; 115 | 129; 120 | Honey [39]; Ribes pauciflorum [67] | ||
118 | Aromatic amino acid | Phenylalanine [L-Phenylalanine] | C9H11NO2 | 165.1891 | 166 | 120 | Lonicera japonica [18]; Potato leaves [46]; G. linguiforme [52]; Rapeseed petals [42]; Xuefu Zhuyu decoction [139] | |||
119 | Cyclohexenecarboxylic acid | Shikimic acid [L-Schikimic acid] | C7H10O5 | 174.1513 | 175 | 129 | 111 | A. cordifolia; G. linguiforme [52]; Ribes meyeri [50]; Ribes aureum; Ribes dikuscha [67] | ||
120 | Omega-hydroxy amino acid | Hydroxy decenoic acid | C10H18O3 | 186.2481 | 187 | 145 | 127 | F. glaucescens, G. linguiforme [52] | ||
121 | Naphthoquinone | 2,5-Dihydroxy-1,4-naphthalenedione | C10H6O4 | 190.1522 | 191 | 145; 117 | Juglans mandshurica [44]; Ribes triste [67] | |||
122 | Naphthoquinone | 3,5-Dihydroxy-1,4-naphthalenedione | C10H6O4 | 190.1522 | 191 | 145; 127; 117 | Juglans mandshurica [44]; Ribes triste [67] | |||
123 | Tricarboxylic acid | Citric acid | C6H8O7 | 192.1235 | 191 | 111; 173 | Potato leaves [46]; Strawberry, Lemon, Cherimoya, Papaya, Passion fruit [105] | |||
124 | Polyhydroxycarboxylic acid | Quinic acid | C7H12O6 | 192.1666 | 191 | 111; 173 | 111 | Ribes meyeri [50]; Lonicera japonica [18]; Andean blueberry [96]; Potato leaves [46] | ||
125 | Alpha, omega dicarboxylic acid | Sebacic acid | C10H18O4 | 202.2475 | 203 | 185 | 139 | 111; 157 | Jatropha [68] | |
126 | Polysaccharides | Galactaric acid [Mucic acid; Galactarate] | C6H10O8 | 210.1388 | 211 | 193 | 175 | 129 | Dryopteris [88]; Soybean [136]; Rosa rugosa [70] | |
127 | Saturated fatty acid | Hydroxydodecenoic acid | C12H22O3 | 214.3013 | 215 | 208 | 186 | Jatropha [68] | ||
128 | Sesquiterpenoid | Caryophyllene oxide [Caryophyllene-alpha-oxide] | C15H24O | 220.3505 | 219 | 173; 111 | 111 | Olive leaves [140]; Rosa davurica [124] | ||
129 | Omega-5 fatty acid | Myristoleic acid [Cis-9-Tetradecanoic acid] | C14H26O2 | 226.3550 | 227 | 209 | 192; 139 | 122 | G. linguiforme [52]; Artemisia martjanovii [141] | |
130 | Sesquiterpenoid | Atractylenolide II [2-Atractylenolide] | C15H20O2 | 232.3181 | 233 | 216 | 160 | 132 | Codonopsis Radix [142]; Chinese herbal formula Jian-Pi-Yi-Shen pill [93] | |
131 | Medium-chain fatty acid | Hydroxy dodecanoic acid | C12H22O5 | 246.3001 | 247 | 229; 201 | 187 | 159; 145 | F. glaucescens; G. linguiforme [52] | |
132 | Naphthoquinone | 1,4-Dihydroxy-2,3-naphthalenedicarboxylic acid/6-Acetyl-2,5,8-trihydroxynaphthoquinone | C12H8O6 | 248.1883 | 249 | 203 | 157 | 129 | Juglans mandshurica [44]; Ribes triste [67] | |
133 | Polyunsaturated long-chain fatty acid | Hexadecadienoic acid | C16H28O2 | 252.3923 | 253 | 145; 244 | 127 | Rhus coriaria [45] | ||
134 | Naphthoquinone | 1,3,6,8-Tetrahydroxy-9(10H)-anthracenone | C14H10O5 | 258.2262 | 259 | 231; 211; 200; 187; 169; 149; 127 | 213; 185; 164 | Juglans mandshurica [44]; Ribes pauciflorum [67] | ||
135 | Ribonucleoside composite of adenine (purine) | Adenosine | C10H13N5O4 | 267.2413 | 268 | 136 | Lonicera japonica [18]; Huolisu Oral Liquid [63]; Rosa rugosa [70] | |||
136 | Omega-3 fatty acid | Stearidonic acid [6,9,12,15-Octadecatetraenoic acid] | C18H28O2 | 276.4137 | 278 | 261; 172; 115 | 127 | Dryopteris [88]; G. linguiforme [52]; Rhus coriaria [45]; Jatropha [68]; Ribes triste [67]; Rosa rugosa [70] | ||
137 | Phenanthraquinone | Tanshinone V | C19H22O4 | 314.3765 | 313 | 212; 113 | 113; 185 | Huolisu Oral Liquid [63] | ||
138 | Oxylipin | 13-Trihydroxy-Octadecenoic acid [THODE] | C18H34O5 | 330.4596 | 329 | 229; 211; 171; 139 | 211; 183; 161; 143 | Bituminaria [122]; Jatropha [68]; Phoenix dactylifera [100]; Rosa amblyotis [70]; Apium graveolens [143] | ||
139 | Cyclopentapyran; Iridoid | Loganic acid | C16H24O10 | 376.3558 | 375 | 213 | 169; 113 | Lonicera japonica [18]; Rosa amblyotis [70] | ||
140 | Tricarboxylic acid | Citric acid derivative | 392 | 391 | 373; 217 | h143 | Punica granatum [126] | |||
141 | Anabolic steroid | Vebonol | C30H44O3 | 452.6686 | 453 | 435; 210 | 226; 336 | 210 | Rhus coriaria [45]; Hylosereus polyrhizus [144] | |
142 | Thromboxane receptor antagonist | Vapiprost | C30H39NO4 | 477.6350 | 478 | 337 | 263; 121 | 119 | Rhus coriaria [45]; Hylosereus polyrhizus [144] | |
143 | Indole sesquiterpene alkaloid | Sespendole | C33H45NO4 | 519.7147 | 520 | 184 | 125 | Rhus coriaria [45] | ||
144 | Chlorophyll degradation product | Pheophorbide a | C35H36N4O5 | 592.6841 | [145] |
References
- Celli, G.B.; Ghanem, A.; Brooks, M.S.L. Haskap Berries (Lonicera caerulea L.)—A Critical Review of Antioxidant Capacity and Health-Related Studies for Potential Value-Added Products. Food Bioprocess Technol. 2014, 7, 1541–1554. [Google Scholar] [CrossRef]
- Bors, B.; Thomson, J.; Sawchuk, E.; Reimer, P.; Sawatzky, R.; Sander, R.; Kaban, T.; Gerbrandt, E.; Dawson, J. Haskap Breeding and Production; Final Report; Saskatchewan Agric.: Saskatoon, SK, Canada, 2012. [Google Scholar]
- Lefol, E.B. Haskap Market Development, the Japanese Opportunity; Feasibility Study; University of Saskatchewan: Saskatoon, SK, Canada, 2007. [Google Scholar]
- Senica, M.; Stampar, F.; Mikulic-Petkovsek, M. Blue Honeysuckle (Lonicera cearulea L. Subs. Edulis) Berry; A Rich Source of Some Nutrients and Their Differences among Four Different Cultivars. Sci. Hortic. 2018, 238, 215–221. [Google Scholar] [CrossRef]
- Auzanneau, N.; Weber, P.; Kosińska-Cagnazzo, A.; Andlauer, W. Bioactive Compounds and Antioxidant Capacity of Lonicera Caerulea Berries: Comparison of Seven Cultivars over Three Harvesting Years. J. Food Compos. Anal. 2018, 66, 81–89. [Google Scholar] [CrossRef]
- Thompson, M.M. Caprifoliaceae. In The Encyclopedia of Fruit & Nuts; CAB International: London, UK, 2008. [Google Scholar]
- Gołba, M.; Sokół-Łętowska, A.; Kucharska, A.Z. Health Properties and Composition of Honeysuckle Berry Lonicera Caerulea L. An Update on Recent Studies. Molecules 2020, 25, 749. [Google Scholar] [CrossRef]
- Sharma, A.; Lee, H.-J. Lonicera Caerulea: An Updated Account of Its Phytoconstituents and Health-Promoting Activities. Trends Food Sci. Technol. 2021, 107, 130–149. [Google Scholar] [CrossRef]
- Park, J.Y.; Kang, K.S.; Lee, H. Protection Effect of Cyanidin 3-O-Glucoside Against Oxidative Stress-induced HepG2 Cell Death Through Activation of Akt and Extracellular Signal-regulated Kinase Pathways. Bull. Korean Chem. Soc. 2017, 38, 1316–1320. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, Y.; Chao, Z. A Comprehensive Quality Analysis of Different Colors of Medicinal and Edible Honeysuckle. Foods 2023, 12, 3126. [Google Scholar] [CrossRef] [PubMed]
- Bieniek, A.A. Biological Properties of Honeysuckle (Lonicera caerulea L.): A Review: The Nutrition, Health Properties of Honeysuckle. Agrobiodiversity Improv. Nutr. Health Life Qual. 2021, 5, 2. [Google Scholar] [CrossRef]
- Guo, L.; Qiao, J.; Zhang, L.; Yan, W.; Zhang, M.; Lu, Y.; Wang, Y.; Ma, H.; Liu, Y.; Zhang, Y.; et al. Critical Review on Anthocyanins in Blue Honeysuckle (Lonicera caerulea L.) and Their Function. Plant Physiol. Biochem. 2023, 204, 108090. [Google Scholar] [CrossRef]
- Cai, Z.; Chen, H.; Chen, J.; Yang, R.; Zou, L.; Wang, C.; Chen, J.; Tan, M.; Mei, Y.; Wei, L.; et al. Metabolomics Characterizes the Metabolic Changes of Lonicerae Japonicae Flos under Different Salt Stresses. PLoS ONE 2020, 15, e0243111. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Zhao, S.; Bian, L.; Chen, X. Saline Stress Enhanced Accumulation of Leaf Phenolics in Honeysuckle (Lonicera japonica Thunb.) without Induction of Oxidative Stress. Plant Physiol. Biochem. 2017, 112, 326–334. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Razgonova, M.P.; Rusakova, E.A.; Petrusha, E.N.; Sabitov, A.S.; Chunikhina, O.A.; Ercişli, S.; Tikhonova, N.G.; Golokhvast, K.S. Global Metabolome Profiles of Lonicera caerulea L. and Lonicera caerulea ssp. Kamtschatica (Sevast.) Gladkova. Turk. J. Agric. For. 2024, 48, 745–759. [Google Scholar] [CrossRef]
- Razgonova, M.P.; Navaz, M.A.; Sabitov, A.S.; Zinchenko, Y.N.; Rusakova, E.A.; Petrusha, E.N.; Golokhvast, K.S.; Tikhonova, N.G. The Global Metabolome Profiles of Four Varieties of Lonicera caerulea, Established via Tandem Mass Spectrometry. Horticulturae 2023, 9, 1188. [Google Scholar] [CrossRef]
- Razgonova, M.P.; Petrusha, E.N.; Rusakova, E.A.; Golokhvast, K.S. The Determination of Secondary Metabolites of Kamchatka Honeysuckle Lonicera caerulea var. kamtschatika Sevast. Russ. J. Plant Physiol. 2023, 70, 177. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of Multiple Bioactive Constituents in the Flower and the Caulis of Lonicera japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis. Molecules 2019, 24, 1936. [Google Scholar] [CrossRef]
- Jaiswal, R.; Müller, H.; Müller, A.; Karar, M.G.E.; Kuhnert, N. Identification and Characterization of Chlorogenic Acids, Chlorogenic Acid Glycosides and Flavonoids from Lonicera henryi L. (Caprifoliaceae) Leaves by LC–MS. Phytochemistry 2014, 108, 252–263. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Hou, H.; Ma, X.; Sun, S.; Wang, H.; Kong, L. Metabolomics and Gene Expression Analysis Reveal the Accumulation Patterns of Phenylpropanoids and Flavonoids in Different Colored-Grain Wheats (Triticum aestivum L.). Food Res. Int. 2020, 138, 109711. [Google Scholar] [CrossRef]
- Xu, J.L.; Shin, J.-S.; Park, S.-K.; Kang, S.; Jeong, S.-C.; Moon, J.-K.; Choi, Y. Differences in the Metabolic Profiles and Antioxidant Activities of Wild and Cultivated Black Soybeans Evaluated by Correlation Analysis. Food Res. Int. 2017, 100, 166–174. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Wang, J.; Chen, G.; Tao, X.; Xu, S. Metabolomic Analysis Reveals Domestication-Driven Reshaping of Polyphenolic Antioxidants in Soybean Seeds. Antioxidants 2023, 12, 912. [Google Scholar] [CrossRef]
- Comeskey, D.J.; Montefiori, M.; Edwards, P.J.B.; McGhie, T.K. Isolation and Structural Identification of the Anthocyanin Components of Red Kiwifruit. J. Agric. Food Chem. 2009, 57, 2035–2039. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Gu, L.; Prior, R.L.; McKay, S. Characterization of Anthocyanins and Proanthocyanidins in Some Cultivars of Ribes, Aronia, and Sambucus and Their Antioxidant Capacity. J. Agric. Food Chem. 2004, 52, 7846–7856. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Edwards, A.; Jiménez-Aspee, F.; Theoduloz, C.; Schmeda-Hirschmann, G. Colonic Fermentation of Polyphenols from Chilean Currants (Ribes spp.) and Its Effect on Antioxidant Capacity and Metabolic Syndrome-Associated Enzymes. Food Chem. 2018, 258, 144–155. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.P.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C.F.R. Rubus Ulmifolius Schott Fruits: A Detailed Study of Its Nutritional, Chemical and Bioactive Properties. Food Res. Int. 2019, 119, 34–43. [Google Scholar] [CrossRef]
- Ruiz, A.; Hermosín-Gutiérrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin Profiles in South Patagonian Wild Berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713. [Google Scholar] [CrossRef]
- Ruiz, A.; Hermosín-Gutiérrez, I.; Mardones, C.; Vergara, C.; Herlitz, E.; Vega, M.; Dorau, C.; Winterhalter, P.; von Baer, D. Polyphenols and Antioxidant Activity of Calafate (Berberis microphylla) Fruits and Other Native Berries from Southern Chile. J. Agric. Food Chem. 2010, 58, 6081–6089. [Google Scholar] [CrossRef]
- Aaby, K.; Mazur, S.; Nes, A.; Skrede, G. Phenolic Compounds in Strawberry (Fragaria x Ananassa Duch.) Fruits: Composition in 27 Cultivars and Changes during Ripening. Food Chem. 2012, 132, 86–97. [Google Scholar] [CrossRef]
- Šuković, D.; Knežević, B.; Gašić, U.; Sredojević, M.; Ćirić, I.; Todić, S.; Mutić, J.; Tešić, Ž. Phenolic Profiles of Leaves, Grapes and Wine of Grapevine Variety Vranac (Vitis vinifera L.) from Montenegro. Foods 2020, 9, 138. [Google Scholar] [CrossRef]
- Mazzuca, P.; Ferranti, P.; Picariello, G.; Chianese, L.; Addeo, F. Mass Spectrometry in the Study of Anthocyanins and Their Derivatives: Differentiation of Vitis vinifera and Hybrid Grapes by Liquid Chromatography/Electrospray Ionization Mass Spectrometry and Tandem Mass Spectrometry. J. Mass. Spectrom. 2005, 40, 83–90. [Google Scholar] [CrossRef]
- Fermo, P.; Comite, V.; Sredojević, M.; Ćirić, I.; Gašić, U.; Mutić, J.; Baošić, R.; Tešić, Ž. Elemental Analysis and Phenolic Profiles of Selected Italian Wines. Foods 2021, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Lago-Vanzela, E.S.; Da-Silva, R.; Gomes, E.; García-Romero, E.; Hermosín-Gutiérrez, I. Phenolic Composition of the Edible Parts (Flesh and Skin) of Bordô Grape (Vitis labrusca) Using HPLC–DAD–ESI-MS/MS. J. Agric. Food Chem. 2011, 59, 13136–13146. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Race, E.J.; Shrikhande, A.J. Characterization of Anthocyanins in Grape Juices by Ion Trap Liquid Chromatography−Mass Spectrometry. J. Agric. Food Chem. 2003, 51, 1839–1844. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liu, X.; Yang, T.; Slovin, J.; Chen, P. Profiling Polyphenols of Two Diploid Strawberry (Fragaria vesca) Inbred Lines Using UHPLC-HRMSn. Food Chem. 2014, 146, 289–298. [Google Scholar] [CrossRef]
- Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K.; et al. Transfer of Grain Colors to Elite Wheat Cultivars and Their Characterization. J. Cereal Sci. 2016, 71, 138–144. [Google Scholar] [CrossRef]
- Chang, Q.; Wong, Y.-S. Identification of Flavonoids in Hakmeitau Beans (Vigna sinensis) by High-Performance Liquid Chromatography−Electrospray Mass Spectrometry (LC-ESI/MS). J. Agric. Food Chem. 2004, 52, 6694–6699. [Google Scholar] [CrossRef] [PubMed]
- Ha, T.J.; Lee, M.-H.; Park, C.-H.; Pae, S.-B.; Shim, K.-B.; Ko, J.-M.; Shin, S.-O.; Baek, I.-Y.; Park, K.-Y. Identification and Characterization of Anthocyanins in Yard-Long Beans (Vigna unguiculata ssp. Sesquipedalis L.) by High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionization/Mass Spectrometry (HPLC−DAD−ESI/MS) Analysis. J. Agric. Food Chem. 2010, 58, 2571–2576. [Google Scholar] [CrossRef]
- Chuah, W.C.; Lee, H.H.; Ng, D.H.J.; Ho, A.L.; Sulaiman, M.R.; Chye, F.Y. Antioxidants Discovery for Differentiation of Monofloral Stingless Bee Honeys Using Ambient Mass Spectrometry and Metabolomics Approaches. Foods 2023, 12, 2404. [Google Scholar] [CrossRef] [PubMed]
- Flamini, R. Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols. ISRN Spectrosc. 2013, 2013, 1–45. [Google Scholar] [CrossRef]
- Anari, Z.; Mai, C.; Sengupta, A.; Howard, L.; Brownmiller, C.; Wickramasinghe, S.R. Combined Osmotic and Membrane Distillation for Concentration of Anthocyanin from Muscadine Pomace. J. Food Sci. 2019, 84, 2199–2208. [Google Scholar] [CrossRef]
- Yin, N.-W.; Wang, S.-X.; Jia, L.-D.; Zhu, M.-C.; Yang, J.; Zhou, B.-J.; Yin, J.-M.; Lu, K.; Wang, R.; Li, J.-N.; et al. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC–HESI-MS/MS. J. Agric. Food Chem. 2019, 67, 11053–11065. [Google Scholar] [CrossRef]
- Silinsin, M.; Bursal, E. UHPLC-MS/MS Phenolic Profiling and in Vitro Antioxidant Activities of Inula graveolens (L.) Desf. Nat. Prod. Res. 2018, 32, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.-H.; Du, X.-W.; Sun, G.-D.; Dong, W.-T.; Wang, W.-M. Identification and Characterization of Major Constituents in Juglans mandshurica Using Ultra Performance Liquid Chromatography Coupled with Time-of-Flight Mass Spectrometry (UPLC-ESI-Q-TOF/MS). Chin. J. Nat. Med. 2018, 16, 525–545. [Google Scholar] [CrossRef] [PubMed]
- Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arráez-Román, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS Screening of Bioactive Components from Rhus coriaria L. (Sumac) Fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pérez, C.; Gómez-Caravaca, A.M.; Guerra-Hernández, E.; Cerretani, L.; García-Villanova, B.; Verardo, V. Comprehensive Metabolite Profiling of Solanum tuberosum L. (Potato) Leaves by HPLC-ESI-QTOF-MS. Food Res. Int. 2018, 112, 390–399. [Google Scholar] [CrossRef]
- Felegyi-Tóth, C.A.; Garádi, Z.; Darcsi, A.; Csernák, O.; Boldizsár, I.; Béni, S.; Alberti, Á. Isolation and Quantification of Diarylheptanoids from European Hornbeam (Carpinus betulus L.) and HPLC-ESI-MS/MS Characterization of Its Antioxidative Phenolics. J. Pharm. Biomed. Anal. 2022, 210, 114554. [Google Scholar] [CrossRef]
- Yasir, M.; Sultana, B.; Anwar, F. LC–ESI–MS/MS Based Characterization of Phenolic Components in Fruits of Two Species of Solanaceae. J. Food Sci. Technol. 2018, 55, 2370–2376. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, R.; Jayasinghe, L.; Kuhnert, N. Identification and Characterization of Proanthocyanidins of 16 Members of the Rhododendron Genus (Ericaceae) by Tandem LC–MS. J. Mass. Spectrom. 2012, 47, 502–515. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, H.; Wang, Q.; Liu, H.; Shen, H.; Xu, W.; Ge, J.; He, D. Rapid Qualitative Profiling and Quantitative Analysis of Phenolics in Ribes meyeri Leaves and Their Antioxidant and Antidiabetic Activities by HPLC-QTOF-MS/MS and UHPLC-MS/MS. J. Sep. Sci. 2021, 44, 1404–1420. [Google Scholar] [CrossRef]
- de Freitas, M.A.; Silva Alves, A.I.; Andrade, J.C.; Leite-Andrade, M.C.; Lucas dos Santos, A.T.; Felix de Oliveira, T.; dos Santos, F.d.A.G.; Silva Buonafina, M.D.; Melo Coutinho, H.D.; Alencar de Menezes, I.R.; et al. Evaluation of the Antifungal Activity of the Licania Rigida Leaf Ethanolic Extract against Biofilms Formed by Candida Sp. Isolates in Acrylic Resin Discs. Antibiotics 2019, 8, 250. [Google Scholar] [CrossRef]
- Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of Chemopreventive Components from Halophytes Belonging to Aizoaceae and Cactaceae Through LC/MS—Bioassay Guided Approach. J. Chromatogr. Sci. 2021, 59, 618–626. [Google Scholar] [CrossRef]
- Sobeh, M.; Mahmoud, M.; Hasan, R.; Cheng, H.; El-Shazly, A.; Wink, M. Senna Singueana: Antioxidant, Hepatoprotective, Antiapoptotic Properties and Phytochemical Profiling of a Methanol Bark Extract. Molecules 2017, 22, 1502. [Google Scholar] [CrossRef]
- Rini Vijayan, K.P.; Raghu, A.V. Tentative Characterization of Phenolic Compounds in Three Species of the Genus Embelia by Liquid Chromatography Coupled with Mass Spectrometry Analysis. Spectrosc. Lett. 2019, 52, 653–670. [Google Scholar] [CrossRef]
- Contreras, M.d.M.; Algieri, F.; Rodriguez-Nogales, A.; Gálvez, J.; Segura-Carretero, A. Phytochemical Profiling of Anti-inflammatory Lavandula Extracts via RP–HPLC–DAD–QTOF–MS and –MS/MS: Assessment of Their Qualitative and Quantitative Differences. Electrophoresis 2018, 39, 1284–1293. [Google Scholar] [CrossRef]
- Trifan, A.; Zengin, G.; Sinan, K.I.; Sieniawska, E.; Sawicki, R.; Maciejewska-Turska, M.; Skalikca-Woźniak, K.; Luca, S.V. Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia Species. Antioxidants 2022, 11, 1017. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, X.; Li, G.; He, X.; Yu, X.; Yu, X.; Xiao, Q.; Xiang, Z.; Wang, C. Chemical Constituents of Radix Actinidia chinensis Planch by UPLC–QTOF–MS. Biomed. Chromatogr. 2021, 35, e5103. [Google Scholar] [CrossRef]
- Songserm, P.; Klanrit, P.; Klanrit, P.; Phetcharaburanin, J.; Thanonkeo, P.; Apiraksakorn, J.; Phomphrai, K.; Klanrit, P. Antioxidant and Anticancer Potential of Bioactive Compounds from Rhinacanthus Nasutus Cell Suspension Culture. Plants 2022, 11, 1994. [Google Scholar] [CrossRef]
- Ali, A.; Bashmil, Y.M.; Cottrell, J.J.; Suleria, H.A.R.; Dunshea, F.R. LC-MS/MS-QTOF Screening and Identification of Phenolic Compounds from Australian Grown Herbs and Their Antioxidant Potential. Antioxidants 2021, 10, 1770. [Google Scholar] [CrossRef]
- Zhao, D.-D.; Zhao, Q.-S.; Liu, L.; Chen, Z.-Q.; Zeng, W.-M.; Lei, H.; Zhang, Y.-L. Compounds from Dryopteris fragrans (L.) Schott with Cytotoxic Activity. Molecules 2014, 19, 3345–3355. [Google Scholar] [CrossRef] [PubMed]
- Chung, N.C.; Miasojedow, B.; Startek, M.; Gambin, A. Jaccard/Tanimoto Similarity Test and Estimation Methods for Biological Presence-Absence Data. BMC Bioinform. 2019, 20, 644. [Google Scholar] [CrossRef] [PubMed]
- Simons, R.; Vincken, J.; Bakx, E.J.; Verbruggen, M.A.; Gruppen, H. A Rapid Screening Method for Prenylated Flavonoids with Ultra-high-performance Liquid Chromatography/Electrospray Ionisation Mass Spectrometry in Licorice Root Extracts. Rapid Commun. Mass. Spectrom. 2009, 23, 3083–3093. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, K.; Wei, L.; Chen, D.; Chen, Q.; Jiao, M.; Li, X.; Huang, J.; Gong, Z.; Kang, N.; et al. The Molecular Mechanism of Antioxidation of Huolisu Oral Liquid Based on Serum Analysis and Network Analysis. Front. Pharmacol. 2021, 12, 710976. [Google Scholar] [CrossRef]
- Okhlopkova, Z.M.; Razgonova, M.P.; Rozhina, Z.G.; Egorova, P.S.; Golokhvast, K.S. Dracocephalum Jacutense Peschkova from Yakutia: Extraction and Mass Spectrometric Characterization of 128 Chemical Compounds. Molecules 2023, 28, 4402. [Google Scholar] [CrossRef]
- Faraone, I.; Rai, D.K.; Chiummiento, L.; Fernandez, E.; Choudhary, A.; Prinzo, F.; Milella, L. Antioxidant Activity and Phytochemical Characterization of Senecio clivicolus Wedd. Molecules 2018, 23, 2497. [Google Scholar] [CrossRef]
- Paudel, L.; Wyzgoski, F.J.; Scheerens, J.C.; Chanon, A.M.; Reese, R.N.; Smiljanic, D.; Wesdemiotis, C.; Blakeslee, J.J.; Riedl, K.M.; Rinaldi, P.L. Nonanthocyanin Secondary Metabolites of Black Raspberry (Rubus occidentalis L.) Fruits: Identification by HPLC-DAD, NMR, HPLC-ESI-MS, and ESI-MS/MS Analyses. J. Agric. Food Chem. 2013, 61, 12032–12043. [Google Scholar] [CrossRef]
- Razgonova, M.P.; Nawaz, M.A.; Sabitov, A.S.; Golokhvast, K.S. Genus Ribes: Ribes Aureum, Ribes Pauciflorum, Ribes Triste, and Ribes Dikuscha—Comparative Mass Spectrometric Study of Polyphenolic Composition and Other Bioactive Constituents. Int. J. Mol. Sci. 2024, 25, 10085. [Google Scholar] [CrossRef]
- Zengin, G.; Mahomoodally, M.F.; Sinan, K.I.; Ak, G.; Etienne, O.K.; Sharmeen, J.B.; Brunetti, L.; Leone, S.; Di Simone, S.C.; Recinella, L.; et al. Chemical Composition and Biological Properties of Two Jatropha Species: Different Parts and Different Extraction Methods. Antioxidants 2021, 10, 792. [Google Scholar] [CrossRef]
- Olech, M.; Pietrzak, W.; Nowak, R. Characterization of Free and Bound Phenolic Acids and Flavonoid Aglycones in Rosa rugosa Thunb. Leaves and Achenes Using LC–ESI–MS/MS–MRM Methods. Molecules 2020, 25, 1804. [Google Scholar] [CrossRef]
- Razgonova, M.P.; Nawaz, M.A.; Rusakova, E.A.; Golokhvast, K.S. Application of Supercritical CO2 Extraction and Identification of Polyphenolic Compounds in Three Species of Wild Rose from Kamchatka: Rosa acicularis, Rosa amblyotis, and Rosa rugosa. Plants 2024, 14, 59. [Google Scholar] [CrossRef]
- Wojakowska, A.; Piasecka, A.; García-López, P.M.; Zamora-Natera, F.; Krajewski, P.; Marczak, Ł.; Kachlicki, P.; Stobiecki, M. Structural Analysis and Profiling of Phenolic Secondary Metabolites of Mexican Lupine Species Using LC–MS Techniques. Phytochemistry 2013, 92, 71–86. [Google Scholar] [CrossRef]
- Singh, B.N.; Shankar, S.; Srivastava, R.K. Green Tea Catechin, Epigallocatechin-3-Gallate (EGCG): Mechanisms, Perspectives and Clinical Applications. Biochem. Pharmacol. 2011, 82, 1807–1821. [Google Scholar] [CrossRef] [PubMed]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef] [PubMed]
- Mokra, D.; Joskova, M.; Mokry, J. Therapeutic Effects of Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. Int. J. Mol. Sci. 2022, 24, 340. [Google Scholar] [CrossRef]
- Peng, Q.; Zhang, Z.-R.; Sun, X.; Zuo, J.; Zhao, D.; Gong, T. Mechanisms of Phospholipid Complex Loaded Nanoparticles Enhancing the Oral Bioavailability. Mol. Pharm. 2010, 7, 565–575. [Google Scholar] [CrossRef]
- Zhu, W.; Li, M.C.; Wang, F.R.; Mackenzie, G.G.; Oteiza, P.I. The Inhibitory Effect of ECG and EGCG Dimeric Procyanidins on Colorectal Cancer Cells Growth Is Associated with Their Actions at Lipid Rafts and the Inhibition of the Epidermal Growth Factor Receptor Signaling. Biochem. Pharmacol. 2020, 175, 113923. [Google Scholar] [CrossRef]
- Razgonova, M.; Zakharenko, A.; Pikula, K.; Manakov, Y.; Ercisli, S.; Derbush, I.; Kislin, E.; Seryodkin, I.; Sabitov, A.; Kalenik, T.; et al. LC-MS/MS Screening of Phenolic Compounds in Wild and Cultivated Grapes Vitis amurensis Rupr. Molecules 2021, 26, 3650. [Google Scholar] [CrossRef]
- Razgonova, M.; Zakharenko, A.; Pikula, K.; Kim, E.; Chernyshev, V.; Ercisli, S.; Cravotto, G.; Golokhvast, K. Rapid Mass Spectrometric Study of a Supercritical CO2-Extract from Woody Liana Schisandra Chinensis by HPLC-SPD-ESI-MS/MS. Molecules 2020, 25, 2689. [Google Scholar] [CrossRef]
- Zhang, L.; McClements, D.J.; Wei, Z.; Wang, G.; Liu, X.; Liu, F. Delivery of Synergistic Polyphenol Combinations Using Biopolymer-Based Systems: Advances in Physicochemical Properties, Stability and Bioavailability. Crit. Rev. Food Sci. Nutr. 2020, 60, 2083–2097. [Google Scholar] [CrossRef]
- Del Rio, D.; Borges, G.; Crozier, A. Berry Flavonoids and Phenolics: Bioavailability and Evidence of Protective Effects. Br. J. Nutr. 2010, 104, S67–S90. [Google Scholar] [CrossRef]
- Figueira, I.; Garcia, G.; Pimpão, R.C.; Terrasso, A.P.; Costa, I.; Almeida, A.F.; Tavares, L.; Pais, T.F.; Pinto, P.; Ventura, M.R.; et al. Polyphenols Journey through Blood-Brain Barrier towards Neuronal Protection. Sci. Rep. 2017, 7, 11456. [Google Scholar] [CrossRef] [PubMed]
- Aquilano, K.; Baldelli, S.; Rotilio, G.; Ciriolo, M.R. Role of Nitric Oxide Synthases in Parkinson’s Disease: A Review on the Antioxidant and Anti-Inflammatory Activity of Polyphenols. Neurochem. Res. 2008, 33, 2416–2426. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, C.; Moccia, S.; Russo, G.L. Anti-Inflammatory Effects of Flavonoids in Neurodegenerative Disorders. Eur. J. Med. Chem. 2018, 153, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Virant-Klun, I.; Imamovic-Kumalic, S.; Pinter, B. From Oxidative Stress to Male Infertility: Review of the Associations of Endocrine-Disrupting Chemicals (Bisphenols, Phthalates, and Parabens) with Human Semen Quality. Antioxidants 2022, 11, 1617. [Google Scholar] [CrossRef]
- Hidayat, R. Patricia Wulandari Methods of Extraction: Maceration, Percolation and Decoction. Eureka Herba Indones. 2021, 2, 73–79. [Google Scholar] [CrossRef]
- Ćujić, N.; Šavikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibrić, S. Optimization of Polyphenols Extraction from Dried Chokeberry Using Maceration as Traditional Technique. Food Chem. 2016, 194, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Razgonova, M.P.; Okhlopkova, Z.M.; Nawaz, M.A.; Egorova, P.S.; Golokhvast, K.S. Supercritical Extraction and Identification of Bioactive Compounds in Dryopteris fragrans (L.) Schott. Pharmaceuticals 2025, 18, 299. [Google Scholar] [CrossRef]
- Tian, X.; Chen, L.; Sun, L.; Gong, K.; Liu, K.; Guo, Y. Omics Analysis Revealing Flavonoid Content During Maize Grain Germination. Metabolites 2025, 15, 107. [Google Scholar] [CrossRef]
- Pandey, R.; Kumar, B. HPLC–QTOF–MS/MS-Based Rapid Screening of Phenolics and Triterpenic Acids in Leaf Extracts of Ocimum Species and Their Interspecies Variation. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 225–238. [Google Scholar] [CrossRef]
- Chang, Y.; Zhang, D.; Yang, G.; Zheng, Y.; Guo, L. Screening of Anti-Lipase Components of Artemisia Argyi Leaves Based on Spectrum-Effect Relationships and HPLC-MS/MS. Front. Pharmacol. 2021, 12, 675396. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.-L.; Xu, J.-J.; Zhong, K.-R.; Shang, Z.-P.; Wang, F.; Wang, R.-F.; Zhang, L.; Zhang, J.-Y.; Liu, B. Analysis of Non-Volatile Chemical Constituents of Menthae Haplocalycis Herba by Ultra-High Performance Liquid Chromatography-High Resolution Mass Spectrometry. Molecules 2017, 22, 1756. [Google Scholar] [CrossRef]
- Wang, F.; Huang, S.; Chen, Q.; Hu, Z.; Li, Z.; Zheng, P.; Liu, X.; Li, S.; Zhang, S.; Chen, J. Chemical Characterisation and Quantification of the Major Constituents in the Chinese Herbal Formula Jian-Pi-Yi-Shen Pill by UPLC-Q-TOF-MS/MS and HPLC-QQQ-MS/MS. Phytochem. Anal. 2020, 31, 915–929. [Google Scholar] [CrossRef]
- Belmehdi, O.; Bouyahya, A.; Jekő, J.; Cziáky, Z.; Zengin, G.; Sotkó, G.; El Baaboua, A.; Senhaji, N.S.; Abrini, J. Synergistic Interaction between Propolis Extract, Essential Oils, and Antibiotics against Staphylococcus Epidermidis and Methicillin Resistant Staphylococcus Aureus. Int. J. Second. Metab. 2021, 8, 195–213. [Google Scholar] [CrossRef]
- Pan, M.; Lei, Q.; Zang, N.; Zhang, H. A Strategy Based on GC-MS/MS, UPLC-MS/MS and Virtual Molecular Docking for Analysis and Prediction of Bioactive Compounds in Eucalyptus globulus Leaves. Int. J. Mol. Sci. 2019, 20, 3875. [Google Scholar] [CrossRef]
- Aita, S.; Capriotti, A.; Cavaliere, C.; Cerrato, A.; Giannelli Moneta, B.; Montone, C.; Piovesana, S.; Laganà, A. Andean Blueberry of the Genus Disterigma: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. Separations 2021, 8, 58. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhang, D.; Liu, Y.; Lin, L.; Xiong, X.; Zhang, D.; Sun, M.; Cai, M.; Yu, X.; et al. Transcriptomic and Metabolomic Profiling Provides Insights into Flavonoid Biosynthesis and Flower Coloring in Loropetalum chinense and Loropetalum chinense Var. rubrum. Agronomy 2023, 13, 1296. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, X.-J.; Xu, W.; Huang, J.; Zhu, D.-Y.; Qiu, X.-H. Rapid Characterization and Identification of Flavonoids in Radix Astragali by Ultra-High-Pressure Liquid Chromatography Coupled with Linear Ion Trap-Orbitrap Mass Spectrometry. J. Chromatogr. Sci. 2015, 53, 945–952. [Google Scholar] [CrossRef]
- Kheyar-Kraouche, N.; da Silva, A.B.; Serra, A.T.; Bedjou, F.; Bronze, M.R. Characterization by Liquid Chromatography–Mass Spectrometry and Antioxidant Activity of an Ethanolic Extract of Inula viscosa Leaves. J. Pharm. Biomed. Anal. 2018, 156, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Ben Said, R.; Hamed, A.I.; Mahalel, U.A.; Al-Ayed, A.S.; Kowalczyk, M.; Moldoch, J.; Oleszek, W.; Stochmal, A. Tentative Characterization of Polyphenolic Compounds in the Male Flowers of Phoenix Dactylifera by Liquid Chromatography Coupled with Mass Spectrometry and DFT. Int. J. Mol. Sci. 2017, 18, 512. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, I.M.; El-Baset, M.A.; Elghonemy, M.M.; Bashandy, S.A.E.; Ibrahim, F.A.A.; Ahmed-Farid, O.A.H.; El Gendy, A.E.-N.G.; Afifi, S.M.; Esatbeyoglu, T.; Farrag, A.R.H.; et al. Chemical Profile of Cyperus laevigatus and Its Protective Effects against Thioacetamide-Induced Hepatorenal Toxicity in Rats. Molecules 2022, 27, 6470. [Google Scholar] [CrossRef]
- Engels, C.; Gräter, D.; Esquivel, P.; Jiménez, V.M.; Gänzle, M.G.; Schieber, A. Characterization of Phenolic Compounds in Jocote (Spondias purpurea L.) Peels by Ultra High-Performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry. Food Res. Int. 2012, 46, 557–562. [Google Scholar] [CrossRef]
- Ismail, W.M.; Ezzat, S.M.; El-Mosallamy, A.E.M.K.; El Deeb, K.S.; El-Fishawy, A.M. In Vivo Antihypertensive Activity and UHPLC-Orbitrap-HRMS Profiling of Cuphea ignea A. DC. ACS Omega 2022, 7, 46524–46535. [Google Scholar] [CrossRef] [PubMed]
- Iswaldi, I.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Uberos, J.; Lardón, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Characterization by High-Performance Liquid Chromatography with Diode-Array Detection Coupled to Time-of-Flight Mass Spectrometry of the Phenolic Fraction in a Cranberry Syrup Used to Prevent Urinary Tract Diseases, Together with a Study of Its Antibacterial Activity. J. Pharm. Biomed. Anal. 2012, 58, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Spínola, V.; Pinto, J.; Castilho, P.C. Identification and Quantification of Phenolic Compounds of Selected Fruits from Madeira Island by HPLC-DAD–ESI-MSn and Screening for Their Antioxidant Activity. Food Chem. 2015, 173, 14–30. [Google Scholar] [CrossRef]
- Wang, Y.; Vorsa, N.; Harrington, P.d.B.; Chen, P. Nontargeted Metabolomic Study on Variation of Phenolics in Different Cranberry Cultivars Using UPLC-IM—HRMS. J. Agric. Food Chem. 2018, 66, 12206–12216. [Google Scholar] [CrossRef]
- Mekam, P.N.; Martini, S.; Nguefack, J.; Tagliazucchi, D.; Stefani, E. Phenolic Compounds Profile of Water and Ethanol Extracts of Euphorbia hirta L. Leaves Showing Antioxidant and Antifungal Properties. South. Afr. J. Bot. 2019, 127, 319–332. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, Y.; Yang, M.; Cao, J.; Khan, A.; Cheng, G. UHPLC-ESI-HRMS/MS Analysis on Phenolic Compositions of Different E Se Tea Extracts and Their Antioxidant and Cytoprotective Activities. Food Chem. 2020, 318, 126512. [Google Scholar] [CrossRef]
- Sun, L.; Tao, S.; Zhang, S. Characterization and Quantification of Polyphenols and Triterpenoids in Thinned Young Fruits of Ten Pear Varieties by UPLC-Q TRAP-MS/MS. Molecules 2019, 24, 159. [Google Scholar] [CrossRef] [PubMed]
- Ieri, F.; Innocenti, M.; Possieri, L.; Gallori, S.; Mulinacci, N. Phenolic Composition of “Bud Extracts” of Ribes nigrum L., Rosa canina L. and Tilia tomentosa M. J. Pharm. Biomed. Anal. 2015, 115, 1–9. [Google Scholar] [CrossRef]
- Aabideen, Z.U.; Mumtaz, M.W.; Akhtar, M.T.; Mukhtar, H.; Raza, S.A.; Touqeer, T.; Saari, N. Anti-Obesity Attributes; UHPLC-QTOF-MS/MS-Based Metabolite Profiling and Molecular Docking Insights of Taraxacum Officinale. Molecules 2020, 25, 4935. [Google Scholar] [CrossRef]
- Pascale, R.; Acquavia, M.A.; Cataldi, T.R.I.; Onzo, A.; Coviello, D.; Bufo, S.A.; Scrano, L.; Ciriello, R.; Guerrieri, A.; Bianco, G. Profiling of Quercetin Glycosides and Acyl Glycosides in Sun-Dried Peperoni Di Senise Peppers (Capsicum annuum L.) by a Combination of LC-ESI(-)-MS/MS and Polarity Prediction in Reversed-Phase Separations. Anal. Bioanal. Chem. 2020, 412, 3005–3015. [Google Scholar] [CrossRef]
- Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.O.; Cheng, H.; El-Shazly, A.M.; Wink, M. A Proanthocyanidin-Rich Extract from Cassia Abbreviata Exhibits Antioxidant and Hepatoprotective Activities in Vivo. J. Ethnopharmacol. 2018, 213, 38–47. [Google Scholar] [CrossRef]
- Liu, P.; Lindstedt, A.; Markkinen, N.; Sinkkonen, J.; Suomela, J.-P.; Yang, B. Characterization of Metabolite Profiles of Leaves of Bilberry (Vaccinium myrtillus L.) and Lingonberry (Vaccinium vitis-idaea L.). J. Agric. Food Chem. 2014, 62, 12015–12026. [Google Scholar] [CrossRef]
- Razgonova, M.P.; Tekutyeva, L.A.; Podvolotskaya, A.B.; Stepochkina, V.D.; Zakharenko, A.M.; Golokhvast, K. Zostera Marina L.: Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass. Separations 2022, 9, 182. [Google Scholar] [CrossRef]
- Fuentes, J.A.M.; López-Salas, L.; Borrás-Linares, I.; Navarro-Alarcón, M.; Segura-Carretero, A.; Lozano-Sánchez, J. Development of an Innovative Pressurized Liquid Extraction Procedure by Response Surface Methodology to Recover Bioactive Compounds from Carao Tree Seeds. Foods 2021, 10, 398. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Q.; Zhao, J.; Xie, J.; Li, S.P. A Novel Sample Preparation and On-Line HPLC–DAD–MS/MS–BCD Analysis for Rapid Screening and Characterization of Specific Enzyme Inhibitors in Herbal Extracts: Case Study of α-Glucosidase. J. Pharm. Biomed. Anal. 2014, 88, 130–135. [Google Scholar] [CrossRef]
- van Diermen, D.; Marston, A.; Bravo, J.; Reist, M.; Carrupt, P.-A.; Hostettmann, K. Monoamine Oxidase Inhibition by Rhodiola rosea L. Roots. J. Ethnopharmacol. 2009, 122, 397–401. [Google Scholar] [CrossRef]
- Pineda, A.; Arenas, A.; Balmaceda, J.; Zúñiga, G.E. Extracts of Fruits and Plants Cultivated In Vitro of Aristotelia chilensis (Mol.) Stuntz Show Inhibitory Activity of Aldose Reductase and Pancreatic Alpha-Amylase Enzymes. Plants 2022, 11, 2772. [Google Scholar] [CrossRef] [PubMed]
- Ha, T.J.; Park, J.E.; Lee, K.-S.; Seo, W.D.; Song, S.-B.; Lee, M.-H.; Kim, S.; Kim, J.-I.; Oh, E.; Pae, S.-B.; et al. Identification of Anthocyanin Compositions in Black Seed Coated Korean Adzuki Bean (Vigna angularis) by NMR and UPLC-Q-Orbitrap-MS/MS and Screening for Their Antioxidant Properties Using Different Solvent Systems. Food Chem. 2021, 346, 128882. [Google Scholar] [CrossRef]
- Chen, H.-J.; Inbaraj, B.S.; Chen, B.-H. Determination of Phenolic Acids and Flavonoids in Taraxacum Formosanum Kitam by Liquid Chromatography-Tandem Mass Spectrometry Coupled with a Post-Column Derivatization Technique. Int. J. Mol. Sci. 2011, 13, 260–285. [Google Scholar] [CrossRef]
- Llorent-Martínez, E.J.; Spínola, V.; Gouveia, S.; Castilho, P.C. HPLC-ESI-MSn Characterization of Phenolic Compounds, Terpenoid Saponins, and Other Minor Compounds in Bituminaria bituminosa. Ind. Crops Prod. 2015, 69, 80–90. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A.; Kumar, B. Identification and Characterization of Phenolics and Terpenoids from Ethanolic Extracts of Phyllanthus Species by HPLC-ESI-QTOF-MS/MS. J. Pharm. Anal. 2017, 7, 214–222. [Google Scholar] [CrossRef]
- Razgonova, M.P.; Bazhenova, B.A.; Zabalueva, Y.Y.; Burkhanova, A.G.; Zakharenko, A.M.; Kupriyanov, A.N.; Sabitov, A.S.; Ercisli, S.; Golokhvast, K.S. Rosa davurica Pall., Rosa rugosa Thumb., and Rosa acicularis Lindl. Originating from Far Eastern Russia: Screening of 146 Chemical Constituents in Three Species of the Genus Rosa. Appl. Sci. 2022, 12, 9401. [Google Scholar] [CrossRef]
- Santos, S.A.O.; Freire, C.S.R.; Domingues, M.R.M.; Silvestre, A.J.D.; Neto, C.P. Characterization of Phenolic Components in Polar Extracts of Eucalyptus globulus Labill. Bark by High-Performance Liquid Chromatography–Mass Spectrometry. J. Agric. Food Chem. 2011, 59, 9386–9393. [Google Scholar] [CrossRef]
- Mena, P.; Calani, L.; Dall’Asta, C.; Galaverna, G.; García-Viguera, C.; Bruni, R.; Crozier, A.; Del Rio, D. Rapid and Comprehensive Evaluation of (Poly)Phenolic Compounds in Pomegranate (Punica granatum L.) Juice by UHPLC-MSn. Molecules 2012, 17, 14821–14840. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yang, B.; Wang, D.; Zhu, Y.; Miao, X.; Yang, W. The Chemical Composition of Brazilian Green Propolis and Its Protective Effects on Mouse Aortic Endothelial Cells against Inflammatory Injury. Molecules 2020, 25, 4612. [Google Scholar] [CrossRef]
- Simard, F.; Legault, J.; Lavoie, S.; Mshvildadze, V.; Pichette, A. Isolation and Identification of Cytotoxic Compounds from the Wood of Pinus resinosa. Phytother. Res. 2008, 22, 919–922. [Google Scholar] [CrossRef] [PubMed]
- Ekeberg, D.; Flæte, P.-O.; Eikenes, M.; Fongen, M.; Naess-Andresen, C.F. Qualitative and Quantitative Determination of Extractives in Heartwood of Scots Pine (Pinus sylvestris L.) by Gas Chromatography. J. Chromatogr. A 2006, 1109, 267–272. [Google Scholar] [CrossRef]
- Zhu, X.X.; Yang, L.; Li, Y.J.; Zhang, D.; Chen, Y.; Kostecká, P.; Kmoníèková, E.; Zídek, Z. Effects of Sesquiterpene, Flavonoid and Coumarin Types of Compounds from Artemisia annua L. on Production of Mediators of Angiogenesis. Pharmacol. Rep. 2013, 65, 410–420. [Google Scholar] [CrossRef]
- Azizah, M.; Pripdeevech, P.; Thongkongkaew, T.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. UHPLC-ESI-QTOF-MS/MS-Based Molecular Networking Guided Isolation and Dereplication of Antibacterial and Antifungal Constituents of Ventilago denticulata. Antibiotics 2020, 9, 606. [Google Scholar] [CrossRef]
- Guo, X.; Yue, Y.; Tang, F.; Wang, J.; Yao, X.; Sun, J. A Comparison of C-Glycosidic Flavonoid Isomers by Electrospray Ionization Quadrupole Time-of-Flight Tandem Mass Spectrometry in Negative and Positive Ion Mode. Int. J. Mass. Spectrom. 2013, 333, 59–66. [Google Scholar] [CrossRef]
- Čukelj, N.; Jakasa, I.; Sarajlija, H.; Novotni, D.; Ćurić, D. Identification and Quantification of Lignans in Wheat Bran by Gas Chromatography-Electron Capture Detection. Talanta 2011, 84, 127–132. [Google Scholar] [CrossRef]
- Tsochatzis, E.; Papageorgiou, M.; Kalogiannis, S. Validation of a HILIC UHPLC-MS/MS Method for Amino Acid Profiling in Triticum Species Wheat Flours. Foods 2019, 8, 514. [Google Scholar] [CrossRef]
- Dokwal, D.; Cocuron, J.-C.; Alonso, A.P.; Dickstein, R. Metabolite Shift in Medicago truncatula Occurs in Phosphorus Deprivation. J. Exp. Bot. 2022, 73, 2093–2111. [Google Scholar] [CrossRef]
- Li, M.; Xu, J.; Wang, X.; Fu, H.; Zhao, M.; Wang, H.; Shi, L. Photosynthetic Characteristics and Metabolic Analyses of Two Soybean Genotypes Revealed Adaptive Strategies to Low-Nitrogen Stress. J. Plant Physiol. 2018, 229, 132–141. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Xu, J.; Liu, X.; Wang, S.; Shi, L. Physiological and Metabolomics Analyses of Young and Old Leaves from Wild and Cultivated Soybean Seedlings under Low-Nitrogen Conditions. BMC Plant Biol. 2019, 19, 389. [Google Scholar] [CrossRef]
- Razgonova, M.; Boyko, A.; Zinchenko, Y.; Tikhonova, N.; Sabitov, A.; Zakharenko, A.M.; Golokhvast, K. Actinidia Deliciosa: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Bioactive Compounds. Turk. J. Agric. For. 2023, 47, 155–169. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Z.; Yang, J.; Li, Y.; Wang, Y.; Chai, X. Chemical Material Basis Study of Xuefu Zhuyu Decoction by Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry. J. Food Drug Anal. 2015, 23, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Suárez Montenegro, Z.J.; Álvarez-Rivera, G.; Mendiola, J.A.; Ibáñez, E.; Cifuentes, A. Extraction and Mass Spectrometric Characterization of Terpenes Recovered from Olive Leaves Using a New Adsorbent-Assisted Supercritical CO2 Process. Foods 2021, 10, 1301. [Google Scholar] [CrossRef]
- Okhlopkova, Z.; Ercisli, S.; Razgonova, M.; Ivanova, N.; Antonova, E.; Egorov, Y.; Kucharova, E.; Golokhvast, K. Primary Determination of the Composition of Secondary Metabolites in the Wild and Introduced Artemisia martjanovii Krasch: Samples from Yakutia. Horticulturae 2023, 9, 1329. [Google Scholar] [CrossRef]
- Huang, Y.; Yao, P.; Leung, K.W.; Wang, H.; Kong, X.P.; Wang, L.; Dong, T.T.X.; Chen, Y.; Tsim, K.W.K. The Yin-Yang Property of Chinese Medicinal Herbs Relates to Chemical Composition but Not Anti-Oxidative Activity: An Illustration Using Spleen-Meridian Herbs. Front. Pharmacol. 2018, 9, 1304. [Google Scholar] [CrossRef] [PubMed]
- Emad, A.M.; Rasheed, D.M.; El-Kased, R.F.; El-Kersh, D.M. Antioxidant, Antimicrobial Activities and Characterization of Polyphenol-Enriched Extract of Egyptian Celery (Apium graveolens L., Apiaceae) Aerial Parts via UPLC/ESI/TOF-MS. Molecules 2022, 27, 698. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic Profiling of Pitaya (Hylocereus polyrhizus) during Fruit Development and Maturation. Molecules 2019, 24, 1114. [Google Scholar] [CrossRef] [PubMed]
- Van Breemen, R.B.; Canjura, F.L.; Schwartz, S.J. Identification of Chlorophyll Derivatives by Mass Spectrometry. J. Agric. Food Chem. 1991, 39, 1452–1456. [Google Scholar] [CrossRef]
Kamchatka (66) | Magadan (81) | Primorsky Territory (20) | Saint-Petersburg (25) | |
---|---|---|---|---|
Kamchatka (66) | 33 0.2895 | 19 0.2836 | 23 0.3382 | |
Magadan (81) | 33 0.2895 | 13 0.1477 | 15 0.1648 | |
Primorsky territory (20) | 19 0.2836 | 13 0.1477 | 17 0.6071 | |
Saint-Petersburg (25) | 23 0.3382 | 15 0.1648 | 17 0.6071 |
Territory Name | Number of Detected Compounds | Compounds |
---|---|---|
Kamchatka; Magadan; Primorsky territory; Saint-Petersburg | 11 | Kaempferol; Herbacetin; p-Coumaroyl malonyldihexose; Ellagic acid; Resveratrol; Quercetin; (Epi)-afzelechin derivative; Hydroxy methoxy dimethylbenzoic acid; Delphinidin 3-O-β-D-sambubioside; Chlorogenic acid; Caffeoylquinic acid derivative |
Kamchatka; Magadan; Primorsky territory | 2 | Fraxetin; Kaempferol 3-O-rutinoside |
Kamchatka; Magadan; Saint-Petersburg | 4 | Epiafzelechin; (Epi)-catechin; Protocatechuic acid; Luteolin 7-O-glucoside |
Kamchatka; Primorsky territory; Saint-Petersburg | 5 | Isorhamnetin 3-O-(6″-O-rhamnosyl-hexoside); Hydroxyferulic acid; Rhamnocitrin; Pinosylvin; Dihydroxy-tetramethoxy(iso)flavone |
Kamchatka; Magadan | 16 | Delphinidin 3-acetylglucoside; Catechin; Neochlorogenic acid; Cyanidin-3-O-glucoside; Delphinidin; Cyanidin 3,5-O-diglucoside; Kaempferol glucosyl-rhamnoside; Kaempferol-3-O-hexoside; Cyanidin-3-O-β-galactoside; Diosmetin O-hexoside; Astragalin; Cyanidin-3-O-rutinoside; Myricetin; Kaempferol-3,7-Di-O-glucoside; Taxifolin-3-O-hexoside; Peonidin-3-O-glucoside |
Kamchatka; Primorsky territory | 1 | Rutin |
Kamchatka; Saint-Petersburg | 3 | Petunidin; 3-O-Hydroxydihydrocaffeoylquinic acid; (Epi)-catechin derivative 2 |
Primorsky territory; Saint-Petersburg | 1 | 2,3,4,5,6-pentahydroxybenzoic acid |
Kamchatka | 24 | Phloretin; 2,4,5,6-pentahydroxybenzoic acid; Kaempferol derivative; 4-Methylesculetin; (epi)-Catechin O-hexoside; Peonidin 3-O-rutinoside; p-Coumaroylquinic acid; Proanthocyanidin B-type; Di-O-galloyl-HHDP-glucose; Proanthocyanidin B1; Feruloyl-O-p-coumaroyl-O-caffeoylshikimic acid; Quercetin pentosyl hexoside hexoside; (Epi)-catechin derivative 3; 2′-Hydroxygenistein; (Epi)-catechin derivative 1; Syringaresinol; (Epi)gallocatechin-(epi)catechin dimer; Chrysoeriol O-diglucoside; Peonidin 3-O-(6-O-p-coumaroyl)glucoside; 3,4-Dihydroxyhydrocinnamic acid; Quercetin deoxyhexosyl deoxyhexosyl hexoside; Ferulic acid-O-hexoside derivative; Dicaffeoyl shiikimic acid |
Magadan | 48 | Quercetin 3-(6-O-acetyl)glucoside; Delphinidin 3-O-[2-O-(β-xylosyl)-β-galactoside]; Nepetin; Esculetin; Quercetin 3-O-arabinoglucoside; (Epi)-Gallocatechin; Dimethylquercetin-3-O-dehexoside 7-O-diglucoside; Coriandrone; Lonicerin; Rhamnosyl-hexosyl-acyl-quercetin; Isorhamnetin acetyl galactoside; Isorhamnetin; Delphinidin 3-O-hexoside; Isorhamnetin acetylglucoside; Hesperitin; Prunetin; (-)-Epicatechin Gallate; Kaempferol O-acetyl hexosyl-rhamnoside; Caffeic acid isoprenyl ester; Quercetin 3-glucoside; Luteolin-O-hexoside; 4-Hydroxybenzoic acid; Cyanidin-3-O-hexoside; Quercetin 3-O-pentosyl hexoside; Luteolin; Luteolin 7-O-(6-O-rhamnosyl-hexoside); Hyperoside; Apigenin-7-O-β-D-glucopyranoside; Methylgallic acid; Ethyl protocatechuate; Luteolin 3′,7-O-diglucoside; Delphinidin 3-O-glucoside; Apigenin; Ellagic acid-O-hexoside; Gallocatechin; Jaceosidin; Delphinidin 3-O-(6-O-p-coumaroyl) glucoside; Quercetin 3-O-acetyl hexoside; Formononetin; Delphinidin 3-O-rutinoside; Delphinidin-3-O-(6″-O-acetyl)hexoside; Quercetin-3-O-rhamnoside derivative; 3,4-Dihydroxyhydrocinnamic acid; Quercetin-3-O-hexoside; Epigallocatechin gallate dimer; Delphinidin 3-O-β-galactoside; Petunidin 3-O-(6-O-acetyl)glucoside |
Saint-Petersburg | 1 | Anthocyanidin [cyanidin chloride; Cyanidin] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razgonova, M.P.; Nawaz, M.A.; Rusakova, E.A.; Sabitov, A.S.; Tikhonova, N.G.; Golokhvast, K.S. Comparative Analysis of the Metabolomic Profile of Honeysuckle Lonicera caerulea L. from Four Eurasian Regions by Using HPLC-ESI-MS and ESI-MS/MS Analysis. Molecules 2025, 30, 3761. https://doi.org/10.3390/molecules30183761
Razgonova MP, Nawaz MA, Rusakova EA, Sabitov AS, Tikhonova NG, Golokhvast KS. Comparative Analysis of the Metabolomic Profile of Honeysuckle Lonicera caerulea L. from Four Eurasian Regions by Using HPLC-ESI-MS and ESI-MS/MS Analysis. Molecules. 2025; 30(18):3761. https://doi.org/10.3390/molecules30183761
Chicago/Turabian StyleRazgonova, Mayya P., Muhammad Amjad Nawaz, Elena A. Rusakova, Andrey S. Sabitov, Nadezhda G. Tikhonova, and Kirill S. Golokhvast. 2025. "Comparative Analysis of the Metabolomic Profile of Honeysuckle Lonicera caerulea L. from Four Eurasian Regions by Using HPLC-ESI-MS and ESI-MS/MS Analysis" Molecules 30, no. 18: 3761. https://doi.org/10.3390/molecules30183761
APA StyleRazgonova, M. P., Nawaz, M. A., Rusakova, E. A., Sabitov, A. S., Tikhonova, N. G., & Golokhvast, K. S. (2025). Comparative Analysis of the Metabolomic Profile of Honeysuckle Lonicera caerulea L. from Four Eurasian Regions by Using HPLC-ESI-MS and ESI-MS/MS Analysis. Molecules, 30(18), 3761. https://doi.org/10.3390/molecules30183761