Next Article in Journal
Electrochemical and Optical Experiments and DFT Calculations of 1,4,6,8-Tetrakis((E)-2-(thiophen-2-yl)vinyl)azulene
Previous Article in Journal
Visible-Light-Driven Photocatalysis of Carbon Dioxide and Organic Pollutants by CaBiO2Cl/g-C3N4
Previous Article in Special Issue
Optimization of Squalene Production by Pseudozyma sp. P4-22
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Comparative Analysis of the Metabolomic Profile of Honeysuckle Lonicera caerulea L. from Four Eurasian Regions by Using HPLC-ESI-MS and ESI-MS/MS Analysis

by
Mayya P. Razgonova
1,2,*,†,
Muhammad Amjad Nawaz
3,4,*,†,
Elena A. Rusakova
5,
Andrey S. Sabitov
1,
Nadezhda G. Tikhonova
1 and
Kirill S. Golokhvast
3,6
1
N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, Saint-Petersburg 190000, Russia
2
Advanced Engineering School, “Institute of Biotechnology, Bioengineering and Food Systems”, Far Eastern Federal University, Fr. Russian, pos. Ajax, 10, Vladivostok 690922, Russia
3
Advanced Engineering School of Agrobiotechnology, National Research Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
4
Laboratory for Research and Application of Supercritical Fluid Technologies in Agro-Food Biotechnology, National Research Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
5
FSBSI Kamchatsky Scientific Research Institute of Agriculture, Centralnaya, 4, Sosnovka 684033, Russia
6
Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, Krasnoobsk 633501, Russia
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Molecules 2025, 30(18), 3761; https://doi.org/10.3390/molecules30183761
Submission received: 27 June 2025 / Revised: 1 September 2025 / Accepted: 8 September 2025 / Published: 16 September 2025
(This article belongs to the Special Issue Biomanufacturing of Natural Bioactive Compounds)

Abstract

Blue honeysuckle (Lonicera caerulea) is widespread across the Eurasian continent, mainly in northern latitudes. Its berries are a rich source of biologically active compounds. In this study, plant samples collected in four regions of Russia separated by more than 10,000 km were examined in detail: St. Petersburg, Kamchatka, Magadan and the Far East (Vladivostok). The study was unique in that it covered almost the entire Eurasian continent in northern latitude, which had not been previously presented in other scientific studies. The study revealed the presence of 110 polyphenols and 34 compounds belonging to other chemical groups. In particular, honeysuckle berries were rich in polyphenols, including flavonoids, flavanones, flavanols, flavan-3-ols, anthocyanins, stilbenes, and lignans. The method of tandem mass spectrometry was used to identify biologically active substances from the extracts, which allows obtaining fairly accurate results. The metabolomic composition of L. caerulea berries originating from Kamchatka and Magadan showed the greatest diversity of polyphenols, which is associated with special northern climatic conditions and associated stress factors for plants. The results we obtained provide new data on the composition of the honeysuckle berry metabolome. The wealth of biologically active substances in blue honeysuckle berries can be very interestingly used in the development of both biologically active additives for pharmaceutical use and for the development of functional and specialized nutrition products for various population groups.

1. Introduction

Blue honeysuckle (Lonicera caerulea L.) and Lonicera caerulea ssp. Kamtschatica, belonging to the Caprifoliaceae family (Figure 1), are widespread across the Eurasian continent, mainly in the northern parts, and come from high mountainous or humid regions. Lonicera caerulea L. is a well-known plant in China, North America, and Russia [1]. It is commonly known as honeysuckle berry (refers to the Japanese type of blue honeysuckle) or honeysuckle (Russian and Kuril varieties of blue honeysuckle). The plant is found in the wild in the forests of Europe, the Far East, Kamchatka, and along the entire coast of the Sea of Okhotsk, mainly in mountainous and lowland humid regions [2]. The Japanese Ainu aborigines considered honeysuckle berries to be the “elixir of life”, and on the island of Hokkaido, juice made from the fruits is sold as a “remedy for eternal youth and longevity” [3]. In recent years, it has become widely grown in Europe, in countries such as Poland, Slovenia, the Czech Republic, and Slovakia [4], due to the high content of vitamins and various biologically active substances in the berries [5].
The genus Lonicera consists of more than 200 species [6]. Currently, the most commonly planted honeysuckle berries are those originating from Russia, Japan, Canada, and Poland. The most popular and easy-to-grow varieties in Russia are tundra, borealis, indigo gem, blue lightning, and kamchatka [7]. Owing to their adaptations to the environmental conditions of these regions, they exhibit higher low-temperature tolerance; the honeysuckle plants can withstand up to −40 °C, whereas the flowers can withstand up to −7 °C. Moreover, they are least affected by changes in soil pH, the presence of pests, or diseases [4,7]. The honeysuckle berries contain more than 85% moisture, followed by fiber (~8%), crude protein (~2%), fats (>0.1%), and carbohydrates (~0.9%). More than 180 compounds have been reported in the fruits of honeysuckle. Major compounds are amino acids and their derivatives, vitamins, minerals, sugars (e.g., fructose, glucose, sucrose, saccharose, sorbitol, and others), phenolic acids, flavonoids, terpenoids, fatty acids, organic acids, and carotenoids [4,5]. Based on the presence of a range of vitamins, several studies referred to it as a “super fruit” [6,7].
Regular consumption of blue honeysuckle berries has been associated with health benefits such as the prevention of chronic diseases, diabetes, and cardiovascular disease [8]. The predominant phenolic compound present in blue honeysuckle berries is cyanidin-3-O-glucoside, the most abundant anthocyanin in nature. An earlier study showed that cyanidin-3-O-glucoside isolated from blue honeysuckle enhances insulin production and is responsible for hepatoprotective effects through the inhibition of reactive oxygen species and activation of antioxidant mechanisms [9]. Generally, anthocyanins can improve metabolism by activating adenosine monophosphate-activated protein kinase (AMPK). In addition to health benefits, these anthocyanins and flavonols generate the vibrant blue color of the berries [10]. The metabolomic composition of honeysuckle fruits also suggests other nutritional benefits such as anti-obesity, strong anti-inflammatory, anti-diabetic, anti-tumor, and cardioprotective properties, as well as several other protective effects on the liver and thyroid [7,11,12]. It has also been shown that a number of compounds present in honeysuckle plants may be beneficial for plant–environment interactions. For example, a study showed that metabolites related to alkaloid biosynthesis, tricarboxylic acid cycle, phenylpropanoid biosynthesis, and terpenoid biosynthesis accumulated in salt-stressed plants compared to control samples [13]. Similarly, honeysuckle plants increased phenolic acid content under salt stress conditions [14]. It has been repeatedly emphasized that understanding the metabolome is important in natural and stress conditions for both plant growth and development and for applications in healthy nutrition and natural vitamin supplementation. However, as noted in our recent works, honeysuckle berries collected in different locations vary in their primary and secondary metabolite contents [15,16,17]. Considering that honeysuckle is grown over a wide geographical range across the Eurasian continent, it is necessary to further study the metabolomic composition of different varieties grown in different locations. This information is useful for both the discovery of new compounds and for understanding the impact of honeysuckle cultivation in different locations so that appropriate strategies can be adapted to collect the desired metabolomic content for medicinal purposes. In this study, we report the metabolome composition of L. caerulea berry extracts from four geographical areas separated by more than 7000 km using HPLC-ESI-MS and ESI-MS/MS analyses.

2. Results and Discussion

2.1. Optimization of HPLC Conditions

The HPLC conditions were optimized to obtain maximal resolution and signal within a minimal run time. Various chromatographic conditions such as mobile phase composition, injection volume, flow rate, column temperature, and gradient program were studied and optimized for the separation of polyphenol compounds. Different mobile phase compositions (ethanol–water, ethanol–0.1% (v/v) formic acid aqueous solution, acetonitrile–water, and acetonitrile–0.1% (v/v) formic acid aqueous solution) were tested in the gradient program at 0.25 mL/flow rate. A mobile phase composed of 0.1% (v/v) formic acid aqueous solution (A) and acetonitrile (B) at a 0.25 mL/min flow rate and 50 °C column temperature was found optimal for the resolution of the maximum number of peaks in extracts of L. caerulea within 60 min.

2.2. Tentative Identification of Compounds from the Extracts of Honeysuckle Berries

We were able to identify one hundred forty-four chemical compounds from extracts of honeysuckle berries: one hundred ten chemical compounds from the polyphenol group and thirty-four chemical compounds from other chemical groups. All identified polyphenols and other compounds, along with molecular formulas and MS/MS data for L. caerulea, are summarized in Appendix A Table A1. The polyphenols detected in our study were further categorized as flavan-3-ols, flavones, flavanols, tannins, phenolic acids, lignans, coumarins, stilbenes, anthocyanidins, etc. These numbers indicate that L. caerulea berries are rich in flavonoids. Moreover, the presence of a higher number of anthocyanins indicates their roles in the color formation of the berries.
Anthocyanins are major color-forming pigments in honeysuckle berries [5,8,13,18,19]. The extract analyses of berries of both the L. caerulea varieties and six wild type accessions by employing HPLC-ESI-MS and ESI-MS/MS resulted in the detection of nineteen anthocyanins. A notable result was that the extracts of the berries of L. caerulea varieties contained delphinidin 3-O-glucoside, delphinidin 3-O-rutinoside, delphinidin 3-O-β-D-sambubioside, cyanidin 3-O-rutinoside, peonidin 3-O-rutinoside, delphinidin 3-acetylglucoside, cyanidin 3,5-O-diglucoside, etc. However, cyanidins were absent from the extracts of the berries of L. caerulea.
Three tentatively identified CID spectra (collision-induced spectra) of anthocyanins in L. caerulea extracts are presented below (Figure 2A). Anthocyanin cyanidin 3-O-glucoside was found in the extracts from berries of L. caerulea (Figure 2A).
The [M + H]+ ion produced one fragment ion with m/z 287.07. The fragment ion with m/z 287.07 produced one characteristic daughter ion with m/z 213.13. Mass spectrometry of cyanidin 3-O-glucoside is presented in detail in scientific studies on Triticum aestivum [20]; Black soybean [21]; Glycine soja [22]; Red Kiwifruit [23]; black currant, gooseberry, chokeberry, elderberry, red currant [24]; Ribes magellanicum [25]; Rubus ulmifolius [26]; Berberis ilicifolia; Berberis empetrifolia; Ribes magellanicum; Ribes cucullatum; Myrteola nummalaria; Gaultheria mucronata; Gaultheria antarctica; Rubus geoides; Fuchsia magellanica [27]; Berberis microphylla [28]; Fragaria vesca [29] extracts.
Anthocyanin peonidin 3-O-glucoside was found in the extracts from berries of L. caerulea (Figure 3B). The [M + H]+ ion produced one fragment ion with m/z 301.14. The fragment ion with m/z 301.14 produced one characteristic daughter ion with m/z 286.12. The fragment ion with m/z 286.12 produced one characteristic daughter ion with m/z 258.12. Similar mass spectrometry of peonidin 3-O-glucoside is indicated in scientific studies devoted to Vitis vinifera [30,31]; Vines [32]; Vitis labrusca [33]; Vitis vinifera; Vitis rupestris [34]; Fragaria vesca [35]; Triticum aestivum [36]; Vigna sinensis [37]; Vigna unguiculata [38] extracts.
Anthocyanin cyanidin 3,5-O-diglucoside was found in the extracts from berries of L. caerulea (Figure 2C). The [M + H]+ ion produced one fragment ion with m/z 287.13. The fragment ion with m/z 287.13 produced one characteristic daughter ion with m/z 213.18. Similar mass spectrometry of cyanidin 3,5-O-diglucoside is indicated in scientific studies devoted to honey [39]; grape [40]; Vitis vinifera [31]; Vitis labrusca [33]; Vitis vinifera; Vitis rupestris [34]; Muscadine pomace [41]; Berberis microphylla [28]; elderberry, red currant [24]; rapeseed petals [42] extracts.
Several tentatively identified CID spectra (collision-induced spectra) of chemical compounds in L. caerulea extracts are presented below (Figure 3). Among the identified metabolites, flavanol quercetin was found in the extracts from berries of L. caerulea (Figure 2D). The [M + H]+ ion produced four fragment ions with m/z 285.07, m/z 257.11, m/z 229.08, and m/z 165.11. The fragment ion with m/z 285.07 produced four characteristic daughter ions with m/z 267.06, m/z 239.08, m/z 185.13, and m/z 137.24. The fragment ion with m/z 267.06 produced two daughter ions with m/z 239.12 and m/z 212.08. Mass spectrometry of quercetin is presented in detail in scientific studies on Inula graveolens [43]; Juglans mandshurica [44]; black soja [21]; Rhus coriaria [45]; potato leaves [46] extracts.
The flavan-3-ol gallocatechin was also discovered in the extracts from berries of L. caerulea (Berry picking place –Magadan) (Figure 2E). The [M + H]+ ion produced four fragment ions with m/z 289.05, m/z 261.24, m/z 187.25, and m/z 123.24. The fragment ion with m/z 261.24 produced four characteristic daughter ions with m/z 243.31, m/z 201.27, m/z 173.25, and m/z 135.29. The fragment ion with m/z 243.31 produced three daughter ions with m/z 215.29, m/z 187.15, and m/z 145.31. Mass spectrometry of gallocatechin is presented in detail in scientific studies on Carpinus betulus [47]; Solanaceae [48]; Rhododendron [49]; Ribes meyeri [50]; Licania ridigna [51]; G. linguiforme [52]; Senna singueana [53]; Embelia [54] extracts.
The hydroxycoumarin esculetin was also discovered in the extracts from berries of L. caerulea (Berry picking place—Magadan) (Figure 2F). The [M + H]+ ion produced one fragment ion with m/z 151.21. The fragment ion with m/z 151.21 produced one characteristic daughter ion with m/z 122.78. Mass spectrometry of esculetin is presented in detail in scientific studies on Salvia spp. [55]; Artemisia annua [56]; Actinidia [57]; Rhinacanthus nasutus [58]; Basilic; Rosemary; Salvia; Thymus vulgaris [59]; Dryopteris fragrans [60] extracts.

2.3. Metabolite Profile of Studied Honeysuckle Berries

Overall, the metabolites detected in our study belonged to 40 compound classes. The highest number of metabolites was flavonols (28), followed by anthocyanins (21), phenolic acids (19), flavone (17), and flavan-3-ols (12) (Figure 3A). Based on the presence/absence of compounds, the studied honeysuckle varieties/wild types were clustered into three groups. Cluster 1 consisted of the wild-type honeysuckle from the Magadan region, whereas the remaining varieties/wild types were grouped into two clusters. Cluster 2 consisted of all the cultivated varieties of honeysuckle included in the study. In cluster 2, we noticed that only the variety Elena formed a separate branch, while the rest tended to group together. Those cultivated in St. Petersburg, i.e., Tomichka, Goluboe, and Volnova, clustered together, except for Amfora. Cluster 3 consisted of all the wild-type honeysuckle cultivated in the Kamchatka region (Figure 3B). In terms of the number of compounds detected in honeysuckle from each location, the Magadan region had the highest number of flavonoids, phenolic acids, coumarins, amino acids, fatty acids, and quinones (Figure 3C). The detected metabolites were enriched in 20 KEGG pathways (Figure 3D).
Figure 4 shows the similarities and differences between L. caerulea collected in four geographical areas: Saint Petersburg, Kamchatka, Magadan, and Primorsky territory (Vladivostok).
To present the similarities and differences in bioactive substances in different variations of L. caerulea, we used the Jaccard index (Table 1). The Jaccard index, also known as the Jaccard similarity coefficient, is a statistic used to evaluate the similarity and diversity of sets of samples [61]. It showed that the highest degree of similarity is present between the varieties from Saint Petersburg and Kamchatka—0.3382.
Table 2 shows the distribution of the polyphenol groups in L. caerulea samples from four places of collection (Kamchatka, Magadan, Saint Petersburg, Primorsky territory).
These results highlight that the wild type collected from the Magadan region is richest in terms of the number of compounds, followed by Kamchatka. Moreover, the wild-type honeysuckle collected and grown in the Kamchatka region offers a similar profile in terms of detected compounds, whereas the cultivated varieties share common metabolite profiles. Since both Saint Petersburg and Vladivostok had common honeysuckle types and exhibited only one common metabolite, it can be understood that geographic location plays an important role in the metabolite profile of honeysuckle berries.
The metabolomic profiles of honeysuckle berries reveal significant geographical variation in polyphenolic composition, reflecting both genetic differences and environmental adaptations. Polyphenols, classified based on phenolic rings and functional groups, include flavonoids (flavanols, flavonols, flavones), phenolic acids, stilbenes, and lignans [62]. Our identification of 110 polyphenols from 40 structural classes confirms honeysuckle’s status as a rich source of bioactive compounds, with northern populations (Magadan, Kamchatka) showing particularly complex profiles. Flavonoids were the most found metabolites in the honeysuckle berry metabolite profiles, which is consistent with the geographic presence of the studied samples and their roles in UV protection and stress response [63,64]. The northern samples accumulated specialized forms like methylated quercetin derivatives and acylated anthocyanins, likely as adaptations to harsh climates [18,19]. This geographical pattern was quantified by Jaccard indices (Table 1), showing the lowest similarity (0.1477) between Magadan and Primorsky populations. Notably, cyanidin-3-O-glucoside (Figure 3) appeared exclusively in northern samples, suggesting differential regulation of flavonoid biosynthesis pathways [10,18].
Anthocyanins are key biomarkers of environmental adaptation. While delphinidin derivatives were largely found in Magadan, southern populations accumulated diglycosylated forms like cyanidin 3,5-O-diglucoside (Figure 5) [31,33]. These patterns align with known temperature effects on glycosylation [40,41] and validate honeysuckle’s traditional use for vascular health [9]. The vibrant berry coloration results from these anthocyanins [10], with mixtures showing greater bioactivity than individual compounds [65,66].
Phenolic acids showed distinct regional signatures. Chlorogenic acid was ubiquitous, but northern samples uniquely contained complex shikimate derivatives like feruloyl-O-p-coumaroyl-O-caffeoylshikimic acid—compounds associated with stress responses [13,14]. This supports findings that phenolic acid metabolism dynamically adjusts to environmental conditions [67,68]. Their antioxidant properties may contribute to observed health benefits [69,70,71].
The flavan-3-ol profile suggests significant nutraceutical potential. Northern samples contained oligomeric forms including (epi)gallocatechin-(epi)-catechin dimers, structurally similar to green tea catechins [72]. These compounds, particularly EGCG, show well-documented chemopreventive effects [73,74]. Molecular dynamics simulations have revealed their ability to bind phospholipid membranes, potentially enhancing bioavailability [75]. The ECG fraction may inhibit cancer cell invasion through MMP-2 suppression, though clinical efficacy depends on delivery methods [76].
Stilbenes and lignans showed localized distributions. Resveratrol appeared in Kamchatka, Magadan, Primorsky, and St. Petersburg samples. It has been previously reported that Vitis amurensis [77], Kamchatka berries, contained syringaresinol—a lignan also found in Schisandra chinensis [78]. These compounds contribute to honeysuckle’s traditional reputation as an “elixir of life” through anti-aging and hepatoprotective effects [4,5].
The therapeutic implications of these geographical differences are substantial. Northern berries’ combination of anthocyanins, oligomeric catechins, and complex phenolics creates synergistic conditions that may enhance bioavailability [79,80]. Formononetin was detected only in Magadan samples. This validates traditional preferences for northern varieties while suggesting modern cultivation strategies [7,15].
Most identified polyphenols can cross the blood–brain barrier [81], with antioxidant and anti-inflammatory activities that may protect against neurodegeneration [82,83]. Regular consumption could mitigate oxidative stress-linked disorders [84], though human studies remain limited. Overall, this study bridges traditional herbal usage knowledge and metabolomics. The Ainu’s “elixir of life” designation [3] finds support in the stress-induced metabolite complexity of northern varieties. Future work should couple these findings with transcriptomics to identify regulatory mechanisms [13] and optimize cultivation for bioactive content [4,7]. The demonstrated geographical variation underscores the importance of provenance in both research and commercial applications.

3. Materials and Methods

3.1. Plant Material

Eleven L. caerulea varieties and wild-type plants were studied. Wild form No 1, wild form No 2, wild form No 3, wild form No 4, wild form No 5, and variety “Elena” were collected and grown in Kamchatsky Scientific Research Institute, Kamchatka, Russia (N 43°6′34″, E 131°52′41″. Four varieties (Goluboe vereteno, Tomichka, Amfora, and Volnova) were collected and grown in N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Primorsky Territory (N 53°11′, E 158°23′). These four varieties were also cultivated in N.I. Vavilov All-Russian Institute of Plant Genetic Resources, St.-Petersburg (Pushkin, N 59°42′51″, E 30°23′47″). One wild-type honeysuckle (Magadan) was collected in the Magadan region: the vicinity of Kolyma River (N = 59°4141′960; E = 151°16′17.620); Seymchansky district near the Kolyma River (N = 62°55′51.017; E = 151°16′17.620) (Figure 5).
Standard agronomic practices were followed for growing the accessions/varieties in their respective growing locations. The berries were harvested at the end of July 2023 from three-year-old plants (Figure 1). Triplicate samples were collected for each accession/variety. Care was taken to collect healthy, disease- and insect-free berries. The samples were washed with distilled water and stored at −80 °C until processed. All samples morphologically corresponded to the pharmacopeial standards of the State Pharmacopoeia of the Russian Federation. The berries of the Magadan wild type were collected, washed thrice using distilled water, frozen in liquid nitrogen, transported to the lab, and stored in −80 °C until further processed.

3.2. Chemicals and Reagents

All chemicals used in this study were of analytical grade. High-performance liquid chromatography (HPLC)-grade acetonitrile was purchased from Fisher Scientific (Southborough, UK). Mass spectrometry (MS)-grade formic acid was purchased from Sigma-Aldrich (Steinheim, Germany). Ultra-pure water was prepared by using a SIEMENS ULTRA clear (SIEMENS water technologies, Gunzburg, Germany).

3.3. Extraction

The fractional maceration technique was used to obtain highly concentrated extracts [85,86]. Aqueous ethanol (95% EtOH) was used for extraction. From 250 g of the berries, 50 g of berries of each variety were randomly selected for maceration. The total volume of the extractant (95% EtOH) was divided into 3 parts, and the berries of each studied species were successively infused in the first, second, and third parts. Infusion of each extract lasted for seven days in a dark room at room temperature. The extraction process for the berries of each studied species was carried out three times. The extract was filtered through Whatman paper.

3.4. Liquid Chromatography

High-performance liquid chromatography was performed using a Shimadzu LC-20 Prominence HPLC (Shimadzu, Kyoto, Japan) equipped with a UV sensor and a C18 silica reverse-phase column (4.6 × 150 mm, particle size: 2.7 μm) to perform the separation of multicomponent mixtures. The gradient elution program with two mobile phases (A, deionized water; B, acetonitrile with formic acid 0.1% v/v) was as follows: 0–2 min, 0% B; 2–50 min, 0–100% B; control washing 50–60 min 100% B. The entire HPLC analysis was performed with a UV–vis detector SPD- 20A (Shimadzu, Kyoto, Japan) at a wavelength of 230 nm for identification of compounds; the temperature was 40 °C, and the total flow rate was 0.25 mL min−1. The injection volume was 10 µL. Additionally, liquid chromatography was combined with a mass spectrometric ion trap to identify compounds.

3.5. Mass Spectrometry

Mass spectrometry analysis was performed on an ion trap amaZon SL (Bruker Daltonics, Bremen, Germany) equipped with an ESI source in positive and negative ion modes. The optimized parameters were obtained as follows: ionization source temperature—70 °C, gas flow—4 L/min, nebulizer gas (atomizer)—7.3 psi, capillary voltage—4500 V, end plate bend voltage—1500 V, fragmentary—280 V, collision energy—60 eV. An ion trap was used in the scan range m/z 100–1.700 for MS and MS/MS. The chemical constituents were identified by comparing their retention index, mass spectra, and MS fragmentation with an in-house self-built database (Biotechnology, Bioengineering and Food Systems Laboratory, Far-Eastern Federal University, Russia). The in-house self-built database is based on data from other spectroscopic techniques, such as nuclear magnetic resonance, ultraviolet spectroscopy, and MS, as well as data from the literature that is continuously updated and revised. The capture rate was one spectrum/s for MS and two spectra/s for MS/MS. Data acquisition was controlled by Windows software (Version 2.0) for Bruker Daltonics. All experiments were repeated three times. A four-stage ion separation mode (MS/MS mode) was implemented.
The detected putatively identified compounds were also enriched using MetaboAnalyst 6.0 (https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml) (accessed on 20 May 2025), for which scatter plot was generated. For KEGG pathway enrichment, standard parameters were used with Arabidopsis KEGG pathway library. For further analysis, the presence/absence data of the detected metabolites were grouped per location, i.e., all the varieties/wild types grown in one location were considered one group. The data was used to prepare a scatter plot and a heatmap with hierarchical clustering in TBtools Version 3.0 [87].

4. Conclusions

In this study, we report a comparative metabolomic profile of L. caerulea berries from four different provenances separated by more than 7000 km. We conclude that L. caerulea samples collected in the northern areas (Kamchatka and Magadan) have the highest variability in polyphenol composition compared to samples from areas with milder climates. Based on HPLC-ESI-MS and ESI-MS/MS analyses, we conclude that L. caerulea berries are rich in polyphenols (more than one hundred ten identified compounds), and the predominant classes are flavonoids, flavanones, flavonols, flavan-3-ols, and anthocyanins. In addition, about forty other chemical classes of metabolites including indole sesquiterpene alkaloids, iridoid glucosides, phenylpropanoid glucosides, amino acids and derivatives, nucleotides and derivatives, omega-hydroxy amino acids, etc., are the major components of L. caerulea berries.

Author Contributions

Conceptualization, N.G.T., M.A.N., K.S.G. and M.P.R.; methodology, M.P.R. and M.A.N., software, M.P.R.; validation, M.A.N., M.P.R. and K.S.G.; formal analysis M.A.N., E.A.R., A.S.S. and M.P.R.; investigation, K.S.G., N.G.T. and M.P.R.; resources, M.P.R. and K.S.G.; data curation, M.A.N., N.G.T., A.S.S. and E.A.R.; writing—original draft preparation—M.A.N. and M.P.R.; writing—review and editing M.A.N., M.P.R. and N.G.T.; visualization, M.A.N. and M.P.R.; supervision, N.G.T.; project administration, K.S.G., M.A.N. and M.P.R. All authors have read and agreed to the published version of the manuscript.

Funding

The study was carried out at the N.I. Vavilov All-Russian Institute of Plant Genetic Resources at the expense of the Russian Science Foundation Grant No. 23-74-00044, https://rscf.ru/en/project/23-74-00044/ accessed on 20 May 2025. M.A.N. was supported by the National Research Tomsk State University Development Program (Priority 2030).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data are contained within the article.

Acknowledgments

The work was supported financially by the Russian Ministry of Education and Science (Agreement No. 23-74-00044 dated 13 April 2023).

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A. Approximate Comparison of Chemical Constituents Identified in L. caerulea and L. caerulea ssp. Kamtschatica Varieties Obtained from Two Different Regions

Table A1. Chemical compounds identified from L. caerulea and L. caerulea kamtschatica in positive and negative ionization modes by HPLC-ion trap-MS/MS.
Table A1. Chemical compounds identified from L. caerulea and L. caerulea kamtschatica in positive and negative ionization modes by HPLC-ion trap-MS/MS.
Class of CompoundsIdentificationFormulaCalculated MassObserved Mass [M − H]Observed Mass [M + H]+MS/MS Stage 1 FragmentationMS/MS Stage 2 FragmentationMS/MS Stage 3 FragmentationReferences
1FlavoneFormononetin [Biochanin B]C16H12O4268.264 269256; 212; 195; 173240; 193 Dryopteris [88]; Glycyrrhiza glabra [62]; Huolisu Oral Liquid [63]; Dracocephalum jacutense [64]
2FlavoneApigenin [5,7-Dixydroxy-2-(40Hydroxyphenyl)-4H-Chromen-4-One]C15H10O5270.236 271243; 153197; 161 Inula graveolens [43]; Ribes meyeri [50]; Ribes triste [67]; Jatropha [68]
3FlavonePrunetin [Padmakastein]C16H12O5284.263 285239; 201; 185157 Triticum aestivum [20]; Zea mays [89]; Rosa rugosa [69]; Rosa amblyotis [70]
4FlavoneLuteolin [Tetrahydroxyflavone]C15H10O6286.236 287271; 245; 187; 137271 Dryopteris [88]; Inula graveolens [43]; Ribes meyeri [50]; Rosa rugosa [70]; Rosa rugosa [69]; Jatropha [68]
5Flavone2′-HydroxygenisteinC15H10O6286.2363 287231165 Mexican lupine species [71]
6PentahydroxyflavoneHerbacetin [3,5,7,8-Tetrahydroxy-2-(4-hydro- xyphenyl)-4H-chromen-4-one]C15H10O7302.2357 303203175 Triticum aestivum [20]; Ocimum [90]
7FlavoneNepetin [6-Methoxyluteolin]C16H12O7316.2623 317302; 285; 229; 139274; 153217; 175; 153Honey [39]; Ribes pauciflorum [67]
8FlavoneJaceosidin [5,7,4′-trihydroxy-6′,5’-dimethoxyflavone]C17H14O7330.2889 331289271 Artemisia argyl [91]; Mentha [92]; Rosa acicularis [70]
9IsoflavoneSophoraisoflavone AC20H16O6352.3374 353335317; 243; 137191Chinese herbal formula Jian-Pi-Yi-Shen pill [93]
10FlavoneDihydroxy-tetramethoxy(iso)flavoneC19H18O8374.3414 375345245175; 227Propolis [94]
11FlavoneApigenin-7-O-β-D-glucopyranosideC21H20O10432.3775431 385; 223153 Eucalyptus Globulus [95]
12FlavoneLuteolin 7-O-glucoside [Cynaroside]C21H20O11448.3769 449287213185Lonicera henryi [19]; Lonicera japonica [18]
13FlavoneDiosmetin O-hexosideC22H22O11462.4035 463301286258Andean blueberry [96]
14FlavoneLonicerin [Luteolin-7-O-Rhamnoside; Veronicastroside; Luteolin-7-Rhamnoglucoside]C27H30O15594.5181 595287; 449269; 241; 213213; 185Lonicera japonica [18]; Ribes triste [67]; Rosa rugosa [70]
15FlavoneLuteolin 7-O-(6-O-rhamnosyl-hexoside)C27H30O15594.5181 595449213213; 157Lonicera henryi [19]; Rosa rugosa [70]
16IsoflavoneLuteolin 3′,7-O-diglucosideC27H30O16610.5175 611449; 287287; 199; 137271Triticum aestivum [20]; Mexican lupine species [71]; Loropetalum chinense [97]
17FlavoneChrysoeriol O-diglucosideC28H32O16624.5441 625301; 463286258Mexican lupine species [71]
18FlavonolKaempferolC15H10O6286.2363 287269; 149239; 181 Inula graveolens [43]; Juglans mandshurica [44]; Lonicera japonica [18]; Ribes meyeri [50]; Andean blueberry [96]; Ribes triste [67]
19FlavonolRhamnocitrinC16H12O6300.2629 301273245217; 177; 131Astragali radix [98]
20FlavonolQuercetinC15H10O7302.2357 303257; 146229201; 145Ribes meyeri [50]; Propolis [94]
21FlavonolHesperitin [Hesperetin]C16H14O6302.2788 303285; 165257229; 145Andean blueberry [96]; Ribes triste [67]; Rosa rugosa [70]; Rhinacanthus nasutus [58]
22FlavonolIsorhamnetin [Isorhamnetol; Quercetin 3′-Methyl ether]C16H12O7316.2623 318302; 285; 229274217; 175; 153Inula viscosa [99]; Andean blueberry [96]; Ribes triste [67]; Rosa rugosa [70]; Phoenix dactylifera [100]; Cyperus laevigatus [101]
23FlavonolMyricetinC15H10O8318.2351 319273; 219191209Juglans mandshurica [44]; Andean blueberry [96]
24FlavonolAstragalin [Kaempferol 3-O-glucoside]C21H20O11448.3769 449287287; 229203Juglans mandshurica [44]; Lonicera japonica [18]; Ribes meyeri [50]; Spondias purpurea [102]
25FlavonolKaempferol-3-O-hexosideC21H20O11448.3769 449287287; 231230; 111Andean blueberry [96]; Cuphea ignea [103]
26FlavonolQuercetin-3-O-hexosideC21H20O12464.3763463 301255; 229; 179; 151185; 147 Cranberry [104]; Cherimoya; Strawberry [105]; Rosa rugosa [70]
27FlavonolHyperoside (Quercetin 3-O-galactoside; Quercetin-3-O-beta-D-galactopyranoside)C21H20O12464.3763 465303285; 257; 229; 201; 165; 137229; 201Dryopteris [88]; Lonicera japonica [18]; Cranberry [106]; Andean blueberry [96]
28FlavonolQuercetin 3-glucosideC21H20O12464.3763463 301255; 229; 179; 151185; 147Ribes meyeri [50]; Lonicera henryi [19]; Lonicera japonica [18]; Spondias purpurea [102]; Andean blueberry [96]; Rosa rugosa [70]
29FlavonolTaxifolin-3-O-hexoside [Dihydroquercetin-3-O-hexoside]C21H22O12466.3922465 285241198Rubus ulmifolius [26]; Andean blueberry [96]; Chilean currants [25]; Euphorbia hirta [107]
30FlavonolQuercetin 3-(6-O-acetyl)glucoside [Quercetin 3-O-6”-acetylglucoside]C23H22O13506.413 507303285; 257; 229; 195; 165229; 201; 173Malus toringoides [108]; Rapeseed petals [42]
31FlavonolIsorhamnetin acetylglucosideC24H24O13520.4468 521317302; 285; 229; 165274; 153Pear [109]; Senecio clivicolus [65]
32FlavonolKaempferol 3-O-rutinosideC27H30O15594.5181 595449; 287287287Ribes meyeri [50]; Lonicera japonica [18]; Spondias purpurea [102]
33FlavonolKaempferol glucosyl-rhamnosideC27H30O15594.5181 595449; 287287287Ribes nigrum [110]
34FlavonolQuercetin 3-O-pentosyl hexosideC26H28O16596.4909 597465; 303257229F. pottsii [52]; Spondias purpurea [102]
35FlavonolQuercetin 3-O-arabinoglucosideC26H28O16596.4909 597465; 303257229Spondias purpurea [102]
36FlavonolRutin (Quercetin 3-O-rutinoside)C27H30O16610.5175 611303257; 165229Rubus occidentalis [66]; Ribes meyeri [50]; Lonicera henryi [19]; Lonicera japonica [18]
37FlavonolKaempferol-3,7-Di-O-glucosideC27H30O16610.5175 6111287; 449287; 213213Taraxacum officinale [111]; Rapeseed petals [42]
38FlavonolIsorhamnetin 3-O-(6”-O-rhamnosyl-hexoside)C28H32O16624.5441 625317302 Lonicera henryi [19]
39FlavonolKaempferol derivativeC27H32O17628.5328627 465; 285285241Cuphea ignea [103]
40FlavonolKaempferol O-acetyl hexosyl-rhamnosideC29H32O16636.5548 637287219171A. cordifolia [52]
41FlavonolRhamnosyl-hexosyl-acyl-quercetinC29H30O17650.5383 651301; 258286258Phoenix dactylifera [100]
42FlavonolDimethylquercetin-3-O-dehexosideC29H34O17654.5701653 507; 353329 Capsicum annuum [112]
43FlavonolQuercetin deoxyhexosyl deoxyhexosyl hexosideC33H40O20756.6587755 300; 489; 737271243Ribes meyeri [50]
44FlavonolQuercetin pentosyl hexoside hexosideC32H38O21758.6315 758670; 479; 319415 F. glaucescens, A. cordifolia [52]
45FlavonolQuercetin-3-O-rhamnoside derivativeC42H40O22896.7538 897735573; 447; 287287Carpinus betulus [47]
46Flavan-3-olEpiafzelechin [(epi)Afzelechin]C15H14O5274.2687 275245; 219; 175215; 193; 175; 157; 127175; 157; 145Cassia abbreviata [113]; F. glaucescens; A. cordifolia [52]
47Flavan-3-olCatechinC15H14O6290.2681 291261; 157191173Ribes meyeri [50]; Ribes magellanicum [25]
48Flavan-3-ol(Epi)-catechinC15H14O6290.2681 291273; 137 Rubus occidentalis [66]; Cranberry [106]; Vaccinium myrtillus [114]; Andean blueberry [96]
49Flavan-3-olGallocatechinC15H14O7306.2675 307289; 261; 187; 123243; 201; 173; 135215; 187; 145Carpinus betulus [47]; G. linguiforme, A. cordifolia [52]; Ribes meyeri [50]; Rosa rugosa [70]; Embelia [54]
50Flavan-3-ol(Epi)-GallocatechinC15H14O7306.2675 307289; 261; 187243; 173; 135215; 187; 145Ribes meyeri [50]; Ribes magellanicum [25]; Vaccinium myrtillus [114]; Loropetalum chinense [97]
51Flavan-3-ol(Epi)-catechin derivative 1 379.234 379261233151PubChem
52Flavan-3-ol(Epi)-afzelechin derivativeC18H16O10392.3136 393275; 245; 215245; 175175; 127Zostera marina [115]
53Flavan-3-ol(Epi)-catechin derivative 2C18H16O11408.3130 409291; 275261; 242; 208; 173244; 214; 191; 173; 160; 124PubChem
54Flavan-3-ol(Epi)-catechin derivative 3 424.378 425291261; 191191PubChem
55Flavan-3-ol(-)-Epicatechin Gallate [(-)-Epicatechin-3-O-Gallate; L-Epicatechin Gallate]C22H18O10442.3723441 330; 205149 G. linguiforme [52]; Cassia abbreviates [113]; Ribes meyeri [50]; Chinese herbal formula Jian-Pi-Yi-Shen pill [93]
56Flavan-3-ol(epi)Catechin O-hexosideC21H24O11452.4087 453289; 129129111Andean blueberry [96]
57Flavan-3-ol(Epi)gallocatechin-(epi)catechin dimerC30H26O13594.5286 595577; 409; 247229183Carao tree seeds [116]
58TanninProanthocyanidin B1 [Procyanidin Dimer B1; (-)-epicatechin-(4beta->8)-(+)-catechin]C30H26O12578.5202 579409; 291287245Vaccinium myrtillus [114]; Andean blueberry [96]; strawberry [29]
59TanninProanthocyanidin B-typeC30H26O13594.5196 595287; 449213 Actinidia chinensis [57]
60EllagitanninDi-O-galloyl-HHDP-glucose [Pedunculagin II]C34H26O22786.5570 786599; 761301 Eugenia caryophyllata [117]; Cuphea ignea [103]
61Dimeric proanthocyanidinEpigallocatechin gallate dimerC44H34O22914.7276 915735; 573; 423; 329573; 447; 287447; 287Rhodiola rosea [118]
62AnthocyaninAnthocyanidin [cyanidin chloride; Cyanidin]C15H11O6+287.2442 287286; 270; 247; 205221201F. herrerae, G. linguiforme [52]; Andean blueberry [96]; Phoenix dactylifera [100]
63AnthocyaninDelphinidinC15H11O7303.2436 303257; 165229 A. cordifolia, G. linguiforme [52]
64AnthocyaninPetunidinC16H13O7+317.2702 318256238; 113238A. cordifolia; C. edulis; G. linguiforme [52]
65AnthocyaninCyanidin-3-O-glucoside [Cyanidin 3-O-beta-D-Glucoside]C21H21O11+449.3848 449287213185Ribes magellanicum [25]; Berberis ilicifolia; Berberis empetrifolia; Ribes magellanicum; Ribes cucullatum; Myrteola nummalaria; Gaultheria mucronata; Gaultheria antarctica; Rubus geoides; Fuchsia magellanica [27]
66AnthocyaninCyanidin-3-O-hexosideC21H21O11+449.3849 449287213; 137185; 157Dryopteris [88]; Andean blueberry [96]; Ribes dikuscha [67]; Rosa acicularis [70]
67AnthocyaninCyanidin-3-O-beta-galactosideC21H21O11449.3848 449287287; 213185Black soybean [21]; Gaultheria mucronata; Fuchsia magellanica [27]; Rapeseed petals [42]
68AnthocyaninPeonidin-3-O-glucosideC22H23O11 +463.4114 463301286258Black soybean [21]; Berberis ilicifolia; Berberis empetrifolia; Fuchsia magellanica [27]; Andean blueberry [96]
69AnthocyaninDelphinidin 3-O-glucoside [Mirtillin]C21H21O12+465.3905 465303285; 257; 229; 195; 165; 137229; 201Dryopteris [88]; Ribes magellanicum [25]; Berberis ilicifolia; Berberis empetrifolia; Ribes magellanicum; Ribes cucullatum; Fuchsia magellanica [27]; Rosa rugosa [70]
70AnthocyaninDelphinidin 3-O-hexosideC21H21O12+465.3905463 301255; 229; 179; 151185; 147Dryopteris [88]; Andean blueberry [96]; Rosa rugosa [70]
71AnthocyaninDelphinidin 3-O-beta-galactosideC21H21O12+465.3905 465303285; 257; 229; 165; 137229; 201Dryopteris [88]; Gaultheria micronata; Gaultheria antarctica; Fuchsia magellanica [27]; Rosa rugosa [70]
72AnthocyaninDelphinidin 3-acetylglucoside [Delphinidin-3-O-(6-O-acetyl)glucoside]C23H23O13+507.4209 507303257229Vitis vinifera [31]; Vines [32]; Grape [40]
73AnthocyaninDelphinidin-3-O-(6”-O-acetyl)hexosideC23H23O13+507.4209 507303285; 257; 229; 195229; 201; 173Vitis vinifera [30]
74AnthocyaninPetunidin 3-O-(6-O-acetyl)glucosideC24H25O13521.451 521317302274Vitis vinifera [31]; Vines [32]; Grape [40]
75AnthocyaninCyanidin-3-O-rutinoside [Keracyanin; Antirrhinin; Sambucin]C27H31O15595.526 595287; 449213 Ribes magellanicum [25]; Berberis microphylla [28]; Berberis ilicifolia; Berberis empetrifolia; Ribes magellanicum; Ribes cucullatum [27]; Ribes triste [67]
76AnthocyaninDelphinidin 3-O-Beta-D-sambubiosideC26H29O16597.4989 597303; 465; 229229; 165201; 172Berberis microphylla [28]; Red currant [24]; Ribes dikuscha; Ribes triste [67]
77AnthocyaninDelphinidin 3-O-[2-O-(Beta-xylosyl)-beta-galactoside]C26H29O16597.4989 597303257; 165229; 201; 161Red Kiwifruit [23]
78AnthocyaninPeonidin 3-O-rutinosideC28H33O15609.5526 609463; 301286 Gaultheria mucronata; Gaultheria antarctica; Fuchsia magellanica [27]; Black currant, Gooseberry [24]; Aristotelia chilensis [119]
79AnthocyaninPeonidin 3-O-(6-O-p-coumaroyl)glucosideC31H29O13609.554 609301; 542258 Grape [40] Vines [32]; Vitis vinifera [31]
80AnthocyaninDelphinidin 3-O-rutinoside [Tulipanin; Delphinidin 3-Rhamnosyl-Glucoside]C27H31O16611.5254 611465; 303229201Dryopteris [88]; Vigna angularis [120]; Black currant [24]; Berberis ilicifolia; Berberis empetrifolia; Ribes magellanicum; Fuchsia magellanica [27]; Berberis microphylla [28]
81AnthocyaninDelphinidin 3-O-(6-O-p-coumaroyl) glucosideC30H27O14611.5270 611465; 303229201Dryopteris [88]; Vigna angularis [120]; Grape [40] Vitis vinifera [31]; Vines [32]; Ribes triste [67]
82AnthocyaninCyanidin 3,5-O-diglucosideC27H31O16611.5335 611287; 449213185Grape [40]; Muscadine pomace [41]; Berberis microphylla [28]; Rapeseed petals [42]; Lonicera caerulea [16]
83Hydroxycinnamic acid4-Hydroxybenzoic acid [PHBA; Benzoic acid; p-Hydroxybenzoic acid]C7H6O3138.1207 139111 Inula graveolens [43]; Ocimum [90]; Taraxacum formosanum [121]; Bituminaria [122]; Eucalyptus Globulus [95]
84Hydroxybenzoic acid (Phenolic acid)Protocatechuic acidC7H6O4154.1201 155127 Ribes meyeri [50]; Lonicera japonica [18]
85Hydroxycinnamic acid3,4-Dihydroxyhydrocinnamic acid [Dihydrocaffeic acid]C9H10O4182.1733 183155127145Eucalyptus Globulus [95]; Chilean currants [25]
86Dihydroxybenzoic acidEthyl protocatechuate [3,4-Dihydroxybenzoic Acid Ethyl Ester]C9H10O4182.1733 183155111 Dryopteris [88]; Ocimum [90]
87Phenolic acidMethylgallic acid [Methyl gallate; Methyl 3,4,5-trihydroxybenzoate]C8H8O5184.1461 185155; 127127117Papaya [105]; Andean blueberry [96]; Ribes triste [67]; Phyllanthus [123]
88Phenolic acidHydroxy methoxy dimethylbenzoic acidC10H12O4196.1999 197160151 F. herrerae; F. glaucescens, G. linguiforme [52]
89Phenolic acid2,3,4,5,6-pentahydroxybenzoic acidC7H6O7202.1183 203156129 Jatropha [68]
90Hydroxycinnamic acidHydroxyferulic acidC10H10O5210.1834 21119375; 147157; 129Andean blueberry [96]; Rosa davurica [124]
91Hydroxybenzoic acid (Phenolic acid)Ellagic acid [Benzoaric acid; Elagostasine]C14H6O8302.1926301 257229201Juglans mandshurica [44]; Eucalyptus [125]; Eucalyptus Globulus [95]
92Phenolic acidp-Coumaroylquinic acidC16H18O8338.3093 339321; 121320 Vaccinium myrtillus [114]; Andean blueberry [96]; Ribes magellanicum [25]; Ribes meyeri [50]
93Hydroxycinnamic acid;Chlorogenic acid [3-O-Caffeoylquinic acid]C16H18O9354.3087353 191127 Ribes magellanicum [25]; Lonicera henryi [19]; Cranberry [106]; Lonicera japonica [18]; Vaccinium myrtillus [114]; Spondias purpurea [102]; Andean blueberry [96]
94Hydroxycinnamic acidNeochlorogenic acid [5-O-Caffeoylquinic acid]C16H18O9354.3088353 191173126Lonicera henryi [19]; Ribes magellanicum [25]; Lonicera japonica [18]; Vaccinium myrtillus [114]; Andean blueberry [96]
95Hydroxycinnamic acid;3-O-Hydroxydihydrocaffeoylquinic acidC16H20O10372.3240371 191173; 127 Lonicera henryi [19]
96Phenolic acidCaffeoylquinic acid derivative 382.6633381 179; 135135 Vaccinium myrtillus [114]
97Phenolic acidFerulic acid-O-hexoside derivativeC21H22O11450.3928449 269; 151225; 151 strawberry [29]; Cuphea ignea [103]
98Phenolic acidEllagic acid-O-hexosideC20H16O13464.3332463 301255; 229; 179; 151185; 147Carpinus betulus [47]; Punica granatum [126]
99Phenolic acidDicaffeoyl shiikimic acidC25H22O11498.4356 499163; 319145117Andean blueberry [96]
100Phenolic acidp-Coumaroyl malonyldihexose 574.8314 575413; 335; 188395; 340; 226; 188346; 290; 211Vaccinium myrtillus [114]
101Phenolic acidFeruloyl-O-p-coumaroyl-O-caffeoylshikimic acid 676 677513; 367349; 266 Phoenix dactylifera [100]
102 Caffeic acid isoprenyl esterC14H16O4248.2744 249203; 157157129Eucalyptus [125]; Brazilian propolis [127]; Ribes triste [67]
103DihydrochalconePhloretin [Dihydronaringenin]C15H14O5274.2687 275257230229Malus toringoides [108]; G. linguiforme [52]; Punica granatum [126]
104StilbenePinosylvin [ 3,5-Stilbenediol; Trans-3,5-Dihydroxystilbene]C14H12O2212.2439 213167; 139139 Pinus resinosa [128]; Pinus sylvestris [129]
105StilbeneResveratrol [trans-Resveratrol; 3,4′,5-Trihydroxystilbene; Stilbentriol]C14H12O3228.2433 229211183; 127138Embelia [54]; A. cordifolia; F. glaucescens; G. linguiforme [52];
106HydroxycoumarinEsculetin [3,7-Dihydroxylcoumarin; Cichorigenin; Aesculetin]C9H6O4178.1415 179151122 Actinidia chinensis [57]; Rhinacanthus nasutus [58]; Basilic; Rosemary; Salvia; Thymus vulgaris [59]
107Coumarin4-Methylesculetin [4-Methyl-6,7-Dihydroxycoumarin]C10H8O4192.1681 193147129110Artemisia annua [130]
108CoumarinFraxetinC10H8O5208.1675 209191117 Embelia [54]; Actinidia chinensis [57]; Jatropha [68]
109IsocoumarinCoriandroneC13H10O5246.2155 247230; 201; 173; 145145 Ventilago denticulata [131]
110LignanSyringaresinolC22H26O8418.4436 419255239211Magnolia [132]; Triticum aestivum [133]
Others
111Aliphatic amino acidL-Threonine [(2S, 3R)-2-Amino-3-Hydroxybutanoic acid]C4H9NO3119.1192 120 Triticum aestivum [134]; Medicago truncatula [135]; Soybean [136]; Soybean leaves [137]; Lonicera japonica [18]
112Non-proteinogenic L-alpha-amino acidL-Pyroglutamic acid [Pidolic acid; 5-Oxo-L-Proline]C5H7NO3129.1140 130111 Potato leaves [46]; Huolisu Oral Liquid [63]; Lonicera caerulea [16]; Ribes pauciflorum [67]
113Organic acidMalic acid [DL-Malic acid]C4H6O5134.0874133 115 Inula graveolens [43]; Punica granatum [126]; Ribes meyeri [50]; Ribes pauciflorum [67]
114Aliphatic amino acidL-glutamic acid; GLUTAMIC ACID; GlutaminolC5H10N2O3146.1445 147130 Triticum aestivum [134]; Soybean leaves [137]; Lonicera japonica [18]; Rosa acicularis [70]
115Phenylethanoid3,4-Dihydroxyphenylethanol [Hydroxytyrosol]C8H10O3154.1632 155127144 Grape [40]; G. linguiforme [52]
116Amino acidL-HistidineC6H9N3O2155.1546 156129110 Lonicera japonica [18]; Actinidia deliciosa [138]
117Indole alkaloidIndole-3-acetonitrileC10H8N2156.1839 157129; 115129; 120 Honey [39]; Ribes pauciflorum [67]
118Aromatic amino acidPhenylalanine [L-Phenylalanine]C9H11NO2165.1891 166120 Lonicera japonica [18]; Potato leaves [46]; G. linguiforme [52]; Rapeseed petals [42]; Xuefu Zhuyu decoction [139]
119Cyclohexenecarboxylic acidShikimic acid [L-Schikimic acid]C7H10O5174.1513 175129111 A. cordifolia; G. linguiforme [52]; Ribes meyeri [50]; Ribes aureum; Ribes dikuscha [67]
120Omega-hydroxy amino acidHydroxy decenoic acidC10H18O3186.2481 187145127 F. glaucescens, G. linguiforme [52]
121Naphthoquinone2,5-Dihydroxy-1,4-naphthalenedioneC10H6O4190.1522 191145; 117 Juglans mandshurica [44]; Ribes triste [67]
122Naphthoquinone3,5-Dihydroxy-1,4-naphthalenedioneC10H6O4190.1522 191145; 127; 117 Juglans mandshurica [44]; Ribes triste [67]
123Tricarboxylic acidCitric acidC6H8O7192.1235191 111; 173 Potato leaves [46]; Strawberry, Lemon, Cherimoya, Papaya, Passion fruit [105]
124Polyhydroxycarboxylic acidQuinic acidC7H12O6192.1666191 111; 173111 Ribes meyeri [50]; Lonicera japonica [18]; Andean blueberry [96]; Potato leaves [46]
125Alpha, omega dicarboxylic acidSebacic acidC10H18O4202.2475 203185139111; 157Jatropha [68]
126PolysaccharidesGalactaric acid [Mucic acid; Galactarate]C6H10O8210.1388 211193175129Dryopteris [88]; Soybean [136]; Rosa rugosa [70]
127Saturated fatty acidHydroxydodecenoic acidC12H22O3214.3013 215208186 Jatropha [68]
128SesquiterpenoidCaryophyllene oxide [Caryophyllene-alpha-oxide]C15H24O220.3505219 173; 111111 Olive leaves [140]; Rosa davurica [124]
129Omega-5 fatty acidMyristoleic acid [Cis-9-Tetradecanoic acid]C14H26O2226.3550 227209192; 139122G. linguiforme [52]; Artemisia martjanovii [141]
130SesquiterpenoidAtractylenolide II [2-Atractylenolide]C15H20O2232.3181 233216160132Codonopsis Radix [142]; Chinese herbal formula Jian-Pi-Yi-Shen pill [93]
131Medium-chain fatty acidHydroxy dodecanoic acidC12H22O5246.3001 247229; 201187159; 145F. glaucescens; G. linguiforme [52]
132Naphthoquinone1,4-Dihydroxy-2,3-naphthalenedicarboxylic acid/6-Acetyl-2,5,8-trihydroxynaphthoquinoneC12H8O6248.1883 249203157129Juglans mandshurica [44]; Ribes triste [67]
133Polyunsaturated long-chain fatty acidHexadecadienoic acidC16H28O2252.3923 253145; 244127 Rhus coriaria [45]
134Naphthoquinone1,3,6,8-Tetrahydroxy-9(10H)-anthracenoneC14H10O5258.2262 259231; 211; 200; 187; 169; 149; 127213; 185; 164 Juglans mandshurica [44]; Ribes pauciflorum [67]
135Ribonucleoside composite of adenine (purine)AdenosineC10H13N5O4267.2413 268136 Lonicera japonica [18]; Huolisu Oral Liquid [63]; Rosa rugosa [70]
136Omega-3 fatty acidStearidonic acid [6,9,12,15-Octadecatetraenoic acid]C18H28O2276.4137 278261; 172; 115127 Dryopteris [88]; G. linguiforme [52]; Rhus coriaria [45]; Jatropha [68]; Ribes triste [67]; Rosa rugosa [70]
137PhenanthraquinoneTanshinone VC19H22O4314.3765313 212; 113113; 185 Huolisu Oral Liquid [63]
138Oxylipin13-Trihydroxy-Octadecenoic acid [THODE]C18H34O5330.4596329 229; 211; 171; 139211; 183; 161; 143 Bituminaria [122]; Jatropha [68]; Phoenix dactylifera [100]; Rosa amblyotis [70]; Apium graveolens [143]
139Cyclopentapyran; IridoidLoganic acidC16H24O10376.3558375 213169; 113 Lonicera japonica [18]; Rosa amblyotis [70]
140Tricarboxylic acidCitric acid derivative 392391 373; 217h143 Punica granatum [126]
141Anabolic steroidVebonolC30H44O3452.6686 453435; 210226; 336210Rhus coriaria [45]; Hylosereus polyrhizus [144]
142Thromboxane receptor antagonistVapiprostC30H39NO4477.6350 478337263; 121119Rhus coriaria [45]; Hylosereus polyrhizus [144]
143Indole sesquiterpene alkaloidSespendoleC33H45NO4519.7147 520184125 Rhus coriaria [45]
144Chlorophyll degradation productPheophorbide aC35H36N4O5592.6841 [145]

References

  1. Celli, G.B.; Ghanem, A.; Brooks, M.S.L. Haskap Berries (Lonicera caerulea L.)—A Critical Review of Antioxidant Capacity and Health-Related Studies for Potential Value-Added Products. Food Bioprocess Technol. 2014, 7, 1541–1554. [Google Scholar] [CrossRef]
  2. Bors, B.; Thomson, J.; Sawchuk, E.; Reimer, P.; Sawatzky, R.; Sander, R.; Kaban, T.; Gerbrandt, E.; Dawson, J. Haskap Breeding and Production; Final Report; Saskatchewan Agric.: Saskatoon, SK, Canada, 2012. [Google Scholar]
  3. Lefol, E.B. Haskap Market Development, the Japanese Opportunity; Feasibility Study; University of Saskatchewan: Saskatoon, SK, Canada, 2007. [Google Scholar]
  4. Senica, M.; Stampar, F.; Mikulic-Petkovsek, M. Blue Honeysuckle (Lonicera cearulea L. Subs. Edulis) Berry; A Rich Source of Some Nutrients and Their Differences among Four Different Cultivars. Sci. Hortic. 2018, 238, 215–221. [Google Scholar] [CrossRef]
  5. Auzanneau, N.; Weber, P.; Kosińska-Cagnazzo, A.; Andlauer, W. Bioactive Compounds and Antioxidant Capacity of Lonicera Caerulea Berries: Comparison of Seven Cultivars over Three Harvesting Years. J. Food Compos. Anal. 2018, 66, 81–89. [Google Scholar] [CrossRef]
  6. Thompson, M.M. Caprifoliaceae. In The Encyclopedia of Fruit & Nuts; CAB International: London, UK, 2008. [Google Scholar]
  7. Gołba, M.; Sokół-Łętowska, A.; Kucharska, A.Z. Health Properties and Composition of Honeysuckle Berry Lonicera Caerulea L. An Update on Recent Studies. Molecules 2020, 25, 749. [Google Scholar] [CrossRef]
  8. Sharma, A.; Lee, H.-J. Lonicera Caerulea: An Updated Account of Its Phytoconstituents and Health-Promoting Activities. Trends Food Sci. Technol. 2021, 107, 130–149. [Google Scholar] [CrossRef]
  9. Park, J.Y.; Kang, K.S.; Lee, H. Protection Effect of Cyanidin 3-O-Glucoside Against Oxidative Stress-induced HepG2 Cell Death Through Activation of Akt and Extracellular Signal-regulated Kinase Pathways. Bull. Korean Chem. Soc. 2017, 38, 1316–1320. [Google Scholar] [CrossRef]
  10. Liu, Z.; Cheng, Y.; Chao, Z. A Comprehensive Quality Analysis of Different Colors of Medicinal and Edible Honeysuckle. Foods 2023, 12, 3126. [Google Scholar] [CrossRef] [PubMed]
  11. Bieniek, A.A. Biological Properties of Honeysuckle (Lonicera caerulea L.): A Review: The Nutrition, Health Properties of Honeysuckle. Agrobiodiversity Improv. Nutr. Health Life Qual. 2021, 5, 2. [Google Scholar] [CrossRef]
  12. Guo, L.; Qiao, J.; Zhang, L.; Yan, W.; Zhang, M.; Lu, Y.; Wang, Y.; Ma, H.; Liu, Y.; Zhang, Y.; et al. Critical Review on Anthocyanins in Blue Honeysuckle (Lonicera caerulea L.) and Their Function. Plant Physiol. Biochem. 2023, 204, 108090. [Google Scholar] [CrossRef]
  13. Cai, Z.; Chen, H.; Chen, J.; Yang, R.; Zou, L.; Wang, C.; Chen, J.; Tan, M.; Mei, Y.; Wei, L.; et al. Metabolomics Characterizes the Metabolic Changes of Lonicerae Japonicae Flos under Different Salt Stresses. PLoS ONE 2020, 15, e0243111. [Google Scholar] [CrossRef] [PubMed]
  14. Yan, K.; Zhao, S.; Bian, L.; Chen, X. Saline Stress Enhanced Accumulation of Leaf Phenolics in Honeysuckle (Lonicera japonica Thunb.) without Induction of Oxidative Stress. Plant Physiol. Biochem. 2017, 112, 326–334. [Google Scholar] [CrossRef]
  15. Nawaz, M.A.; Razgonova, M.P.; Rusakova, E.A.; Petrusha, E.N.; Sabitov, A.S.; Chunikhina, O.A.; Ercişli, S.; Tikhonova, N.G.; Golokhvast, K.S. Global Metabolome Profiles of Lonicera caerulea L. and Lonicera caerulea ssp. Kamtschatica (Sevast.) Gladkova. Turk. J. Agric. For. 2024, 48, 745–759. [Google Scholar] [CrossRef]
  16. Razgonova, M.P.; Navaz, M.A.; Sabitov, A.S.; Zinchenko, Y.N.; Rusakova, E.A.; Petrusha, E.N.; Golokhvast, K.S.; Tikhonova, N.G. The Global Metabolome Profiles of Four Varieties of Lonicera caerulea, Established via Tandem Mass Spectrometry. Horticulturae 2023, 9, 1188. [Google Scholar] [CrossRef]
  17. Razgonova, M.P.; Petrusha, E.N.; Rusakova, E.A.; Golokhvast, K.S. The Determination of Secondary Metabolites of Kamchatka Honeysuckle Lonicera caerulea var. kamtschatika Sevast. Russ. J. Plant Physiol. 2023, 70, 177. [Google Scholar] [CrossRef]
  18. Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of Multiple Bioactive Constituents in the Flower and the Caulis of Lonicera japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis. Molecules 2019, 24, 1936. [Google Scholar] [CrossRef]
  19. Jaiswal, R.; Müller, H.; Müller, A.; Karar, M.G.E.; Kuhnert, N. Identification and Characterization of Chlorogenic Acids, Chlorogenic Acid Glycosides and Flavonoids from Lonicera henryi L. (Caprifoliaceae) Leaves by LC–MS. Phytochemistry 2014, 108, 252–263. [Google Scholar] [CrossRef]
  20. Wang, X.; Zhang, X.; Hou, H.; Ma, X.; Sun, S.; Wang, H.; Kong, L. Metabolomics and Gene Expression Analysis Reveal the Accumulation Patterns of Phenylpropanoids and Flavonoids in Different Colored-Grain Wheats (Triticum aestivum L.). Food Res. Int. 2020, 138, 109711. [Google Scholar] [CrossRef]
  21. Xu, J.L.; Shin, J.-S.; Park, S.-K.; Kang, S.; Jeong, S.-C.; Moon, J.-K.; Choi, Y. Differences in the Metabolic Profiles and Antioxidant Activities of Wild and Cultivated Black Soybeans Evaluated by Correlation Analysis. Food Res. Int. 2017, 100, 166–174. [Google Scholar] [CrossRef]
  22. Li, X.; Li, S.; Wang, J.; Chen, G.; Tao, X.; Xu, S. Metabolomic Analysis Reveals Domestication-Driven Reshaping of Polyphenolic Antioxidants in Soybean Seeds. Antioxidants 2023, 12, 912. [Google Scholar] [CrossRef]
  23. Comeskey, D.J.; Montefiori, M.; Edwards, P.J.B.; McGhie, T.K. Isolation and Structural Identification of the Anthocyanin Components of Red Kiwifruit. J. Agric. Food Chem. 2009, 57, 2035–2039. [Google Scholar] [CrossRef] [PubMed]
  24. Wu, X.; Gu, L.; Prior, R.L.; McKay, S. Characterization of Anthocyanins and Proanthocyanidins in Some Cultivars of Ribes, Aronia, and Sambucus and Their Antioxidant Capacity. J. Agric. Food Chem. 2004, 52, 7846–7856. [Google Scholar] [CrossRef] [PubMed]
  25. Burgos-Edwards, A.; Jiménez-Aspee, F.; Theoduloz, C.; Schmeda-Hirschmann, G. Colonic Fermentation of Polyphenols from Chilean Currants (Ribes spp.) and Its Effect on Antioxidant Capacity and Metabolic Syndrome-Associated Enzymes. Food Chem. 2018, 258, 144–155. [Google Scholar] [CrossRef] [PubMed]
  26. da Silva, L.P.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C.F.R. Rubus Ulmifolius Schott Fruits: A Detailed Study of Its Nutritional, Chemical and Bioactive Properties. Food Res. Int. 2019, 119, 34–43. [Google Scholar] [CrossRef]
  27. Ruiz, A.; Hermosín-Gutiérrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin Profiles in South Patagonian Wild Berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713. [Google Scholar] [CrossRef]
  28. Ruiz, A.; Hermosín-Gutiérrez, I.; Mardones, C.; Vergara, C.; Herlitz, E.; Vega, M.; Dorau, C.; Winterhalter, P.; von Baer, D. Polyphenols and Antioxidant Activity of Calafate (Berberis microphylla) Fruits and Other Native Berries from Southern Chile. J. Agric. Food Chem. 2010, 58, 6081–6089. [Google Scholar] [CrossRef]
  29. Aaby, K.; Mazur, S.; Nes, A.; Skrede, G. Phenolic Compounds in Strawberry (Fragaria x Ananassa Duch.) Fruits: Composition in 27 Cultivars and Changes during Ripening. Food Chem. 2012, 132, 86–97. [Google Scholar] [CrossRef]
  30. Šuković, D.; Knežević, B.; Gašić, U.; Sredojević, M.; Ćirić, I.; Todić, S.; Mutić, J.; Tešić, Ž. Phenolic Profiles of Leaves, Grapes and Wine of Grapevine Variety Vranac (Vitis vinifera L.) from Montenegro. Foods 2020, 9, 138. [Google Scholar] [CrossRef]
  31. Mazzuca, P.; Ferranti, P.; Picariello, G.; Chianese, L.; Addeo, F. Mass Spectrometry in the Study of Anthocyanins and Their Derivatives: Differentiation of Vitis vinifera and Hybrid Grapes by Liquid Chromatography/Electrospray Ionization Mass Spectrometry and Tandem Mass Spectrometry. J. Mass. Spectrom. 2005, 40, 83–90. [Google Scholar] [CrossRef]
  32. Fermo, P.; Comite, V.; Sredojević, M.; Ćirić, I.; Gašić, U.; Mutić, J.; Baošić, R.; Tešić, Ž. Elemental Analysis and Phenolic Profiles of Selected Italian Wines. Foods 2021, 10, 158. [Google Scholar] [CrossRef] [PubMed]
  33. Lago-Vanzela, E.S.; Da-Silva, R.; Gomes, E.; García-Romero, E.; Hermosín-Gutiérrez, I. Phenolic Composition of the Edible Parts (Flesh and Skin) of Bordô Grape (Vitis labrusca) Using HPLC–DAD–ESI-MS/MS. J. Agric. Food Chem. 2011, 59, 13136–13146. [Google Scholar] [CrossRef] [PubMed]
  34. Wang, H.; Race, E.J.; Shrikhande, A.J. Characterization of Anthocyanins in Grape Juices by Ion Trap Liquid Chromatography−Mass Spectrometry. J. Agric. Food Chem. 2003, 51, 1839–1844. [Google Scholar] [CrossRef] [PubMed]
  35. Sun, J.; Liu, X.; Yang, T.; Slovin, J.; Chen, P. Profiling Polyphenols of Two Diploid Strawberry (Fragaria vesca) Inbred Lines Using UHPLC-HRMSn. Food Chem. 2014, 146, 289–298. [Google Scholar] [CrossRef]
  36. Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K.; et al. Transfer of Grain Colors to Elite Wheat Cultivars and Their Characterization. J. Cereal Sci. 2016, 71, 138–144. [Google Scholar] [CrossRef]
  37. Chang, Q.; Wong, Y.-S. Identification of Flavonoids in Hakmeitau Beans (Vigna sinensis) by High-Performance Liquid Chromatography−Electrospray Mass Spectrometry (LC-ESI/MS). J. Agric. Food Chem. 2004, 52, 6694–6699. [Google Scholar] [CrossRef] [PubMed]
  38. Ha, T.J.; Lee, M.-H.; Park, C.-H.; Pae, S.-B.; Shim, K.-B.; Ko, J.-M.; Shin, S.-O.; Baek, I.-Y.; Park, K.-Y. Identification and Characterization of Anthocyanins in Yard-Long Beans (Vigna unguiculata ssp. Sesquipedalis L.) by High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionization/Mass Spectrometry (HPLC−DAD−ESI/MS) Analysis. J. Agric. Food Chem. 2010, 58, 2571–2576. [Google Scholar] [CrossRef]
  39. Chuah, W.C.; Lee, H.H.; Ng, D.H.J.; Ho, A.L.; Sulaiman, M.R.; Chye, F.Y. Antioxidants Discovery for Differentiation of Monofloral Stingless Bee Honeys Using Ambient Mass Spectrometry and Metabolomics Approaches. Foods 2023, 12, 2404. [Google Scholar] [CrossRef] [PubMed]
  40. Flamini, R. Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols. ISRN Spectrosc. 2013, 2013, 1–45. [Google Scholar] [CrossRef]
  41. Anari, Z.; Mai, C.; Sengupta, A.; Howard, L.; Brownmiller, C.; Wickramasinghe, S.R. Combined Osmotic and Membrane Distillation for Concentration of Anthocyanin from Muscadine Pomace. J. Food Sci. 2019, 84, 2199–2208. [Google Scholar] [CrossRef]
  42. Yin, N.-W.; Wang, S.-X.; Jia, L.-D.; Zhu, M.-C.; Yang, J.; Zhou, B.-J.; Yin, J.-M.; Lu, K.; Wang, R.; Li, J.-N.; et al. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC–HESI-MS/MS. J. Agric. Food Chem. 2019, 67, 11053–11065. [Google Scholar] [CrossRef]
  43. Silinsin, M.; Bursal, E. UHPLC-MS/MS Phenolic Profiling and in Vitro Antioxidant Activities of Inula graveolens (L.) Desf. Nat. Prod. Res. 2018, 32, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
  44. Huo, J.-H.; Du, X.-W.; Sun, G.-D.; Dong, W.-T.; Wang, W.-M. Identification and Characterization of Major Constituents in Juglans mandshurica Using Ultra Performance Liquid Chromatography Coupled with Time-of-Flight Mass Spectrometry (UPLC-ESI-Q-TOF/MS). Chin. J. Nat. Med. 2018, 16, 525–545. [Google Scholar] [CrossRef] [PubMed]
  45. Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arráez-Román, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS Screening of Bioactive Components from Rhus coriaria L. (Sumac) Fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef] [PubMed]
  46. Rodríguez-Pérez, C.; Gómez-Caravaca, A.M.; Guerra-Hernández, E.; Cerretani, L.; García-Villanova, B.; Verardo, V. Comprehensive Metabolite Profiling of Solanum tuberosum L. (Potato) Leaves by HPLC-ESI-QTOF-MS. Food Res. Int. 2018, 112, 390–399. [Google Scholar] [CrossRef]
  47. Felegyi-Tóth, C.A.; Garádi, Z.; Darcsi, A.; Csernák, O.; Boldizsár, I.; Béni, S.; Alberti, Á. Isolation and Quantification of Diarylheptanoids from European Hornbeam (Carpinus betulus L.) and HPLC-ESI-MS/MS Characterization of Its Antioxidative Phenolics. J. Pharm. Biomed. Anal. 2022, 210, 114554. [Google Scholar] [CrossRef]
  48. Yasir, M.; Sultana, B.; Anwar, F. LC–ESI–MS/MS Based Characterization of Phenolic Components in Fruits of Two Species of Solanaceae. J. Food Sci. Technol. 2018, 55, 2370–2376. [Google Scholar] [CrossRef] [PubMed]
  49. Jaiswal, R.; Jayasinghe, L.; Kuhnert, N. Identification and Characterization of Proanthocyanidins of 16 Members of the Rhododendron Genus (Ericaceae) by Tandem LC–MS. J. Mass. Spectrom. 2012, 47, 502–515. [Google Scholar] [CrossRef]
  50. Zhao, Y.; Lu, H.; Wang, Q.; Liu, H.; Shen, H.; Xu, W.; Ge, J.; He, D. Rapid Qualitative Profiling and Quantitative Analysis of Phenolics in Ribes meyeri Leaves and Their Antioxidant and Antidiabetic Activities by HPLC-QTOF-MS/MS and UHPLC-MS/MS. J. Sep. Sci. 2021, 44, 1404–1420. [Google Scholar] [CrossRef]
  51. de Freitas, M.A.; Silva Alves, A.I.; Andrade, J.C.; Leite-Andrade, M.C.; Lucas dos Santos, A.T.; Felix de Oliveira, T.; dos Santos, F.d.A.G.; Silva Buonafina, M.D.; Melo Coutinho, H.D.; Alencar de Menezes, I.R.; et al. Evaluation of the Antifungal Activity of the Licania Rigida Leaf Ethanolic Extract against Biofilms Formed by Candida Sp. Isolates in Acrylic Resin Discs. Antibiotics 2019, 8, 250. [Google Scholar] [CrossRef]
  52. Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of Chemopreventive Components from Halophytes Belonging to Aizoaceae and Cactaceae Through LC/MS—Bioassay Guided Approach. J. Chromatogr. Sci. 2021, 59, 618–626. [Google Scholar] [CrossRef]
  53. Sobeh, M.; Mahmoud, M.; Hasan, R.; Cheng, H.; El-Shazly, A.; Wink, M. Senna Singueana: Antioxidant, Hepatoprotective, Antiapoptotic Properties and Phytochemical Profiling of a Methanol Bark Extract. Molecules 2017, 22, 1502. [Google Scholar] [CrossRef]
  54. Rini Vijayan, K.P.; Raghu, A.V. Tentative Characterization of Phenolic Compounds in Three Species of the Genus Embelia by Liquid Chromatography Coupled with Mass Spectrometry Analysis. Spectrosc. Lett. 2019, 52, 653–670. [Google Scholar] [CrossRef]
  55. Contreras, M.d.M.; Algieri, F.; Rodriguez-Nogales, A.; Gálvez, J.; Segura-Carretero, A. Phytochemical Profiling of Anti-inflammatory Lavandula Extracts via RP–HPLC–DAD–QTOF–MS and –MS/MS: Assessment of Their Qualitative and Quantitative Differences. Electrophoresis 2018, 39, 1284–1293. [Google Scholar] [CrossRef]
  56. Trifan, A.; Zengin, G.; Sinan, K.I.; Sieniawska, E.; Sawicki, R.; Maciejewska-Turska, M.; Skalikca-Woźniak, K.; Luca, S.V. Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia Species. Antioxidants 2022, 11, 1017. [Google Scholar] [CrossRef]
  57. Chen, Y.; Cai, X.; Li, G.; He, X.; Yu, X.; Yu, X.; Xiao, Q.; Xiang, Z.; Wang, C. Chemical Constituents of Radix Actinidia chinensis Planch by UPLC–QTOF–MS. Biomed. Chromatogr. 2021, 35, e5103. [Google Scholar] [CrossRef]
  58. Songserm, P.; Klanrit, P.; Klanrit, P.; Phetcharaburanin, J.; Thanonkeo, P.; Apiraksakorn, J.; Phomphrai, K.; Klanrit, P. Antioxidant and Anticancer Potential of Bioactive Compounds from Rhinacanthus Nasutus Cell Suspension Culture. Plants 2022, 11, 1994. [Google Scholar] [CrossRef]
  59. Ali, A.; Bashmil, Y.M.; Cottrell, J.J.; Suleria, H.A.R.; Dunshea, F.R. LC-MS/MS-QTOF Screening and Identification of Phenolic Compounds from Australian Grown Herbs and Their Antioxidant Potential. Antioxidants 2021, 10, 1770. [Google Scholar] [CrossRef]
  60. Zhao, D.-D.; Zhao, Q.-S.; Liu, L.; Chen, Z.-Q.; Zeng, W.-M.; Lei, H.; Zhang, Y.-L. Compounds from Dryopteris fragrans (L.) Schott with Cytotoxic Activity. Molecules 2014, 19, 3345–3355. [Google Scholar] [CrossRef] [PubMed]
  61. Chung, N.C.; Miasojedow, B.; Startek, M.; Gambin, A. Jaccard/Tanimoto Similarity Test and Estimation Methods for Biological Presence-Absence Data. BMC Bioinform. 2019, 20, 644. [Google Scholar] [CrossRef] [PubMed]
  62. Simons, R.; Vincken, J.; Bakx, E.J.; Verbruggen, M.A.; Gruppen, H. A Rapid Screening Method for Prenylated Flavonoids with Ultra-high-performance Liquid Chromatography/Electrospray Ionisation Mass Spectrometry in Licorice Root Extracts. Rapid Commun. Mass. Spectrom. 2009, 23, 3083–3093. [Google Scholar] [CrossRef]
  63. Yin, Y.; Zhang, K.; Wei, L.; Chen, D.; Chen, Q.; Jiao, M.; Li, X.; Huang, J.; Gong, Z.; Kang, N.; et al. The Molecular Mechanism of Antioxidation of Huolisu Oral Liquid Based on Serum Analysis and Network Analysis. Front. Pharmacol. 2021, 12, 710976. [Google Scholar] [CrossRef]
  64. Okhlopkova, Z.M.; Razgonova, M.P.; Rozhina, Z.G.; Egorova, P.S.; Golokhvast, K.S. Dracocephalum Jacutense Peschkova from Yakutia: Extraction and Mass Spectrometric Characterization of 128 Chemical Compounds. Molecules 2023, 28, 4402. [Google Scholar] [CrossRef]
  65. Faraone, I.; Rai, D.K.; Chiummiento, L.; Fernandez, E.; Choudhary, A.; Prinzo, F.; Milella, L. Antioxidant Activity and Phytochemical Characterization of Senecio clivicolus Wedd. Molecules 2018, 23, 2497. [Google Scholar] [CrossRef]
  66. Paudel, L.; Wyzgoski, F.J.; Scheerens, J.C.; Chanon, A.M.; Reese, R.N.; Smiljanic, D.; Wesdemiotis, C.; Blakeslee, J.J.; Riedl, K.M.; Rinaldi, P.L. Nonanthocyanin Secondary Metabolites of Black Raspberry (Rubus occidentalis L.) Fruits: Identification by HPLC-DAD, NMR, HPLC-ESI-MS, and ESI-MS/MS Analyses. J. Agric. Food Chem. 2013, 61, 12032–12043. [Google Scholar] [CrossRef]
  67. Razgonova, M.P.; Nawaz, M.A.; Sabitov, A.S.; Golokhvast, K.S. Genus Ribes: Ribes Aureum, Ribes Pauciflorum, Ribes Triste, and Ribes Dikuscha—Comparative Mass Spectrometric Study of Polyphenolic Composition and Other Bioactive Constituents. Int. J. Mol. Sci. 2024, 25, 10085. [Google Scholar] [CrossRef]
  68. Zengin, G.; Mahomoodally, M.F.; Sinan, K.I.; Ak, G.; Etienne, O.K.; Sharmeen, J.B.; Brunetti, L.; Leone, S.; Di Simone, S.C.; Recinella, L.; et al. Chemical Composition and Biological Properties of Two Jatropha Species: Different Parts and Different Extraction Methods. Antioxidants 2021, 10, 792. [Google Scholar] [CrossRef]
  69. Olech, M.; Pietrzak, W.; Nowak, R. Characterization of Free and Bound Phenolic Acids and Flavonoid Aglycones in Rosa rugosa Thunb. Leaves and Achenes Using LC–ESI–MS/MS–MRM Methods. Molecules 2020, 25, 1804. [Google Scholar] [CrossRef]
  70. Razgonova, M.P.; Nawaz, M.A.; Rusakova, E.A.; Golokhvast, K.S. Application of Supercritical CO2 Extraction and Identification of Polyphenolic Compounds in Three Species of Wild Rose from Kamchatka: Rosa acicularis, Rosa amblyotis, and Rosa rugosa. Plants 2024, 14, 59. [Google Scholar] [CrossRef]
  71. Wojakowska, A.; Piasecka, A.; García-López, P.M.; Zamora-Natera, F.; Krajewski, P.; Marczak, Ł.; Kachlicki, P.; Stobiecki, M. Structural Analysis and Profiling of Phenolic Secondary Metabolites of Mexican Lupine Species Using LC–MS Techniques. Phytochemistry 2013, 92, 71–86. [Google Scholar] [CrossRef]
  72. Singh, B.N.; Shankar, S.; Srivastava, R.K. Green Tea Catechin, Epigallocatechin-3-Gallate (EGCG): Mechanisms, Perspectives and Clinical Applications. Biochem. Pharmacol. 2011, 82, 1807–1821. [Google Scholar] [CrossRef] [PubMed]
  73. Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef] [PubMed]
  74. Mokra, D.; Joskova, M.; Mokry, J. Therapeutic Effects of Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. Int. J. Mol. Sci. 2022, 24, 340. [Google Scholar] [CrossRef]
  75. Peng, Q.; Zhang, Z.-R.; Sun, X.; Zuo, J.; Zhao, D.; Gong, T. Mechanisms of Phospholipid Complex Loaded Nanoparticles Enhancing the Oral Bioavailability. Mol. Pharm. 2010, 7, 565–575. [Google Scholar] [CrossRef]
  76. Zhu, W.; Li, M.C.; Wang, F.R.; Mackenzie, G.G.; Oteiza, P.I. The Inhibitory Effect of ECG and EGCG Dimeric Procyanidins on Colorectal Cancer Cells Growth Is Associated with Their Actions at Lipid Rafts and the Inhibition of the Epidermal Growth Factor Receptor Signaling. Biochem. Pharmacol. 2020, 175, 113923. [Google Scholar] [CrossRef]
  77. Razgonova, M.; Zakharenko, A.; Pikula, K.; Manakov, Y.; Ercisli, S.; Derbush, I.; Kislin, E.; Seryodkin, I.; Sabitov, A.; Kalenik, T.; et al. LC-MS/MS Screening of Phenolic Compounds in Wild and Cultivated Grapes Vitis amurensis Rupr. Molecules 2021, 26, 3650. [Google Scholar] [CrossRef]
  78. Razgonova, M.; Zakharenko, A.; Pikula, K.; Kim, E.; Chernyshev, V.; Ercisli, S.; Cravotto, G.; Golokhvast, K. Rapid Mass Spectrometric Study of a Supercritical CO2-Extract from Woody Liana Schisandra Chinensis by HPLC-SPD-ESI-MS/MS. Molecules 2020, 25, 2689. [Google Scholar] [CrossRef]
  79. Zhang, L.; McClements, D.J.; Wei, Z.; Wang, G.; Liu, X.; Liu, F. Delivery of Synergistic Polyphenol Combinations Using Biopolymer-Based Systems: Advances in Physicochemical Properties, Stability and Bioavailability. Crit. Rev. Food Sci. Nutr. 2020, 60, 2083–2097. [Google Scholar] [CrossRef]
  80. Del Rio, D.; Borges, G.; Crozier, A. Berry Flavonoids and Phenolics: Bioavailability and Evidence of Protective Effects. Br. J. Nutr. 2010, 104, S67–S90. [Google Scholar] [CrossRef]
  81. Figueira, I.; Garcia, G.; Pimpão, R.C.; Terrasso, A.P.; Costa, I.; Almeida, A.F.; Tavares, L.; Pais, T.F.; Pinto, P.; Ventura, M.R.; et al. Polyphenols Journey through Blood-Brain Barrier towards Neuronal Protection. Sci. Rep. 2017, 7, 11456. [Google Scholar] [CrossRef] [PubMed]
  82. Aquilano, K.; Baldelli, S.; Rotilio, G.; Ciriolo, M.R. Role of Nitric Oxide Synthases in Parkinson’s Disease: A Review on the Antioxidant and Anti-Inflammatory Activity of Polyphenols. Neurochem. Res. 2008, 33, 2416–2426. [Google Scholar] [CrossRef] [PubMed]
  83. Spagnuolo, C.; Moccia, S.; Russo, G.L. Anti-Inflammatory Effects of Flavonoids in Neurodegenerative Disorders. Eur. J. Med. Chem. 2018, 153, 105–115. [Google Scholar] [CrossRef] [PubMed]
  84. Virant-Klun, I.; Imamovic-Kumalic, S.; Pinter, B. From Oxidative Stress to Male Infertility: Review of the Associations of Endocrine-Disrupting Chemicals (Bisphenols, Phthalates, and Parabens) with Human Semen Quality. Antioxidants 2022, 11, 1617. [Google Scholar] [CrossRef]
  85. Hidayat, R. Patricia Wulandari Methods of Extraction: Maceration, Percolation and Decoction. Eureka Herba Indones. 2021, 2, 73–79. [Google Scholar] [CrossRef]
  86. Ćujić, N.; Šavikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibrić, S. Optimization of Polyphenols Extraction from Dried Chokeberry Using Maceration as Traditional Technique. Food Chem. 2016, 194, 135–142. [Google Scholar] [CrossRef] [PubMed]
  87. Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
  88. Razgonova, M.P.; Okhlopkova, Z.M.; Nawaz, M.A.; Egorova, P.S.; Golokhvast, K.S. Supercritical Extraction and Identification of Bioactive Compounds in Dryopteris fragrans (L.) Schott. Pharmaceuticals 2025, 18, 299. [Google Scholar] [CrossRef]
  89. Tian, X.; Chen, L.; Sun, L.; Gong, K.; Liu, K.; Guo, Y. Omics Analysis Revealing Flavonoid Content During Maize Grain Germination. Metabolites 2025, 15, 107. [Google Scholar] [CrossRef]
  90. Pandey, R.; Kumar, B. HPLC–QTOF–MS/MS-Based Rapid Screening of Phenolics and Triterpenic Acids in Leaf Extracts of Ocimum Species and Their Interspecies Variation. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 225–238. [Google Scholar] [CrossRef]
  91. Chang, Y.; Zhang, D.; Yang, G.; Zheng, Y.; Guo, L. Screening of Anti-Lipase Components of Artemisia Argyi Leaves Based on Spectrum-Effect Relationships and HPLC-MS/MS. Front. Pharmacol. 2021, 12, 675396. [Google Scholar] [CrossRef] [PubMed]
  92. Xu, L.-L.; Xu, J.-J.; Zhong, K.-R.; Shang, Z.-P.; Wang, F.; Wang, R.-F.; Zhang, L.; Zhang, J.-Y.; Liu, B. Analysis of Non-Volatile Chemical Constituents of Menthae Haplocalycis Herba by Ultra-High Performance Liquid Chromatography-High Resolution Mass Spectrometry. Molecules 2017, 22, 1756. [Google Scholar] [CrossRef]
  93. Wang, F.; Huang, S.; Chen, Q.; Hu, Z.; Li, Z.; Zheng, P.; Liu, X.; Li, S.; Zhang, S.; Chen, J. Chemical Characterisation and Quantification of the Major Constituents in the Chinese Herbal Formula Jian-Pi-Yi-Shen Pill by UPLC-Q-TOF-MS/MS and HPLC-QQQ-MS/MS. Phytochem. Anal. 2020, 31, 915–929. [Google Scholar] [CrossRef]
  94. Belmehdi, O.; Bouyahya, A.; Jekő, J.; Cziáky, Z.; Zengin, G.; Sotkó, G.; El Baaboua, A.; Senhaji, N.S.; Abrini, J. Synergistic Interaction between Propolis Extract, Essential Oils, and Antibiotics against Staphylococcus Epidermidis and Methicillin Resistant Staphylococcus Aureus. Int. J. Second. Metab. 2021, 8, 195–213. [Google Scholar] [CrossRef]
  95. Pan, M.; Lei, Q.; Zang, N.; Zhang, H. A Strategy Based on GC-MS/MS, UPLC-MS/MS and Virtual Molecular Docking for Analysis and Prediction of Bioactive Compounds in Eucalyptus globulus Leaves. Int. J. Mol. Sci. 2019, 20, 3875. [Google Scholar] [CrossRef]
  96. Aita, S.; Capriotti, A.; Cavaliere, C.; Cerrato, A.; Giannelli Moneta, B.; Montone, C.; Piovesana, S.; Laganà, A. Andean Blueberry of the Genus Disterigma: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. Separations 2021, 8, 58. [Google Scholar] [CrossRef]
  97. Zhang, X.; Zhang, L.; Zhang, D.; Liu, Y.; Lin, L.; Xiong, X.; Zhang, D.; Sun, M.; Cai, M.; Yu, X.; et al. Transcriptomic and Metabolomic Profiling Provides Insights into Flavonoid Biosynthesis and Flower Coloring in Loropetalum chinense and Loropetalum chinense Var. rubrum. Agronomy 2023, 13, 1296. [Google Scholar] [CrossRef]
  98. Zhang, J.; Xu, X.-J.; Xu, W.; Huang, J.; Zhu, D.-Y.; Qiu, X.-H. Rapid Characterization and Identification of Flavonoids in Radix Astragali by Ultra-High-Pressure Liquid Chromatography Coupled with Linear Ion Trap-Orbitrap Mass Spectrometry. J. Chromatogr. Sci. 2015, 53, 945–952. [Google Scholar] [CrossRef]
  99. Kheyar-Kraouche, N.; da Silva, A.B.; Serra, A.T.; Bedjou, F.; Bronze, M.R. Characterization by Liquid Chromatography–Mass Spectrometry and Antioxidant Activity of an Ethanolic Extract of Inula viscosa Leaves. J. Pharm. Biomed. Anal. 2018, 156, 297–306. [Google Scholar] [CrossRef] [PubMed]
  100. Ben Said, R.; Hamed, A.I.; Mahalel, U.A.; Al-Ayed, A.S.; Kowalczyk, M.; Moldoch, J.; Oleszek, W.; Stochmal, A. Tentative Characterization of Polyphenolic Compounds in the Male Flowers of Phoenix Dactylifera by Liquid Chromatography Coupled with Mass Spectrometry and DFT. Int. J. Mol. Sci. 2017, 18, 512. [Google Scholar] [CrossRef] [PubMed]
  101. Ayoub, I.M.; El-Baset, M.A.; Elghonemy, M.M.; Bashandy, S.A.E.; Ibrahim, F.A.A.; Ahmed-Farid, O.A.H.; El Gendy, A.E.-N.G.; Afifi, S.M.; Esatbeyoglu, T.; Farrag, A.R.H.; et al. Chemical Profile of Cyperus laevigatus and Its Protective Effects against Thioacetamide-Induced Hepatorenal Toxicity in Rats. Molecules 2022, 27, 6470. [Google Scholar] [CrossRef]
  102. Engels, C.; Gräter, D.; Esquivel, P.; Jiménez, V.M.; Gänzle, M.G.; Schieber, A. Characterization of Phenolic Compounds in Jocote (Spondias purpurea L.) Peels by Ultra High-Performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry. Food Res. Int. 2012, 46, 557–562. [Google Scholar] [CrossRef]
  103. Ismail, W.M.; Ezzat, S.M.; El-Mosallamy, A.E.M.K.; El Deeb, K.S.; El-Fishawy, A.M. In Vivo Antihypertensive Activity and UHPLC-Orbitrap-HRMS Profiling of Cuphea ignea A. DC. ACS Omega 2022, 7, 46524–46535. [Google Scholar] [CrossRef] [PubMed]
  104. Iswaldi, I.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Uberos, J.; Lardón, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Characterization by High-Performance Liquid Chromatography with Diode-Array Detection Coupled to Time-of-Flight Mass Spectrometry of the Phenolic Fraction in a Cranberry Syrup Used to Prevent Urinary Tract Diseases, Together with a Study of Its Antibacterial Activity. J. Pharm. Biomed. Anal. 2012, 58, 34–41. [Google Scholar] [CrossRef] [PubMed]
  105. Spínola, V.; Pinto, J.; Castilho, P.C. Identification and Quantification of Phenolic Compounds of Selected Fruits from Madeira Island by HPLC-DAD–ESI-MSn and Screening for Their Antioxidant Activity. Food Chem. 2015, 173, 14–30. [Google Scholar] [CrossRef]
  106. Wang, Y.; Vorsa, N.; Harrington, P.d.B.; Chen, P. Nontargeted Metabolomic Study on Variation of Phenolics in Different Cranberry Cultivars Using UPLC-IM—HRMS. J. Agric. Food Chem. 2018, 66, 12206–12216. [Google Scholar] [CrossRef]
  107. Mekam, P.N.; Martini, S.; Nguefack, J.; Tagliazucchi, D.; Stefani, E. Phenolic Compounds Profile of Water and Ethanol Extracts of Euphorbia hirta L. Leaves Showing Antioxidant and Antifungal Properties. South. Afr. J. Bot. 2019, 127, 319–332. [Google Scholar] [CrossRef]
  108. Fan, Z.; Wang, Y.; Yang, M.; Cao, J.; Khan, A.; Cheng, G. UHPLC-ESI-HRMS/MS Analysis on Phenolic Compositions of Different E Se Tea Extracts and Their Antioxidant and Cytoprotective Activities. Food Chem. 2020, 318, 126512. [Google Scholar] [CrossRef]
  109. Sun, L.; Tao, S.; Zhang, S. Characterization and Quantification of Polyphenols and Triterpenoids in Thinned Young Fruits of Ten Pear Varieties by UPLC-Q TRAP-MS/MS. Molecules 2019, 24, 159. [Google Scholar] [CrossRef] [PubMed]
  110. Ieri, F.; Innocenti, M.; Possieri, L.; Gallori, S.; Mulinacci, N. Phenolic Composition of “Bud Extracts” of Ribes nigrum L., Rosa canina L. and Tilia tomentosa M. J. Pharm. Biomed. Anal. 2015, 115, 1–9. [Google Scholar] [CrossRef]
  111. Aabideen, Z.U.; Mumtaz, M.W.; Akhtar, M.T.; Mukhtar, H.; Raza, S.A.; Touqeer, T.; Saari, N. Anti-Obesity Attributes; UHPLC-QTOF-MS/MS-Based Metabolite Profiling and Molecular Docking Insights of Taraxacum Officinale. Molecules 2020, 25, 4935. [Google Scholar] [CrossRef]
  112. Pascale, R.; Acquavia, M.A.; Cataldi, T.R.I.; Onzo, A.; Coviello, D.; Bufo, S.A.; Scrano, L.; Ciriello, R.; Guerrieri, A.; Bianco, G. Profiling of Quercetin Glycosides and Acyl Glycosides in Sun-Dried Peperoni Di Senise Peppers (Capsicum annuum L.) by a Combination of LC-ESI(-)-MS/MS and Polarity Prediction in Reversed-Phase Separations. Anal. Bioanal. Chem. 2020, 412, 3005–3015. [Google Scholar] [CrossRef]
  113. Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.O.; Cheng, H.; El-Shazly, A.M.; Wink, M. A Proanthocyanidin-Rich Extract from Cassia Abbreviata Exhibits Antioxidant and Hepatoprotective Activities in Vivo. J. Ethnopharmacol. 2018, 213, 38–47. [Google Scholar] [CrossRef]
  114. Liu, P.; Lindstedt, A.; Markkinen, N.; Sinkkonen, J.; Suomela, J.-P.; Yang, B. Characterization of Metabolite Profiles of Leaves of Bilberry (Vaccinium myrtillus L.) and Lingonberry (Vaccinium vitis-idaea L.). J. Agric. Food Chem. 2014, 62, 12015–12026. [Google Scholar] [CrossRef]
  115. Razgonova, M.P.; Tekutyeva, L.A.; Podvolotskaya, A.B.; Stepochkina, V.D.; Zakharenko, A.M.; Golokhvast, K. Zostera Marina L.: Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass. Separations 2022, 9, 182. [Google Scholar] [CrossRef]
  116. Fuentes, J.A.M.; López-Salas, L.; Borrás-Linares, I.; Navarro-Alarcón, M.; Segura-Carretero, A.; Lozano-Sánchez, J. Development of an Innovative Pressurized Liquid Extraction Procedure by Response Surface Methodology to Recover Bioactive Compounds from Carao Tree Seeds. Foods 2021, 10, 398. [Google Scholar] [CrossRef] [PubMed]
  117. Li, D.Q.; Zhao, J.; Xie, J.; Li, S.P. A Novel Sample Preparation and On-Line HPLC–DAD–MS/MS–BCD Analysis for Rapid Screening and Characterization of Specific Enzyme Inhibitors in Herbal Extracts: Case Study of α-Glucosidase. J. Pharm. Biomed. Anal. 2014, 88, 130–135. [Google Scholar] [CrossRef]
  118. van Diermen, D.; Marston, A.; Bravo, J.; Reist, M.; Carrupt, P.-A.; Hostettmann, K. Monoamine Oxidase Inhibition by Rhodiola rosea L. Roots. J. Ethnopharmacol. 2009, 122, 397–401. [Google Scholar] [CrossRef]
  119. Pineda, A.; Arenas, A.; Balmaceda, J.; Zúñiga, G.E. Extracts of Fruits and Plants Cultivated In Vitro of Aristotelia chilensis (Mol.) Stuntz Show Inhibitory Activity of Aldose Reductase and Pancreatic Alpha-Amylase Enzymes. Plants 2022, 11, 2772. [Google Scholar] [CrossRef] [PubMed]
  120. Ha, T.J.; Park, J.E.; Lee, K.-S.; Seo, W.D.; Song, S.-B.; Lee, M.-H.; Kim, S.; Kim, J.-I.; Oh, E.; Pae, S.-B.; et al. Identification of Anthocyanin Compositions in Black Seed Coated Korean Adzuki Bean (Vigna angularis) by NMR and UPLC-Q-Orbitrap-MS/MS and Screening for Their Antioxidant Properties Using Different Solvent Systems. Food Chem. 2021, 346, 128882. [Google Scholar] [CrossRef]
  121. Chen, H.-J.; Inbaraj, B.S.; Chen, B.-H. Determination of Phenolic Acids and Flavonoids in Taraxacum Formosanum Kitam by Liquid Chromatography-Tandem Mass Spectrometry Coupled with a Post-Column Derivatization Technique. Int. J. Mol. Sci. 2011, 13, 260–285. [Google Scholar] [CrossRef]
  122. Llorent-Martínez, E.J.; Spínola, V.; Gouveia, S.; Castilho, P.C. HPLC-ESI-MSn Characterization of Phenolic Compounds, Terpenoid Saponins, and Other Minor Compounds in Bituminaria bituminosa. Ind. Crops Prod. 2015, 69, 80–90. [Google Scholar] [CrossRef]
  123. Kumar, S.; Singh, A.; Kumar, B. Identification and Characterization of Phenolics and Terpenoids from Ethanolic Extracts of Phyllanthus Species by HPLC-ESI-QTOF-MS/MS. J. Pharm. Anal. 2017, 7, 214–222. [Google Scholar] [CrossRef]
  124. Razgonova, M.P.; Bazhenova, B.A.; Zabalueva, Y.Y.; Burkhanova, A.G.; Zakharenko, A.M.; Kupriyanov, A.N.; Sabitov, A.S.; Ercisli, S.; Golokhvast, K.S. Rosa davurica Pall., Rosa rugosa Thumb., and Rosa acicularis Lindl. Originating from Far Eastern Russia: Screening of 146 Chemical Constituents in Three Species of the Genus Rosa. Appl. Sci. 2022, 12, 9401. [Google Scholar] [CrossRef]
  125. Santos, S.A.O.; Freire, C.S.R.; Domingues, M.R.M.; Silvestre, A.J.D.; Neto, C.P. Characterization of Phenolic Components in Polar Extracts of Eucalyptus globulus Labill. Bark by High-Performance Liquid Chromatography–Mass Spectrometry. J. Agric. Food Chem. 2011, 59, 9386–9393. [Google Scholar] [CrossRef]
  126. Mena, P.; Calani, L.; Dall’Asta, C.; Galaverna, G.; García-Viguera, C.; Bruni, R.; Crozier, A.; Del Rio, D. Rapid and Comprehensive Evaluation of (Poly)Phenolic Compounds in Pomegranate (Punica granatum L.) Juice by UHPLC-MSn. Molecules 2012, 17, 14821–14840. [Google Scholar] [CrossRef] [PubMed]
  127. Xu, X.; Yang, B.; Wang, D.; Zhu, Y.; Miao, X.; Yang, W. The Chemical Composition of Brazilian Green Propolis and Its Protective Effects on Mouse Aortic Endothelial Cells against Inflammatory Injury. Molecules 2020, 25, 4612. [Google Scholar] [CrossRef]
  128. Simard, F.; Legault, J.; Lavoie, S.; Mshvildadze, V.; Pichette, A. Isolation and Identification of Cytotoxic Compounds from the Wood of Pinus resinosa. Phytother. Res. 2008, 22, 919–922. [Google Scholar] [CrossRef] [PubMed]
  129. Ekeberg, D.; Flæte, P.-O.; Eikenes, M.; Fongen, M.; Naess-Andresen, C.F. Qualitative and Quantitative Determination of Extractives in Heartwood of Scots Pine (Pinus sylvestris L.) by Gas Chromatography. J. Chromatogr. A 2006, 1109, 267–272. [Google Scholar] [CrossRef]
  130. Zhu, X.X.; Yang, L.; Li, Y.J.; Zhang, D.; Chen, Y.; Kostecká, P.; Kmoníèková, E.; Zídek, Z. Effects of Sesquiterpene, Flavonoid and Coumarin Types of Compounds from Artemisia annua L. on Production of Mediators of Angiogenesis. Pharmacol. Rep. 2013, 65, 410–420. [Google Scholar] [CrossRef]
  131. Azizah, M.; Pripdeevech, P.; Thongkongkaew, T.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. UHPLC-ESI-QTOF-MS/MS-Based Molecular Networking Guided Isolation and Dereplication of Antibacterial and Antifungal Constituents of Ventilago denticulata. Antibiotics 2020, 9, 606. [Google Scholar] [CrossRef]
  132. Guo, X.; Yue, Y.; Tang, F.; Wang, J.; Yao, X.; Sun, J. A Comparison of C-Glycosidic Flavonoid Isomers by Electrospray Ionization Quadrupole Time-of-Flight Tandem Mass Spectrometry in Negative and Positive Ion Mode. Int. J. Mass. Spectrom. 2013, 333, 59–66. [Google Scholar] [CrossRef]
  133. Čukelj, N.; Jakasa, I.; Sarajlija, H.; Novotni, D.; Ćurić, D. Identification and Quantification of Lignans in Wheat Bran by Gas Chromatography-Electron Capture Detection. Talanta 2011, 84, 127–132. [Google Scholar] [CrossRef]
  134. Tsochatzis, E.; Papageorgiou, M.; Kalogiannis, S. Validation of a HILIC UHPLC-MS/MS Method for Amino Acid Profiling in Triticum Species Wheat Flours. Foods 2019, 8, 514. [Google Scholar] [CrossRef]
  135. Dokwal, D.; Cocuron, J.-C.; Alonso, A.P.; Dickstein, R. Metabolite Shift in Medicago truncatula Occurs in Phosphorus Deprivation. J. Exp. Bot. 2022, 73, 2093–2111. [Google Scholar] [CrossRef]
  136. Li, M.; Xu, J.; Wang, X.; Fu, H.; Zhao, M.; Wang, H.; Shi, L. Photosynthetic Characteristics and Metabolic Analyses of Two Soybean Genotypes Revealed Adaptive Strategies to Low-Nitrogen Stress. J. Plant Physiol. 2018, 229, 132–141. [Google Scholar] [CrossRef]
  137. Liu, Y.; Li, M.; Xu, J.; Liu, X.; Wang, S.; Shi, L. Physiological and Metabolomics Analyses of Young and Old Leaves from Wild and Cultivated Soybean Seedlings under Low-Nitrogen Conditions. BMC Plant Biol. 2019, 19, 389. [Google Scholar] [CrossRef]
  138. Razgonova, M.; Boyko, A.; Zinchenko, Y.; Tikhonova, N.; Sabitov, A.; Zakharenko, A.M.; Golokhvast, K. Actinidia Deliciosa: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Bioactive Compounds. Turk. J. Agric. For. 2023, 47, 155–169. [Google Scholar] [CrossRef]
  139. Zhang, L.; Jiang, Z.; Yang, J.; Li, Y.; Wang, Y.; Chai, X. Chemical Material Basis Study of Xuefu Zhuyu Decoction by Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry. J. Food Drug Anal. 2015, 23, 811–820. [Google Scholar] [CrossRef] [PubMed]
  140. Suárez Montenegro, Z.J.; Álvarez-Rivera, G.; Mendiola, J.A.; Ibáñez, E.; Cifuentes, A. Extraction and Mass Spectrometric Characterization of Terpenes Recovered from Olive Leaves Using a New Adsorbent-Assisted Supercritical CO2 Process. Foods 2021, 10, 1301. [Google Scholar] [CrossRef]
  141. Okhlopkova, Z.; Ercisli, S.; Razgonova, M.; Ivanova, N.; Antonova, E.; Egorov, Y.; Kucharova, E.; Golokhvast, K. Primary Determination of the Composition of Secondary Metabolites in the Wild and Introduced Artemisia martjanovii Krasch: Samples from Yakutia. Horticulturae 2023, 9, 1329. [Google Scholar] [CrossRef]
  142. Huang, Y.; Yao, P.; Leung, K.W.; Wang, H.; Kong, X.P.; Wang, L.; Dong, T.T.X.; Chen, Y.; Tsim, K.W.K. The Yin-Yang Property of Chinese Medicinal Herbs Relates to Chemical Composition but Not Anti-Oxidative Activity: An Illustration Using Spleen-Meridian Herbs. Front. Pharmacol. 2018, 9, 1304. [Google Scholar] [CrossRef] [PubMed]
  143. Emad, A.M.; Rasheed, D.M.; El-Kased, R.F.; El-Kersh, D.M. Antioxidant, Antimicrobial Activities and Characterization of Polyphenol-Enriched Extract of Egyptian Celery (Apium graveolens L., Apiaceae) Aerial Parts via UPLC/ESI/TOF-MS. Molecules 2022, 27, 698. [Google Scholar] [CrossRef] [PubMed]
  144. Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic Profiling of Pitaya (Hylocereus polyrhizus) during Fruit Development and Maturation. Molecules 2019, 24, 1114. [Google Scholar] [CrossRef] [PubMed]
  145. Van Breemen, R.B.; Canjura, F.L.; Schwartz, S.J. Identification of Chlorophyll Derivatives by Mass Spectrometry. J. Agric. Food Chem. 1991, 39, 1452–1456. [Google Scholar] [CrossRef]
Figure 1. A representative figure of L. caerulea ssp. kamtschatica samples used for metabolome analysis. (A) Ripening of berries of L. caerulea ssp. kamtschatica growing in the N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Kamchatka; (B) wild L. caerulea spp. kamtschatica Atlant; (C) wild L. caerulea spp. kamtschatica Darinka; (D) wild L. caerulea spp. kamtschatica Elena (Photos by E. Rusakova).
Figure 1. A representative figure of L. caerulea ssp. kamtschatica samples used for metabolome analysis. (A) Ripening of berries of L. caerulea ssp. kamtschatica growing in the N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Kamchatka; (B) wild L. caerulea spp. kamtschatica Atlant; (C) wild L. caerulea spp. kamtschatica Darinka; (D) wild L. caerulea spp. kamtschatica Elena (Photos by E. Rusakova).
Molecules 30 03761 g001
Figure 2. CID spectrum of selected compounds. (A) Cyanidin 3-O-glucoside from extracts from berries of L. caerulea, m/z 449.13. At the top is an MS scan in the range of 100–1700 m/z, at the bottom are fragmentation spectra (from top to bottom): MS2 of the protonated cyanidin 3-O-glucoside ion (449.13 m/z, red diamond), MS3 of the fragment 449.13 → 287.07 m/z, and MS4 of the fragment 303.06 → 285.07 → 213.13 m/z. (B) CID spectrum of peonidin 3-O-glucoside from extracts from berries of L. caerulea, m/z 463.26. At the top is an MS scan in the range of 100–1700 m/z, at the bottom are fragmentation spectra (from top to bottom): MS2 of the protonated peonidin 3-O-glucoside ion (463.26 m/z, red diamond), MS3 of the fragment 463.26 → 301.14 m/z, and MS4 of the fragment 463.26 → 301.14 →286.12 m/z. (C) CID spectrum of cyanidin 3,5-O-diglucoside from extracts from berries of L. caerulea, m/z 611.36. At the top is an MS scan in the range of 100–1700 m/z, at the bottom are fragmentation spectra (from top to bottom): MS2 of the protonated cyanidin 3,5-O-diglucoside ion (611.36 m/z, red diamond), MS3 of the fragment 611.36 → 287.13 m/z, and MS4 of the fragment 611.36 → 287.13 → 213.18 m/z. (D) CID spectrum of quercetin from extracts from berries of L. caerulea, m/z 303.06. At the top is an MS scan in the range of 100–1700 m/z, at the bottom are fragmentation spectra (from top to bottom): MS2 of the protonated quercetin ion (303.06 m/z, red diamond), MS3 of the fragment 303.06 → 285.07 m/z, and MS4 of the fragment 303.06 → 285.07 → 267.06 m/z. (E) CID spectrum of gallocatechin from extracts from berries of L. caerulea, m/z 308.28. At the top is an MS scan in the range of 100–1700 m/z, at the bottom are fragmentation spectra (from top to bottom): MS2 of the protonated gallocatechin ion (307.28 m/z, red diamond), MS3 of the fragment 307.28 → 261.24 m/z, and MS4 of the fragment 307.28 → 261.24 → 243.31 m/z. (F) CID spectrum of esculetin from extracts from berries of L. caerulea, m/z 179.17. At the top is an MS scan in the range of 100–1700 m/z, at the bottom are fragmentation spectra (from top to bottom): MS2 of the protonated esculetin ion (179.17 m/z, red diamond), MS3 of the fragment 179.17 → 151.21 m/z, and MS4 of the fragment 179.17 → 151.21 →122.78 m/z.
Figure 2. CID spectrum of selected compounds. (A) Cyanidin 3-O-glucoside from extracts from berries of L. caerulea, m/z 449.13. At the top is an MS scan in the range of 100–1700 m/z, at the bottom are fragmentation spectra (from top to bottom): MS2 of the protonated cyanidin 3-O-glucoside ion (449.13 m/z, red diamond), MS3 of the fragment 449.13 → 287.07 m/z, and MS4 of the fragment 303.06 → 285.07 → 213.13 m/z. (B) CID spectrum of peonidin 3-O-glucoside from extracts from berries of L. caerulea, m/z 463.26. At the top is an MS scan in the range of 100–1700 m/z, at the bottom are fragmentation spectra (from top to bottom): MS2 of the protonated peonidin 3-O-glucoside ion (463.26 m/z, red diamond), MS3 of the fragment 463.26 → 301.14 m/z, and MS4 of the fragment 463.26 → 301.14 →286.12 m/z. (C) CID spectrum of cyanidin 3,5-O-diglucoside from extracts from berries of L. caerulea, m/z 611.36. At the top is an MS scan in the range of 100–1700 m/z, at the bottom are fragmentation spectra (from top to bottom): MS2 of the protonated cyanidin 3,5-O-diglucoside ion (611.36 m/z, red diamond), MS3 of the fragment 611.36 → 287.13 m/z, and MS4 of the fragment 611.36 → 287.13 → 213.18 m/z. (D) CID spectrum of quercetin from extracts from berries of L. caerulea, m/z 303.06. At the top is an MS scan in the range of 100–1700 m/z, at the bottom are fragmentation spectra (from top to bottom): MS2 of the protonated quercetin ion (303.06 m/z, red diamond), MS3 of the fragment 303.06 → 285.07 m/z, and MS4 of the fragment 303.06 → 285.07 → 267.06 m/z. (E) CID spectrum of gallocatechin from extracts from berries of L. caerulea, m/z 308.28. At the top is an MS scan in the range of 100–1700 m/z, at the bottom are fragmentation spectra (from top to bottom): MS2 of the protonated gallocatechin ion (307.28 m/z, red diamond), MS3 of the fragment 307.28 → 261.24 m/z, and MS4 of the fragment 307.28 → 261.24 → 243.31 m/z. (F) CID spectrum of esculetin from extracts from berries of L. caerulea, m/z 179.17. At the top is an MS scan in the range of 100–1700 m/z, at the bottom are fragmentation spectra (from top to bottom): MS2 of the protonated esculetin ion (179.17 m/z, red diamond), MS3 of the fragment 179.17 → 151.21 m/z, and MS4 of the fragment 179.17 → 151.21 →122.78 m/z.
Molecules 30 03761 g002
Figure 3. Metabolite profile of the berries from honeysuckle varieties and wild type from different regions. (A) Pie chart of the number of compounds classified in each compound class. (B) Heatmap based on presence/absence of metabolite in the studied honeysuckle varieties/wild type. (C) Number of compounds from each class detected in each location. (D) Scatter-plot of KEGG pathways to which the metabolites were enriched. In panel B, K_wild = wild type from Kamchatka, DV = Far east - Vladivostok, SPb = Saint Petersburg.
Figure 3. Metabolite profile of the berries from honeysuckle varieties and wild type from different regions. (A) Pie chart of the number of compounds classified in each compound class. (B) Heatmap based on presence/absence of metabolite in the studied honeysuckle varieties/wild type. (C) Number of compounds from each class detected in each location. (D) Scatter-plot of KEGG pathways to which the metabolites were enriched. In panel B, K_wild = wild type from Kamchatka, DV = Far east - Vladivostok, SPb = Saint Petersburg.
Molecules 30 03761 g003
Figure 4. The Venn diagram showing the similarities and differences between L. caerulea collected in four geographical areas (Saint Petersburg, Kamchatka, Magadan, Primorsky territory).
Figure 4. The Venn diagram showing the similarities and differences between L. caerulea collected in four geographical areas (Saint Petersburg, Kamchatka, Magadan, Primorsky territory).
Molecules 30 03761 g004
Figure 5. The map of the location of L. caerulea berry harvesting areas: collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources, St. Petersburg, and plantations by N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Primorsky Territory, Kamchatka region, Magadan region.
Figure 5. The map of the location of L. caerulea berry harvesting areas: collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources, St. Petersburg, and plantations by N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Primorsky Territory, Kamchatka region, Magadan region.
Molecules 30 03761 g005
Table 1. Jaccard index for four places to collect L. caerulea (Kamchatka, Magadan, Saint Petersburg, Primorsky territory (Vladivostok)).
Table 1. Jaccard index for four places to collect L. caerulea (Kamchatka, Magadan, Saint Petersburg, Primorsky territory (Vladivostok)).
Kamchatka
(66)
Magadan
(81)
Primorsky Territory
(20)
Saint-Petersburg
(25)
Kamchatka
(66)
33
0.2895
19
0.2836
23
0.3382
Magadan
(81)
33
0.2895
13
0.1477
15
0.1648
Primorsky territory
(20)
19
0.2836
13
0.1477
17
0.6071
Saint-Petersburg
(25)
23
0.3382
15
0.1648
17
0.6071
Table 2. The distribution of the polyphenol groups in L. caerulea samples from four places of collection (Kamchatka, Magadan, Saint Petersburg, Primorsky territory).
Table 2. The distribution of the polyphenol groups in L. caerulea samples from four places of collection (Kamchatka, Magadan, Saint Petersburg, Primorsky territory).
Territory NameNumber of Detected CompoundsCompounds
Kamchatka; Magadan; Primorsky territory; Saint-Petersburg11Kaempferol; Herbacetin; p-Coumaroyl malonyldihexose; Ellagic acid; Resveratrol; Quercetin; (Epi)-afzelechin derivative; Hydroxy methoxy dimethylbenzoic acid; Delphinidin 3-O-β-D-sambubioside; Chlorogenic acid; Caffeoylquinic acid derivative
Kamchatka; Magadan; Primorsky territory2Fraxetin; Kaempferol 3-O-rutinoside
Kamchatka; Magadan; Saint-Petersburg4Epiafzelechin; (Epi)-catechin; Protocatechuic acid; Luteolin 7-O-glucoside
Kamchatka; Primorsky territory; Saint-Petersburg5Isorhamnetin 3-O-(6″-O-rhamnosyl-hexoside); Hydroxyferulic acid; Rhamnocitrin; Pinosylvin; Dihydroxy-tetramethoxy(iso)flavone
Kamchatka; Magadan16Delphinidin 3-acetylglucoside; Catechin; Neochlorogenic acid; Cyanidin-3-O-glucoside; Delphinidin; Cyanidin 3,5-O-diglucoside; Kaempferol glucosyl-rhamnoside; Kaempferol-3-O-hexoside; Cyanidin-3-O-β-galactoside; Diosmetin O-hexoside; Astragalin; Cyanidin-3-O-rutinoside; Myricetin; Kaempferol-3,7-Di-O-glucoside; Taxifolin-3-O-hexoside; Peonidin-3-O-glucoside
Kamchatka; Primorsky territory1Rutin
Kamchatka; Saint-Petersburg3Petunidin; 3-O-Hydroxydihydrocaffeoylquinic acid; (Epi)-catechin derivative 2
Primorsky territory; Saint-Petersburg12,3,4,5,6-pentahydroxybenzoic acid
Kamchatka24Phloretin; 2,4,5,6-pentahydroxybenzoic acid; Kaempferol derivative; 4-Methylesculetin; (epi)-Catechin O-hexoside; Peonidin 3-O-rutinoside; p-Coumaroylquinic acid; Proanthocyanidin B-type; Di-O-galloyl-HHDP-glucose; Proanthocyanidin B1; Feruloyl-O-p-coumaroyl-O-caffeoylshikimic acid; Quercetin pentosyl hexoside hexoside; (Epi)-catechin derivative 3; 2′-Hydroxygenistein; (Epi)-catechin derivative 1; Syringaresinol; (Epi)gallocatechin-(epi)catechin dimer; Chrysoeriol O-diglucoside; Peonidin 3-O-(6-O-p-coumaroyl)glucoside; 3,4-Dihydroxyhydrocinnamic acid; Quercetin deoxyhexosyl deoxyhexosyl hexoside; Ferulic acid-O-hexoside derivative; Dicaffeoyl shiikimic acid
Magadan48Quercetin 3-(6-O-acetyl)glucoside; Delphinidin 3-O-[2-O-(β-xylosyl)-β-galactoside]; Nepetin; Esculetin; Quercetin 3-O-arabinoglucoside; (Epi)-Gallocatechin; Dimethylquercetin-3-O-dehexoside 7-O-diglucoside; Coriandrone; Lonicerin; Rhamnosyl-hexosyl-acyl-quercetin; Isorhamnetin acetyl galactoside; Isorhamnetin; Delphinidin 3-O-hexoside; Isorhamnetin acetylglucoside; Hesperitin; Prunetin; (-)-Epicatechin Gallate; Kaempferol O-acetyl hexosyl-rhamnoside; Caffeic acid isoprenyl ester; Quercetin 3-glucoside; Luteolin-O-hexoside; 4-Hydroxybenzoic acid; Cyanidin-3-O-hexoside; Quercetin 3-O-pentosyl hexoside; Luteolin; Luteolin 7-O-(6-O-rhamnosyl-hexoside); Hyperoside; Apigenin-7-O-β-D-glucopyranoside; Methylgallic acid; Ethyl protocatechuate; Luteolin 3′,7-O-diglucoside; Delphinidin 3-O-glucoside; Apigenin; Ellagic acid-O-hexoside; Gallocatechin; Jaceosidin; Delphinidin 3-O-(6-O-p-coumaroyl) glucoside; Quercetin 3-O-acetyl hexoside; Formononetin; Delphinidin 3-O-rutinoside; Delphinidin-3-O-(6″-O-acetyl)hexoside; Quercetin-3-O-rhamnoside derivative; 3,4-Dihydroxyhydrocinnamic acid; Quercetin-3-O-hexoside; Epigallocatechin gallate dimer; Delphinidin 3-O-β-galactoside; Petunidin 3-O-(6-O-acetyl)glucoside
Saint-Petersburg1Anthocyanidin [cyanidin chloride; Cyanidin]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Razgonova, M.P.; Nawaz, M.A.; Rusakova, E.A.; Sabitov, A.S.; Tikhonova, N.G.; Golokhvast, K.S. Comparative Analysis of the Metabolomic Profile of Honeysuckle Lonicera caerulea L. from Four Eurasian Regions by Using HPLC-ESI-MS and ESI-MS/MS Analysis. Molecules 2025, 30, 3761. https://doi.org/10.3390/molecules30183761

AMA Style

Razgonova MP, Nawaz MA, Rusakova EA, Sabitov AS, Tikhonova NG, Golokhvast KS. Comparative Analysis of the Metabolomic Profile of Honeysuckle Lonicera caerulea L. from Four Eurasian Regions by Using HPLC-ESI-MS and ESI-MS/MS Analysis. Molecules. 2025; 30(18):3761. https://doi.org/10.3390/molecules30183761

Chicago/Turabian Style

Razgonova, Mayya P., Muhammad Amjad Nawaz, Elena A. Rusakova, Andrey S. Sabitov, Nadezhda G. Tikhonova, and Kirill S. Golokhvast. 2025. "Comparative Analysis of the Metabolomic Profile of Honeysuckle Lonicera caerulea L. from Four Eurasian Regions by Using HPLC-ESI-MS and ESI-MS/MS Analysis" Molecules 30, no. 18: 3761. https://doi.org/10.3390/molecules30183761

APA Style

Razgonova, M. P., Nawaz, M. A., Rusakova, E. A., Sabitov, A. S., Tikhonova, N. G., & Golokhvast, K. S. (2025). Comparative Analysis of the Metabolomic Profile of Honeysuckle Lonicera caerulea L. from Four Eurasian Regions by Using HPLC-ESI-MS and ESI-MS/MS Analysis. Molecules, 30(18), 3761. https://doi.org/10.3390/molecules30183761

Article Metrics

Back to TopTop