Electronic Structures and Photodetachment of TeO2−, TeO3−, and HTeO4− Anions: A Cryogenic Photoelectron Spectroscopic Study
Abstract
1. Introduction
2. Results and Discussion
2.1. Photoelectron Spectra of TeO2−, TeO3−, and HTeO4−
2.2. Optimized Structures and Calculated ADEs and VDEs
2.3. Molecular Orbital and Photodetachment Analyses
2.4. Vibrational Excitation and FCF Simulation
2.5. Two-Photon Photodissociation–Photodetachment of HTeO4−
3. Materials and Methods
3.1. Experimental Methods
3.2. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADE | adiabatic detachment energy |
CID | collision-induced dissociation |
CRACPES | cryogenic anion cluster photoelectron spectroscopy |
DFT | density functional theory |
EA | electron affinity |
EDD | electron density difference |
eBE | electron binding energy |
eKE | electron kinetic energy |
ESI | electrospray ionization |
FCF | Frank–Condon factor |
HOMO | highest occupied molecular orbital |
MO | molecular orbital |
NIPES | negative-ion photoelectron spectroscopy |
NPA | natural population analysis |
TDDFT | time-dependent density functional theory |
TOF | time-of-flight |
VDE | vertical detachment energy |
RF | radio frequency |
DC | direct current |
References
- Chivers, T.; Laitinen, R.S. Tellurium: A maverick among the chalcogens. Chem. Soc. Rev. 2015, 44, 1725–1739. [Google Scholar] [CrossRef]
- Yuan, D.-F.; Trabelsi, T.; Zhang, Y.-R.; Francisco, J.S.; Wang, L.-S. Probing the Electronic Structure and Bond Dissociation of SO3 and SO3– Using High-Resolution Cryogenic Photoelectron Imaging. J. Am. Chem. Soc. 2022, 144, 13740–13747. [Google Scholar] [CrossRef]
- Anstöter, C.S.; Verlet, J.R.R. Photoelectron imaging of the SO3 anion: Vibrational resolution in photoelectron angular distributions*. Mol. Phys. 2021, 119, e1821921. [Google Scholar] [CrossRef]
- Nimlos, M.R.; Ellison, G.B. Photoelectron spectroscopy of sulfur-containing anions (SO2−, S3−, and S2O−). J. Phys. Chem. 1986, 90, 2574–2580. [Google Scholar] [CrossRef]
- Wang, X.-B.; Nicholas, J.B.; Wang, L.-S. Photoelectron Spectroscopy and Theoretical Calculations of SO4− and HSO4−: Confirmation of High Electron Affinities of SO4 and HSO4. J. Phys. Chem. A 2000, 104, 504–508. [Google Scholar] [CrossRef]
- Tran, C.D. Acousto-Optic Devices: Optical Elements for Spectroscopy. Anal. Chem. 1992, 64, 971A–981A. [Google Scholar] [CrossRef] [PubMed]
- Savage, N. Acousto-optic devices. Nat. Photonics 2010, 4, 728–729. [Google Scholar] [CrossRef]
- Maák, P.; Barócsi, A.; Fehér, A.; Veress, M.; Mihajlik, G.; Rózsa, B.; Koppa, P. Acousto-optic deflector configurations optimized for multiphoton scanning microscopy. Opt. Commun. 2023, 530, 129213. [Google Scholar] [CrossRef]
- Mi, Z.; Zhao, H.; Guo, Q. Thermal analysis of TeO2-based acousto-optic tunable filters for spectral imaging. In Proceedings of the Sixth Conference on Frontiers in Optical Imaging and Technology: Novel Imaging Systems, Nanjing, China, 22–24 October 2023; p. 131550X. [Google Scholar] [CrossRef]
- Brofferio, C.; Cremonesi, O.; Dell‘Oro, S. Neutrinoless Double Beta Decay Experiments With TeO2 Low-Temperature Detectors. Front. Phys. 2019, 7, 86. [Google Scholar] [CrossRef]
- Plat, A.; Cornette, J.; Colas, M.; Mirgorodsky, A.P.; Smirnov, M.B.; Noguera, O.; Masson, O.; Thomas, P. Huge susceptibility increase within the (1−x) TeO2 + x TeO3 crystal system: Ab initio calculation study. J. Alloys Compd. 2014, 587, 120–125. [Google Scholar] [CrossRef]
- Roginskii, E.M.; Kuznetsov, V.G.; Smirnov, M.B.; Noguera, O.; Duclère, J.R.; Colas, M.; Masson, O.; Thomas, P. Comparative Analysis of the Electronic Structure and Nonlinear Optical Susceptibility of α-TeO2 and β-TeO3 Crystals. J. Phys. Chem. C 2017, 121, 12365–12374. [Google Scholar] [CrossRef]
- Zheng, B.; Zhao, M.; Guo, Q.; Yu, Y.; Lu, S.; Jiang, X.; Zhou, S. A chip-based microcavity derived from multi-component tellurite glass. J. Mater. Chem. C 2015, 3, 5141–5144. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, J.; Wang, R.; Li, A.; Zhang, M.; Wang, S.; Wang, P.; Ward, J.M.; Nic Chormaic, S. A tellurite glass optical microbubble resonator. Opt. Express 2020, 28, 32858. [Google Scholar] [CrossRef]
- Jha, A.; Richards, B.D.O.; Jose, G.; Toney Fernandez, T.; Hill, C.J.; Lousteau, J.; Joshi, P. Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications. Int. Mater. Rev. 2012, 57, 357–382. [Google Scholar] [CrossRef]
- Shen, S.; Jha, A.; Liu, X.; Naftaly, M.; Bindra, K.; Bookey, H.J.; Kar, A.K. Tellurite Glasses for Broadband Amplifiers and Integrated Optics. J. Am. Ceram. Soc. 2002, 85, 1391–1395. [Google Scholar] [CrossRef]
- Castellan, A.; Vaghi, A.; Bart, J.C.J.; Giordano, N. Propylene oxidation on TeO2 · SiO2 catalysts. J. Catal. 1975, 39, 213–224. [Google Scholar] [CrossRef]
- Miki, J.; Osada, Y.; Konoshi, T.; Tachibana, Y.; Shikada, T. Selective oxidation of toluene to benzoic acid catalyzed by modified vanadium oxides. Appl. Catal. A Gen. 1996, 137, 93–104. [Google Scholar] [CrossRef]
- Deng, C.; Ge, B.; Yao, J.; Zhao, T.; Shen, C.; Zhang, Z.; Wang, T.; Guo, X.; Xue, N.; Guo, X.; et al. Surface engineering of TeOx modification on MoVTeNbO creates a high-performance catalyst for oxidation of toluene homologues to aldehydes. Chin. J. Catal. 2024, 66, 268–281. [Google Scholar] [CrossRef]
- Liu, A.; Kim, Y.-S.; Kim, M.G.; Reo, Y.; Zou, T.; Choi, T.; Bai, S.; Zhu, H.; Noh, Y.-Y. Selenium-alloyed tellurium oxide for amorphous p-channel transistors. Nature 2024, 629, 798–802. [Google Scholar] [CrossRef]
- Snodgrass, J.T.; Coe, J.V.; McHugh, K.M.; Freidhoff, C.B.; Bowen, K.H. Photoelectron spectroscopy of selenium- and tellurium-containing negative ions: SeO2−, Se2−, and Te2−. J. Phys. Chem. 1989, 93, 1249–1254. [Google Scholar] [CrossRef]
- Vasiliu, M.; Peterson, K.A.; Christe, K.O.; Dixon, D.A. Electronic Structure Predictions of the Energetic Properties of Tellurium Fluorides. Inorg. Chem. 2019, 58, 8279–8292. [Google Scholar] [CrossRef] [PubMed]
- Tsukuda, T.; Hirose, T.; Nagata, T. Electronic structures of (SO2)n− as studied by photoelectron spectroscopy. Int. J. Mass Spectrom. Ion Process. 1997, 171, 273–280. [Google Scholar] [CrossRef]
- Truhlar, D.G.; Hiberty, P.C.; Shaik, S.; Gordon, M.S.; Danovich, D. Orbitals and the Interpretation of Photoelectron Spectroscopy and (e,2e) Ionization Experiments. Angew. Chem. Int. Ed. 2019, 58, 12332–12338. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, J.; Li, X.; Tang, P.; Yang, F.; Ma, J.; Hu, Z.; Sun, H.; Wang, X.-B.; Sun, Z.; et al. Exploring direct photodetachment and photodissociation–photodetachment dynamics of platinum iodide anions (PtIn−, n = 2–5) using cryogenic photoelectron spectroscopy. J. Chem. Phys. 2024, 161, 214305. [Google Scholar] [CrossRef]
- Chaibi, W.; Peláez, R.J.; Blondel, C.; Drag, C.; Delsart, C. Effect of a magnetic field in photodetachment microscopy. Eur. Phys. J. D 2010, 58, 29–37. [Google Scholar] [CrossRef]
- Quick, C.R.; Donahue, J.B.; Cohen, S.; Bryant, H.C.; Tang, C.Y.; Harris, P.G.; Mohagheghi, A.H.; Reeder, R.A.; Sharifian, H.; Toutounchi, H.; et al. Photodetachment of the H− ion. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1991, 56–57, 205–210. [Google Scholar] [CrossRef]
- Schulz, P.A.; Mead, R.D.; Jones, P.L.; Lineberger, W.C. OH− and OD− threshold photodetachment. J. Chem. Phys. 1982, 77, 1153–1165. [Google Scholar] [CrossRef]
- Tang, P.; Zhang, J.; Li, X.; Yang, F.; Zhao, Q.; Ma, J.; Hu, Z.; Sun, H.; Wang, X.-B.; Sun, Z.; et al. Cryogenic Photoelectron Spectroscopic and Theoretical Study of the Electronic and Geometric Structures of Undercoordinated Osmium Chloride Anions OsCln− (n = 3–5). J. Phys. Chem. A 2024, 128, 5500–5507. [Google Scholar] [CrossRef]
- Peláez, R.J.; Blondel, C.; Delsart, C.; Drag, C. Pulsed photodetachment microscopy and the electron affinity of iodine. J. Phys. B At. Mol. Opt. Phys. 2009, 42, 125001. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Z.-R.; Wang, X.-B. Examining the Critical Roles of Protons in Facilitating Oxidation of Chloride Ions by Permanganates: A Cluster Model Study. J. Phys. Chem. A 2015, 119, 6244–6251. [Google Scholar] [CrossRef] [PubMed]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, T.H.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef]
- Peterson, K.A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements. J. Chem. Phys. 2003, 119, 11113. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Revision C.02; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Clark, R.A.; McNamara, B.K.; Barinaga, C.J.; Peterson, J.M.; Govind, N.; Andersen, A.; Abrecht, D.G.; Schwantes, J.M.; Ballou, N.E. Electron Ionization Mass Spectrum of Tellurium Hexafluoride. Inorg. Chem. 2015, 54, 4821–4826. [Google Scholar] [CrossRef] [PubMed]
- Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735–746. [Google Scholar] [CrossRef]
- Bartlett, R.J.; Musiał, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 2007, 79, 291–352. [Google Scholar] [CrossRef]
- Bartlett, R.J. The coupled-cluster revolution. Mol. Phys. 2010, 108, 2905–2920. [Google Scholar] [CrossRef]
- Bartlett, R.J. Coupled-cluster theory and its equation-of-motion extensions. WIREs Comput. Mol. Sci. 2012, 2, 126–138. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Yu, H.S.; He, X.; Truhlar, D.G. MN15-L: A New Local Exchange-Correlation Functional for Kohn–Sham Density Functional Theory with Broad Accuracy for Atoms, Molecules, and Solids. J. Chem. Theory Comput. 2016, 12, 1280–1293. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615. [Google Scholar] [CrossRef]
- Furness, J.W.; Kaplan, A.D.; Ning, J.; Perdew, J.P.; Sun, J. Accurate and Numerically Efficient r2SCAN Meta-Generalized Gradient Approximation. J. Phys. Chem. Lett. 2020, 11, 8208–8215. [Google Scholar] [CrossRef]
- Grimme, S.; Hansen, A.; Ehlert, S.; Mewes, J.-M. r2SCAN-3c: A “Swiss army knife” composite electronic-structure method. J. Chem. Phys. 2021, 154, 064103. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Perdew, J.P.; Staroverov, V.N.; Scuseria, G.E. Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003, 91, 146401. [Google Scholar] [CrossRef]
- Staroverov, V.N.; Scuseria, G.E.; Tao, J.; Perdew, J.P. Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes. J. Chem. Phys. 2003, 119, 12129–12137. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A.T.B.; Wormit, M.; Kussmann, J.; Lange, A.W.; Behn, A.; Deng, J.; Feng, X.; et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 2015, 113, 184–215. [Google Scholar] [CrossRef]
- Gozem, S.; Krylov, A.I. The ezSpectra suite: An easy-to-use toolkit for spectroscopy modeling. WIREs Comput. Mol. Sci. 2022, 12, e1546. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
VDE (eV) | ADE (eV) | |||||
---|---|---|---|---|---|---|
TeO2− | TeO3− | HTeO4− | TeO2− | TeO3− | HTeO4− | |
Expt. | 2.13 | 4.20 | 5.64 | 1.94 | <4.01 a | 5.20 |
B3LYP-D3(BJ) | 2.50 | 4.66 | 5.48 | 2.38 | 3.99 | 5.11 |
MN15L-D3(BJ) | 2.23 | 4.29 | 5.34 | 2.06 | 3.52 | 5.00 |
r2SCAN-3c | 2.14 | 4.32 | 4.96 | 2.09 | 3.68 | 4.77 |
ωB97XD | 2.53 | 4.74 | 5.75 | 2.31 | 3.91 | 5.12 |
PEB0-D3(BJ) | 2.53 | 4.68 | 5.34 | 2.33 | 3.87 | 5.00 |
M06-2X | 2.77 | 4.96 | 6.14 | 2.50 | 3.97 | 5.27 |
TPSSh-D3(BJ) | 2.34 | 4.43 | 5.17 | 2.23 | 3.75 | 4.88 |
IP-EOM-CCSD | 2.36 | 4.48 | 5.76 | / | / | / |
Anion | Neutral | Δ | ||
---|---|---|---|---|
TeO2− | Te | 0.00 | 0.76 | 0.76 |
O | −0.50 × 2 a | −0.38 × 2 | 0.24 | |
TeO3− | Te | 1.28 | 1.86 | 0.58 |
O | −1.14 × 3 b | −0.93 × 3 | 0.42 | |
HTeO4− | H | 0.47 | 0.49 | 0.02 |
Te | 2.99 | 2.94 | −0.05 | |
O(1) c | −1.04 | −0.97 | 0.07 | |
O(2) | −1.16 | −0.86 | 0.30 | |
O(3) | −1.13 | −0.80 | 0.33 | |
O(4) | −1.13 | −0.80 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Li, X.; Tang, P.; Zhao, Q.; Zhang, J.; Mei, Y.; Hu, Z.; Sun, Z.; Yang, Y. Electronic Structures and Photodetachment of TeO2−, TeO3−, and HTeO4− Anions: A Cryogenic Photoelectron Spectroscopic Study. Molecules 2025, 30, 3757. https://doi.org/10.3390/molecules30183757
Yang F, Li X, Tang P, Zhao Q, Zhang J, Mei Y, Hu Z, Sun Z, Yang Y. Electronic Structures and Photodetachment of TeO2−, TeO3−, and HTeO4− Anions: A Cryogenic Photoelectron Spectroscopic Study. Molecules. 2025; 30(18):3757. https://doi.org/10.3390/molecules30183757
Chicago/Turabian StyleYang, Fan, Xueying Li, Peng Tang, Qixu Zhao, Jian Zhang, Ye Mei, Zhubin Hu, Zhenrong Sun, and Yan Yang. 2025. "Electronic Structures and Photodetachment of TeO2−, TeO3−, and HTeO4− Anions: A Cryogenic Photoelectron Spectroscopic Study" Molecules 30, no. 18: 3757. https://doi.org/10.3390/molecules30183757
APA StyleYang, F., Li, X., Tang, P., Zhao, Q., Zhang, J., Mei, Y., Hu, Z., Sun, Z., & Yang, Y. (2025). Electronic Structures and Photodetachment of TeO2−, TeO3−, and HTeO4− Anions: A Cryogenic Photoelectron Spectroscopic Study. Molecules, 30(18), 3757. https://doi.org/10.3390/molecules30183757