Neurotoxicity of Lanthanum Salts: A Narrative Review of Mechanistic Insights from Cellular and Animal Models
Abstract
1. Introduction
2. Results
2.1. Clinical Findings of Lanthanum Toxicity
2.1.1. Motor Function
2.1.2. Memory
2.1.3. Growth and Development
2.2. Toxicity Mechanisms
2.2.1. Morphologic Damage
2.2.2. Axonal Growth
2.2.3. Blood–Brain Barrier (BBB) Disruption
2.2.4. Synaptic Plasticity
2.2.5. Changes in Neurotransmitter Activity
2.3. Oxidative Stress as a Mechanism of Neuronal Toxicity
2.4. Apoptotic Pathways Involved in Neuronal Toxicity
2.4.1. Calcium-Mediated Intrinsic Apoptosis
2.4.2. Apoptotic Regulatory Pathway Suppression
2.5. Inflammation
2.6. Mitochondrial Toxicity
2.7. Autophagy
2.8. Impacts of Lanthanum (La) on Energy Metabolism
3. Discussion and Future Perspectives
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, T.-Y.; Li, W.-L.; Kelebek, S.; Choi, Y.; Wu, C.-Q.; Zhang, W.-J.; Wang, C.-Y.; Zhao, Z.-W.; Sadri, F. A comprehensive review on rare earth elements: Resources, technologies, applications, and prospects. Rare Met. 2025, 44, 1–30. [Google Scholar] [CrossRef]
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Zhao, C.J.; Yang, X.W.; Sun, J.; Wang, R. Efficacy and safety of lanthanum carbonate versus calcium-based phosphate binders in patients with chronic kidney disease: A systematic review and meta-analysis. Int. Urol. Nephrol. 2015, 47, 527–535. [Google Scholar] [CrossRef]
- Chundawat, N.S.; Jadoun, S.; Zarrintaj, P.; Chauhan, N.P.S. Lanthanide Complexes as Anticancer Agents: A Review. Polyhedron 2021, 207, 115387. [Google Scholar] [CrossRef]
- Garcia, J.; Liu, S.Z.; Louie, A.Y. Biological effects of MRI contrast agents: Gadolinium retention, potential mechanisms and a role for phosphorus. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20170180. [Google Scholar]
- Yin, X.; Martineau, C.; Demers, I.; Basiliko, N.; Fenton, N.J. The Potential Environmental Risks Associated with the Development of Rare Earth Element Production in Canada. Environ. Rev. 2021, 29, 354–377. [Google Scholar] [CrossRef]
- Fujita, Y.; McCall, S.K.; Ginosar, D. Recycling Rare Earths: Perspectives and Recent Advances. MRS Bull. 2022, 47, 283–288. [Google Scholar] [CrossRef]
- Liu, S.L.; Fan, H.R.; Liu, X.; Meng, J.; Butcher, A.R.; Yann, L.; Yang, K.-F.; Li, X.C. Global rare earth elements projects: New developments and supply chains. Ore Geol. Rev. 2023, 157, 105428. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z.; Chen, Z.; Zhang, Y. A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China. Chemosphere 2013, 93, 1240–1246. [Google Scholar] [CrossRef]
- Guo, C.; Wei, Y.; Yan, L.; Li, Z.; Qian, Y.; Liu, H.; Li, Z.; Li, X.; Wang, Z.; Wang, J. Rare earth elements exposure and the alteration of the hormones in the hypothalamic-pituitary-thyroid (HPT) axis of the residents in an e-waste site: A cross-sectional study. Chemosphere 2020, 252, 126488. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, H.; Wang, Y. Study on the contents of trace rare earth elements and their distribution in wheat and rice samples by RNAA. J. Radioanal. Nucl. Chem. 1994, 179, 377–383. [Google Scholar] [CrossRef]
- Shan, X.Q.; Wang, H.I.; Zhang, S.Z.; Zhou, H.F.; Zheng, Y.; Yu, H.; Wen, B. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci. 2003, 165, 1343–1353. [Google Scholar] [CrossRef]
- Cao, X.; Chen, Y.; Gu, Z.; Wang, X. Determination of trace rare earth elements in plant and soil samples by inductively coupled plasma-mass spectrometry. Int. J. Environ. Anal. Chem. 2000, 76, 295–309. [Google Scholar] [CrossRef]
- Wiche, O.; Pourret, O. The role of root carboxylate release on rare earth element (hyper)accumulation in plants—A biogeochemical perspective on rhizosphere chemistry. Plant Soil. 2023, 492, 79–90. [Google Scholar] [CrossRef]
- Magdas, D.A.; Marincaş, O.; Cristea, G.; Feher, I.; Vedeanu, N. REEs—A possible tool for geographical origin assessment? Environ. Chem. 2019, 17, 148–157. [Google Scholar] [CrossRef]
- Magdas, T.M.; David, M.; Hategan, A.R.; Filip, G.A.; Magdas, D.A. Geographical Origin Authentication—A Mandatory Step in the Efficient Involvement of Honey in Medical Treatment. Foods 2024, 13, 532. [Google Scholar] [CrossRef]
- Brouziotis, A.A.; Giarra, A.; Libralato, G.; Pagano, G.; Guida, M.; Trifuoggi, M. Toxicity of rare earth elements: An overview on human health impact. Front. Environ. Sci. 2022, 10, 948041. [Google Scholar] [CrossRef]
- Pagano, G.; Thomas, P.J.; Di Nunzio, A.; Trifuoggi, M. Human exposures to rare earth elements: Present knowledge and research prospects. Environ. Res. 2019, 171, 493–500. [Google Scholar] [CrossRef]
- Sun, G.; Li, Z.; Liu, T.; Chen, J.; Wu, T.; Feng, X. Rare Earth Elements in Street Dust and Associated Health Risk in a Municipal Industrial Base of Central China. Environ. Geochem. Health 2017, 39, 1469–1486. [Google Scholar] [CrossRef]
- Fan, G.; Yuan, Z.; Zheng, H.; Liu, Z. Study on the effects of exposure to rare earth elements and health-responses in children aged 7–10 years. Wei Sheng Yan Jiu J. Hyg. Res. 2004, 33, 23–28. [Google Scholar]
- Briner, W.; Rycek, R.F.; Moellenberndt, A.; Dannull, K. Neurodevelopmental effects of lanthanum in mice. Neurotoxicol. Teratol. 2000, 22, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, W.; Shu, F.; Fan, Y.; Yang, N.; Wu, T.; Ji, L.; Xie, W.; Bade, R.; Jiang, S.; et al. Nd2O3 Nanoparticles Induce Toxicity and Cardiac/Cerebrovascular Abnormality in Zebrafish Embryos via the Apoptosis Pathway. Int. J. Nanomed. 2020, 15, 387–400. [Google Scholar] [CrossRef]
- Ding, Y.; Tian, Y.; Zeng, Z.; Wu, L.; Shuai, P.; Lan, H.; Zhu, X.; Zhong, Y.; Fan, X. YCl3 promotes neuronal cell death by inducing apoptotic pathways in rats. BioMed Res. Int. 2017, 2017, 2183658. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, Q.; Qi, M.; Lu, S.; Wu, S.; Xi, Q.; Cai, Y. Lanthanum chloride promotes mitochondrial apoptotic pathway in primary cultured rat astrocytes. Environ. Toxicol. 2011, 28, 489–497. [Google Scholar] [CrossRef]
- Huang, H.; Liu, H.; Ma, X.; Guan, H.; Yang, X. Lanthanum chloride or citrate is absorbed mainly via M cells in gastrointestinal tracts with lanthanum phosphates as the transformed species. J. Chin. Pharm. Sci. 2018, 27, 553–564. [Google Scholar] [CrossRef]
- Damment, S.J.; Pennick, M. Clinical pharmacokinetics of the phosphate binder lanthanum carbonate. Clin. Pharmacokinet. 2008, 47, 553–563. [Google Scholar] [CrossRef]
- Xiao, X.; Yong, L.; Jiao, B.; Yang, H.; Liang, C.; Jia, X.; Liu, Z.; Sang, Y.; Song, Y. Postweaning Exposure to Lanthanum Alters Neurological Behavior during Early Adulthood in Rats. NeuroToxicology 2021, 83, 40–50. [Google Scholar] [CrossRef]
- Wu, J.; Yang, J.; Yu, M.; Sun, W.; Han, Y.; Lu, X.; Jin, C.; Wu, S.; Cai, Y. Lanthanum chloride causes blood-brain barrier disruption through intracellular calcium-mediated RhoA/Rho kinase signaling and myosin light chain kinase. Metallomics 2020, 12, 2075–2083. [Google Scholar] [CrossRef] [PubMed]
- Gaman, L.; Radoi, M.P.; Delia, C.E.; Luzardo, O.P.; Zumbado, M.; Rodríguez-Hernández, Á.; Stoian, I.; Gilca, M.; Boada, L.D.; Henríquez-Hernández, L.A. Concentration of heavy metals and rare earth elements in patients with brain tumours: Analysis in tumour tissue, non-tumour tissue, and blood. Int. J. Environ. Health Res. 2019, 31, 741–754. [Google Scholar] [CrossRef]
- Feng, L.; Xiao, H.; He, X.; Li, Z.; Li, F.; Liu, N.; Zhao, Y.; Huang, Y.; Zhang, Z.; Chai, Z. Neurotoxicological consequence of long-term exposure to lanthanum. Toxicol. Lett. 2006, 165, 112–120. [Google Scholar] [CrossRef]
- Zheng, L.; Yang, J.; Liu, Q.; Yu, F.; Wu, S.; Jin, C.; Lu, X.; Zhang, L.; Du, Y.; Xi, Q. Lanthanum chloride impairs spatial learning and memory and downregulates NF-κB signalling pathway in rats. Arch. Toxicol. 2013, 87, 2105–2117. [Google Scholar] [CrossRef]
- Huo, W.; Zhu, Y.; Li, Z.; Pang, Y.; Wang, B.; Li, Z. A pilot study on the association between rare earth elements in maternal hair and the risk of neural tube defects in north China. Environ. Pollut. 2017, 226, 89–93. [Google Scholar] [CrossRef]
- Wei, J.; Wang, C.; Yin, S.; Pi, X.; Jin, L.; Li, Z.; Liu, J.; Wang, L.; Yin, C.; Ren, A. Concentrations of rare earth elements in maternal serum during pregnancy and risk for fetal neural tube defects. Environ. Int. 2020, 137, 105542. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Ge, L.; Sun, W.; Song, Z.; Lu, X.; Jin, C.; Wu, S.; Yang, J. Lanthanum decreased VAPB-PTPP51, BAP31-FIS1, and MFN2-MFN1 expression of mitochondria-associated membranes and induced abnormal autophagy in rat hippocampus. Food Chem. Toxicol. 2022, 161, 112831. [Google Scholar] [CrossRef] [PubMed]
- Han, G.C.; Jing, H.M.; Zhang, W.J.; Zhang, N.; Li, Z.N.; Zhang, G.Y.; Gao, S.; Ning, J.Y.; Li, G.J. Effects of lanthanum nitrate on behavioral disorder, neuronal damage and gene expression in different developmental stages of Caenorhabditis elegans. Toxicology 2022, 465, 153012. [Google Scholar] [CrossRef]
- He, X.; Zhang, Z.; Zhang, H.; Zhao, Y.; Chai, Z. Neurotoxicological evaluation of long-term lanthanum chloride exposure in rats. Toxicol. Sci. 2008, 103, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yang, J.; Sun, Y.; Gao, X.; Zhang, L.; Li, Y.; Yu, M.; Liu, S.; Lu, X.; Jin, C.; et al. Lanthanum chloride impairs memory in rats by disturbing the glutamate-glutamine cycle and over-activating NMDA receptors. Food Chem. Toxicol. 2018, 113, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, T.; Ma, L.; Guo, Y.; Huang, Y.; Zheng, L. Action of Akt Pathway on La-Induced Hippocampal Neuron Apoptosis of Rats in the Growth Stage. Neurotox. Res. 2020, 38, 434–446. [Google Scholar] [CrossRef]
- Yu, M.; Yang, J.; Gao, X.; Sun, W.; Liu, S.; Han, Y.; Lu, X.; Jin, C.; Wu, S.; Cai, Y. Lanthanum chloride impairs spatial learning and memory by inducing [Ca2+]m overload, mitochondrial fission-fusion disorder and excessive mitophagy in hippocampal nerve cells of rats. Metallomics 2020, 12, 592–606. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, J.; Jin, C.; Wu, S.; Lu, X.; Hu, X.; Sun, Y.; Cai, Y. The effect of Nrf2/ARE signaling pathway in the lanthanum chloride-induced impairment of learning and memory in rats. J. Neurochem. 2016, 140, 463–475. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, J.; Yu, S.; Ding, Z.; Song, H.; Wang, Y.; Li, Y. Lanthanum Chloride Causes Neurotoxicity in Rats by Upregulating miR-124 Expression and Targeting PIK3CA to Regulate the PI3K/Akt Signaling Pathway. BioMed Res. Int. 2020, 2020, 5205142. [Google Scholar] [CrossRef]
- Ding, Z.; Zhang, J.; Hu, Y.; Li, N.; Yu, S.; Zheng, L.; Lin, L. Effects of PI3K/AKT/mTOR pathway regulation of HIF-1α on Lanthanum-induced neurotoxicity in rats. Brain Res. 2021, 1761, 147400. [Google Scholar] [CrossRef]
- Du, Y.; Yang, J.; Yan, B.; Bai, Y.; Zhang, L.; Zheng, L.; Cai, Y. Lanthanum enhances glutamate–nitric oxide–3′, 5′-cyclic guanosine monophosphate pathway in the hippocampus of rats. Toxicol. Ind. Health 2016, 32, 1791–1800. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, Q.; Wu, S.; Xi, Q.; Cai, Y. Effects of lanthanum chloride on glutamate level, intracellular calcium concentration and caspases expression in the rat hippocampus. Biometals 2013, 26, 43–59. [Google Scholar] [CrossRef]
- Song, Z.; Mao, H.; Liu, J.; Sun, W.; Wu, S.; Lu, X.; Jin, C.; Yang, J. Lanthanum Chloride Induces Axon Abnormality through LKB1-MARK2 and LKB1-STK25-GM130 Signaling Pathways. Cell. Mol. Neurobiol. 2022, 43, 1181–1196. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, J.; Hu, X.; Gao, X.; Li, Y.; Yu, M.; Liu, S.; Lu, X.; Jin, C.; Wu, S.; et al. Lanthanum chloride reduces lactate production in primary culture rat cortical astrocytes and suppresses primary co-culture rat cortical astrocyte-neuron lactate transport. Arch. Toxicol. 2018, 92, 1407–1419. [Google Scholar] [CrossRef]
- Zhao, H.; Cheng, Z.; Hu, R.; Chen, J.; Hong, M.; Zhou, M.; Gong, X.; Wang, L.; Hong, F. Oxidative injury in the brain of mice caused by lanthanid. Biol. Trace Elem. Res. 2010, 142, 174–189. [Google Scholar] [CrossRef]
- Yan, L.; Yang, J.; Yu, M.; Lu, Y.; Huang, L.; Wang, J.; Lu, X.; Jin, C.; Wu, S.; Cai, Y. Lanthanum chloride induces neuron damage by activating the nuclear factor-kappa B signaling pathway in activated microglia. Metallomics 2019, 11, 1277–1287. [Google Scholar] [CrossRef]
- Yan, L.; Yang, J.; Yu, M.; Sun, W.; Han, Y.; Lu, X.; Jin, C.; Wu, S.; Cai, Y. Lanthanum Impairs Learning and Memory by Activating Microglia in the Hippocampus of Mice. Biol. Trace Elem. Res. 2022, 200, 1640–1649. [Google Scholar] [CrossRef]
- Jin, C.; Gao, L.; Li, Y.; Wu, S.; Lu, X.; Yang, J.; Cai, Y. Lanthanum damages learning and memory and suppresses astrocyte-neuron lactate shuttle in rat hippocampus. Exp. Brain Res. 2017, 235, 3817–3832. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Xiao, H.; He, X.; Li, Z.; Li, F.; Liu, N.; Chai, Z.; Zhao, Y.; Zhang, Z. Long-term effects of lanthanum intake on the neurobehavioral development of the rat. Neurotoxicol. Teratol. 2006, 28, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Yang, J.; Hong, Y.; Yuan, H.; Wang, J.; Zhang, Y.; Lu, X.; Jin, C.; Wu, S.; Cai, Y. Lanthanum Chloride Impairs Learning and Memory and Induces Dendritic Spine Abnormality by Down-Regulating Rac1/PAK Signaling Pathway in Hippocampus of Offspring Rats. Cell. Mol. Neurobiol. 2019, 40, 459–475. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Yu, M.; Sun, W.; Han, Y.; Yang, J.; Lu, X.; Jin, C.; Wu, S.; Cai, Y. Lanthanum Chloride Induces Autophagy in Primary Cultured Rat Cortical Neurons Through Akt/mTOR and AMPK/mTOR Signaling Pathways. Food Chem. Toxicol. 2021, 158, 112632. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, J.; Wu, S.; Jin, C.; Lu, X.; Hu, X.; Sun, Y.; Gao, X.; Cai, Y. Activation of Nrf2/ARE signaling pathway attenuates lanthanum chloride induced injuries in primary rat astrocytes. Metallomics 2017, 9, 1120–1131. [Google Scholar] [CrossRef]
- Wu, J.; Yang, J.; Liu, Q.; Wu, S.; Ma, H.; Cai, Y. Lanthanum Induced Primary Neuronal Apoptosis Through Mitochondrial Dysfunction Modulated by Ca2+ and Bcl-2 Family. Biol. Trace Elem. Res. 2013, 152, 125–134. [Google Scholar] [CrossRef]
- Allen, M. Securing rare earths for Europe’s high-tech industries. Horizon, The EU Research & Innovation Magazine, 3 January 2024. Available online: https://projects.research-and-innovation.ec.europa.eu/en/horizon-magazine/securing-rare-earths-europes-high-tech-industries (accessed on 13 September 2024).
- Tong, S.L.; Zhu, W.Z.; Gao, Z.H.; Meng, Y.X.; Peng, R.L.; Lu, G.C. Distribution characteristics of rare earth elements in children’s scalp hair from a rare earths mining area in southern China. J. Environ. Sci. Health Part A 2004, 39, 2517–2532. [Google Scholar] [CrossRef]
- Magdas, D.A.; David, M.; Hategan, A.R.; Filip, A.; Baldea, I.; Magdas, T.M. Rare Earth Elements: Between technological critical elements and emerging contaminants. J. Agric. Food Res. 2025, 21, 101818. [Google Scholar] [CrossRef]
- Gkika, D.A.; Chalaris, M.; Kyzas, G.Z. Review of methods for obtaining rare earth elements from recycling and their impact on the environment and human health. Processes 2024, 12, 1235. [Google Scholar] [CrossRef]
- Pereira, W.V.S.; Ramos, S.J.; Melo, L.C.A.; Dias, Y.N.; Martins, G.C.; Ferreira, L.C.G.; Fernandes, A.R. Human and environmental exposure to rare earth elements in gold mining areas in the northeastern Amazon. Chemosphere 2023, 340, 139824. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, H.; An, Y.; Ma, J.; Zhao, W.; Qu, Y.; Chen, H.; Liu, L.; Wu, F. Source, environmental behavior and potential health risk of rare earth elements in Beijing urban park soils. J. Hazard. Mater. 2023, 445, 130451. [Google Scholar] [CrossRef]
Mechanism | Molecular/Cellular Changes | References |
---|---|---|
Cytotoxicity | ↓ Cell viability; ↓ Astrocyte number; ↓ Cytoplasmic organelles; ↑ Vacuolated intracellular structures; ↑ Nuclear alterations; Impaired structural integrity; Impaired axonal growth; BBB disruption; Impaired synaptic plasticity; Disrupted neurotransmitter systems. | [28,31,34,35,36,37,38,39,40,41,42,43,44,45,46,47] |
Oxidative Stress | ↑ Prooxidants: ROS, MDA; ↓ Antioxidants: SOD, GSH, GPx, CAT, AsA; Nrf2 pathway downregulation. | [34,36,41,48] |
Apoptosis | ↑ Apoptotic rate and ↑ Bax/Bcl-2 ratio; ↑ Pro-apoptotic factors: Bax, Bad, Caspase-3, -9, -12; ↓ Anti-apoptotic factors: Bcl-2, Bcl-xl, pro-caspase-3; ↑ ER stress markers: GRP78, GRP94, GADD153; Suppression of PI3K/Akt/mTOR and NF-κB Pathway. | [24,31,38,42,44,48] |
Inflammation | ↑ Microglial activation (Iba1); ↑ Pro-inflammatory mediators (TNF-α, IL-1β, IL-6, MCP-1, NO, iNOS); Conflicting regulation of NF-κB pathway (in vitro vs. in vivo). | [30,48,49] |
Mitochondrial Dysfunction | ↓ Mitochondrial membrane potential; ↓ ATP production; ↑ Cytosolic cytochrome c release; ↓ Respiratory chain complex IV activity; Altered mitochondrial dynamics (↑ fission, ↓ fusion). | [24,34,37,39,48] |
Autophagy | ↑ Autophagosome formation; ↑ ULK1, Beclin1, LC3B-II; ↓ p62 (suggesting altered autophagic flux). | [34,39] |
Energy Metabolism Alterations | ↑ LDH release; ↓ Glucose and lactate transporters; ↓ GLUT1, ↓ MCT 1/2/4; ↓ Glycogen synthase (GS) & phosphorylase (GP). | [46,50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magdas, T.M.; Bodolea, C.; Gherman, C.; Hategan, A.R.; Magdas, D.A.; David, M.; Capras, R.D.; Filip, G.A. Neurotoxicity of Lanthanum Salts: A Narrative Review of Mechanistic Insights from Cellular and Animal Models. Molecules 2025, 30, 3748. https://doi.org/10.3390/molecules30183748
Magdas TM, Bodolea C, Gherman C, Hategan AR, Magdas DA, David M, Capras RD, Filip GA. Neurotoxicity of Lanthanum Salts: A Narrative Review of Mechanistic Insights from Cellular and Animal Models. Molecules. 2025; 30(18):3748. https://doi.org/10.3390/molecules30183748
Chicago/Turabian StyleMagdas, Tudor Mihai, Constantin Bodolea, Claudia Gherman, Ariana Raluca Hategan, Dana Alina Magdas, Maria David, Roxana Denisa Capras, and Gabriela Adriana Filip. 2025. "Neurotoxicity of Lanthanum Salts: A Narrative Review of Mechanistic Insights from Cellular and Animal Models" Molecules 30, no. 18: 3748. https://doi.org/10.3390/molecules30183748
APA StyleMagdas, T. M., Bodolea, C., Gherman, C., Hategan, A. R., Magdas, D. A., David, M., Capras, R. D., & Filip, G. A. (2025). Neurotoxicity of Lanthanum Salts: A Narrative Review of Mechanistic Insights from Cellular and Animal Models. Molecules, 30(18), 3748. https://doi.org/10.3390/molecules30183748