Green Synthesized Silver Nanoparticles from Biowaste for Rapid Dye Degradation: Experimental Investigation and Computational Mechanistic Insights
Abstract
1. Introduction
2. Results and Discussion
2.1. Optimized Conditions for the Synthesis of Ag NPs
2.2. Characteristics and Stability of the Synthesized Ag NPs
2.3. Catalytic Reduction of Methyl Orange Dye
2.4. Comparison with Other Studies
2.5. Catalytic Reduction of Commercial Synthetic Dye for Cotton Fabrics
2.6. Insights into the Degradation Mechanism of Methyl Orange via Molecular Simulations
2.6.1. MO Dye Adsorption Mechanism via MD Simulations
2.6.2. Insights into the MO Degradation Mechanisms via DFT Calculations
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of Nypa Fruticans Fruit Husk Extract and Green Synthesis of Ag NPs
3.3. Characterization of Ag NPs
3.4. Catalytic Tests for Methyl Orange Dye Degradation
3.5. Quantum Chemical Calculations
3.6. Molecular Dynamics Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Ag NPs | Silver nanoparticles |
SPR | Surface plasmon resonance |
NF | Nypa fruticans fruit husk |
Ag | Silver nitrate |
Sodium borohydride | |
NaOH | Sodium hydroxide |
MO | Methyl orange |
TEM | Transmission Electron Microscopy |
SEM | Scanning Electron Microscopy |
EDX | Energy-Dispersive X-ray Spectroscopy |
FT-IR | Fourier Transform Infrared Spectroscopy |
DFT | Density functional theory |
TD-DFT | Time-dependent density functional theory |
PCM | Polarizable continuum model |
NPA | Natural population analysis |
RMS | Root mean square |
MD | Molecular dynamics |
RDF | Radial distribution function |
CG | Conjugate gradient |
RESP | Restrained electrostatic potential |
GAFF | General Amber Force Field |
EAM | Embedded Atom Model |
References
- Kishor, R.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Bilal, M.; Chandra, R.; Bharagava, R.N. Ecotoxicological and Health Concerns of Persistent Coloring Pollutants of Textile Industry Wastewater and Treatment Approaches for Environmental Safety. J. Environ. Chem. Eng. 2021, 9, 105012. [Google Scholar] [CrossRef]
- Carney Almroth, B.; Cartine, J.; Jönander, C.; Karlsson, M.; Langlois, J.; Lindström, M.; Lundin, J.; Melander, N.; Pesqueda, A.; Rahmqvist, I.; et al. Assessing the Effects of Textile Leachates in Fish Using Multiple Testing Methods: From Gene Expression to Behavior. Ecotoxicol. Environ. Saf. 2021, 207, 111523. [Google Scholar] [CrossRef] [PubMed]
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic Organic Dyes as Contaminants of the Aquatic Environment and Their Implications for Ecosystems: A Review. Sci. Total Environ. 2020, 717, 137222. [Google Scholar] [CrossRef]
- Szyguła, A.; Guibal, E.; Palacín, M.A.; Ruiz, M.; Sastre, A.M. Removal of an Anionic Dye (Acid Blue 92) by Coagulation–Flocculation Using Chitosan. J. Environ. Manag. 2009, 90, 2979–2986. [Google Scholar] [CrossRef]
- Maxwell, J.C.; Baker, B.C.; Faul, C.F.J. Controlled Removal of Organic Dyes from Aqueous Systems Using Porous Cross-Linked Conjugated Polyanilines. ACS Appl. Polym. Mater. 2023, 5, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Samari, F.; Salehipoor, H.; Eftekhar, E.; Yousefinejad, S. Low-Temperature Biosynthesis of Silver Nanoparticles Using Mango Leaf Extract: Catalytic Effect, Antioxidant Properties, Anticancer Activity and Application for Colorimetric Sensing. New J. Chem. 2018, 42, 15905–15916. [Google Scholar] [CrossRef]
- Ertürk, A.S. Biosynthesis of Silver Nanoparticles Using Epilobium Parviflorum Green Tea Extract: Analytical Applications to Colorimetric Detection of Hg2+ Ions and Reduction of Hazardous Organic Dyes. J. Clust. Sci. 2019, 30, 1363–1373. [Google Scholar] [CrossRef]
- Kadam, J.; Dhawal, P.; Barve, S.; Kakodkar, S. Green Synthesis of Silver Nanoparticles Using Cauliflower Waste and Their Multifaceted Applications in Photocatalytic Degradation of Methylene Blue Dye and Hg2+ Biosensing. SN Appl. Sci. 2020, 2, 738. [Google Scholar] [CrossRef]
- Islam, M.A.; Jacob, M.V.; Antunes, E. A Critical Review on Silver Nanoparticles: From Synthesis and Applications to Its Mitigation through Low-Cost Adsorption by Biochar. J. Environ. Manag. 2021, 281, 111918. [Google Scholar] [CrossRef]
- Moond, M.; Singh, S.; Sangwan, S.; Devi, P.; Beniwal, A.; Rani, J.; Kumari, A.; Rani, S. Biosynthesis of Silver Nanoparticles Utilizing Leaf Extract of Trigonella Foenum-Graecum L. for Catalytic Dyes Degradation and Colorimetric Sensing of Fe3+/Hg2+. Molecules 2023, 28, 951. [Google Scholar] [CrossRef]
- Magdy, G.; Aboelkassim, E.; Abd Elhaleem, S.M.; Belal, F. A Comprehensive Review on Silver Nanoparticles: Synthesis Approaches, Characterization Techniques, and Recent Pharmaceutical, Environmental, and Antimicrobial Applications. Microchem. J. 2024, 196, 109615. [Google Scholar] [CrossRef]
- Wonglakhon, T.; Jommala, N.; Laksee, S.; Nuengmatcha, P.; Ninwong, B.; Zahn, D.; Thepchuay, Y. Experimental and Computational Study of Ecofriendly Synthesis of Silver Nanoparticles from Natural Extracts: Self-Controlled Nucleation and Growth, and Colorimetric Detection of Heavy Metal Ions. Surf. Interfaces 2025, 68, 106618. [Google Scholar] [CrossRef]
- Akpakpan, A.E.; Akpabio, U.D.; Obot, I.B. Evaluation of Physicochemical Properties and Soda Pulping of Nypa Fruticans Frond and Petiole. Elixir Appl. Chem. 2012, 45, 7664–7668. [Google Scholar]
- Nypa Fruticans (Nipa Palm). CABI Compendium. 2022. Available online: https://www.cabidigitallibrary.org/doi/abs/10.1079/cabicompendium.36772 (accessed on 11 August 2025).
- Cheablam, O.; Chanklap, B. Sustainable Nipa Palm (Nypa Fruticans Wurmb.) Product Utilization in Thailand. Scientifica 2020, 2020, 3856203. [Google Scholar] [CrossRef]
- Axon, S.; James, D. The UN Sustainable Development Goals: How Can Sustainable Chemistry Contribute? A View from the Chemical Industry. Curr. Opin. Green Sustain. Chem. 2018, 13, 140–145. [Google Scholar] [CrossRef]
- Lee, S.H.; Jun, B.H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, J.; Qin, C.; Guo, X.; Wang, H.; Zeng, Z.; Yuan, X. Cuprous-Mediated Peroxymonosulfate Activation for Fenton-like Removal of Micropollutants: The Function of Co-Catalyst and the Accelerated Degradation Mechanism. Ecotoxicol. Environ. Saf. 2023, 264, 115435. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, R.; Yao, Y.; Zhao, M.; Huang, X.; Huang, Z.; Yang, Y.; Liang, X.; Yan, K. Oxygen Vacancies Engineering in Iron-Doped Nickel Molybdate Nanorods to Accelerate Electron Transfer for Rapid Organic Pollutants Removal. Sep. Purif. Technol. 2025, 372, 133391. [Google Scholar] [CrossRef]
- Vidhu, V.K.; Philip, D. Catalytic Degradation of Organic Dyes Using Biosynthesized Silver Nanoparticles. Micron 2014, 56, 54–62. [Google Scholar] [CrossRef]
- Joseph, S.; Mathew, B. Microwave-Assisted Green Synthesis of Silver Nanoparticles and the Study on Catalytic Activity in the Degradation of Dyes. J. Mol. Liq. 2015, 204, 184–191. [Google Scholar] [CrossRef]
- Meenakumari, M.; Philip, D. Degradation of Environment Pollutant Dyes Using Phytosynthesized Metal Nanocatalysts. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 135, 632–638. [Google Scholar] [CrossRef]
- Edison, T.N.J.I.; Atchudan, R.; Sethuraman, M.G.; Lee, Y.R. Reductive-Degradation of Carcinogenic Azo Dyes Using Anacardium Occidentale Testa Derived Silver Nanoparticles. J. Photochem. Photobiol. B 2016, 162, 604–610. [Google Scholar] [CrossRef]
- Bogireddy, N.K.R.; Kiran Kumar, H.A.; Mandal, B.K. Biofabricated Silver Nanoparticles as Green Catalyst in the Degradation of Different Textile Dyes. J. Environ. Chem. Eng. 2016, 4, 56–64. [Google Scholar] [CrossRef]
- Varadavenkatesan, T.; Selvaraj, R.; Vinayagam, R. Phyto-Synthesis of Silver Nanoparticles from Mussaenda Erythrophylla Leaf Extract and Their Application in Catalytic Degradation of Methyl Orange Dye. J. Mol. Liq. 2016, 221, 1063–1070. [Google Scholar] [CrossRef]
- Jyoti, K.; Singh, A. Green Synthesis of Nanostructured Silver Particles and Their Catalytic Application in Dye Degradation. J. Genet. Eng. Biotechnol. 2016, 14, 311–317. [Google Scholar] [CrossRef]
- Sengan, M.; Veeramuthu, D.; Veerappan, A. Photosynthesis of Silver Nanoparticles Using Durio Zibethinus Aqueous Extract and Its Application in Catalytic Reduction of Nitroaromatics, Degradation of Hazardous Dyes and Selective Colorimetric Sensing of Mercury Ions. Mater. Res. Bull. 2018, 100, 386–393. [Google Scholar] [CrossRef]
- Ismail, M.; Gul, S.; Khan, M.I.; Khan, M.A.; Asiri, A.M.; Khan, S.B. Medicago Polymorpha-Mediated Antibacterial Silver Nanoparticles in the Reduction of Methyl Orange. Green Process. Synth. 2019, 8, 118–127. [Google Scholar] [CrossRef]
- Santhosh, A.S.; Sandeep, S.; Kumara Swamy, N. Green Synthesis of Nano Silver from Euphorbia Geniculata Leaf Extract: Investigations on Catalytic Degradation of Methyl Orange Dye and Optical Sensing of Hg2+. Surf. Interfaces 2019, 14, 50–54. [Google Scholar] [CrossRef]
- Raina, S.; Roy, A.; Bharadvaja, N. Degradation of Dyes Using Biologically Synthesized Silver and Copper Nanoparticles. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100278. [Google Scholar] [CrossRef]
- Edison, T.N.J.I.; Atchudan, R.; Karthik, N.; Balaji, J.; Xiong, D.; Lee, Y.R. Catalytic Degradation of Organic Dyes Using Green Synthesized N-Doped Carbon Supported Silver Nanoparticles. Fuel 2020, 280, 118682. [Google Scholar] [CrossRef]
- Raj, S.; Singh, H.; Trivedi, R.; Soni, V. Biogenic Synthesis of AgNPs Employing Terminalia Arjuna Leaf Extract and Its Efficacy towards Catalytic Degradation of Organic Dyes. Sci. Rep. 2020, 10, 9616. [Google Scholar] [CrossRef] [PubMed]
- Chandra Paul, S.; Bhowmik, S.; Rani Nath, M.; Islam, M.S.; Kanti Paul, S.; Neazi, J.; Sabnam Binta Monir, T.; Dewanjee, S.; Abdus Salam, M. Silver Nanoparticles Synthesis in a Green Approach: Size Dependent Catalytic Degradation of Cationic and Anionic Dyes. Orient. J. Chem. 2020, 36, 353–360. [Google Scholar] [CrossRef]
- Shah, Z.; Gul, T.; Ali Khan, S.; Shaheen, K.; Anwar, Y.; Suo, H.; Ismail, M.; Alghamdi, K.M.; Salman, S.M. Synthesis of High Surface Area AgNPs from Dodonaea Viscosa Plant for the Removal of Pathogenic Microbes and Persistent Organic Pollutants. Mater. Sci. Eng. B 2021, 263, 114770. [Google Scholar] [CrossRef]
- Sarkar, M.; Denrah, S.; Das, M.; Das, M. Statistical Optimization of Bio-Mediated Silver Nanoparticles Synthesis for Use in Catalytic Degradation of Some Azo Dyes. Chem. Phys. Impact 2021, 3, 100053. [Google Scholar] [CrossRef]
- Kim, B.; Song, W.C.; Park, S.Y.; Park, G. Green Synthesis of Silver and Gold Nanoparticles via Sargassum Serratifolium Extract for Catalytic Reduction of Organic Dyes. Catalysts 2021, 11, 347. [Google Scholar] [CrossRef]
- Chikkanayakanahalli Paramesh, C.; Halligudra, G.; Gangaraju, V.; Sriramoju, J.B.; Shastri, M.; Kachigere, B.H.; Habbanakuppe, D.P.; Rangappa, D.; Kanchugarakoppal Subbegowda, R.; Doddakunche Shivaramu, P. Silver Nanoparticles Synthesized Using Saponin Extract of Simarouba Glauca Oil Seed Meal as Effective, Recoverable and Reusable Catalyst for Reduction of Organic Dyes. Results Surf. Interfaces 2021, 3, 100005. [Google Scholar] [CrossRef]
- Ibrahim, S.; Ahmad, Z.; Manzoor, M.Z.; Mujahid, M.; Faheem, Z.; Adnan, A. Optimization for Biogenic Microbial Synthesis of Silver Nanoparticles through Response Surface Methodology, Characterization, Their Antimicrobial, Antioxidant, and Catalytic Potential. Sci. Rep. 2021, 11, 770. [Google Scholar] [CrossRef]
- Rajasekar, R.; Thanasamy, R.; Samuel, M.; Edison, T.N.J.I.; Raman, N. Ecofriendly Synthesis of Silver Nanoparticles Using Heterotheca Subaxillaris Flower and Its Catalytic Performance on Reduction of Methyl Orange. Biochem. Eng. J. 2022, 187, 108447. [Google Scholar] [CrossRef]
- Vankdoth, S.; Velidandi, A.; Sarvepalli, M.; Vangalapati, M. Role of Plant (Tulasi, Neem and Turmeric) Extracts in Defining the Morphological, Toxicity and Catalytic Properties of Silver Nanoparticles. Inorg. Chem. Commun. 2022, 140, 109476. [Google Scholar] [CrossRef]
- Khan, W.; Khan, N.; Jamila, N.; Masood, R.; Minhaz, A.; Amin, F.; Atlas, A.; Nishan, U. Antioxidant, Antibacterial, and Catalytic Performance of Biosynthesized Silver Nanoparticles of Rhus Javanica, Rumex Hastatus, and Callistemon Viminalis. Saudi J. Biol. Sci. 2022, 29, 894–904. [Google Scholar] [CrossRef]
- Song, W.C.; Kim, B.; Park, S.Y.; Park, G.; Oh, J.W. Biosynthesis of Silver and Gold Nanoparticles Using Sargassum Horneri Extract as Catalyst for Industrial Dye Degradation. Arab. J. Chem. 2022, 15, 104056. [Google Scholar] [CrossRef]
- Sarkar, P.; Paul, S.K.; Sahu, K.; Mandal, S.; Islam, Q.A.; Chakrabarty, R. A Greener Synthesis of Silver Nanoparticles Using Tea Leaf and Aloe Vera Leaf Extract for Catalytic Organic Dye Degradation Application. ChemistrySelect 2023, 8, e202301906. [Google Scholar] [CrossRef]
- Desai, R.; Yadav, V.K.; Patel, B.; Rami, E.; Almoallim, H.S.; Ansari, M.J.; Choudhary, N.; Sahoo, D.K.; Patel, A. Assessment of Antimicrobial Activity and Methyl Orange Dye Removal by Klebsiella Pneumoniae-Mediated Silver Nanoparticles. Green Process. Synth. 2024, 13, 20240084. [Google Scholar] [CrossRef]
- Biswas, K.; Ahamed, Z.; Dutta, T.; Mallick, B.; Khuda-Bukhsh, A.R.; Biswas, J.K.; Mandal, S.K. Green Synthesis of Silver Nanoparticles from Waste Leaves of Tea (Camellia Sinensis) and Their Catalytic Potential for Degradation of Azo Dyes. J. Mol. Struct. 2024, 1318, 139448. [Google Scholar] [CrossRef]
- Yang, Z.; Gong, X.; Hu, Y.; Yue, P.; Lü, B.; Peng, F. Green Synthesis of Lichenan-Decorated Silver Nanoparticles for Catalytic Hydrogenation of Organic Dyes and Bacterial Disinfection. Chem. Eng. J. 2024, 487, 150516. [Google Scholar] [CrossRef]
- Moond, M.; Singh, S.; Rani, J.; Beniwal, A.; Sharma, R.K. Bio-Fabricated Silver Nanoparticles for Catalytic Degradation of Toxic Dyes and Colorimetric Sensing of Hg2+. ChemistrySelect 2024, 9, e202401826. [Google Scholar] [CrossRef]
- Hijazi, B.U.; Faraj, M.; Mhanna, R.; El-Dakdouki, M.H. Biosynthesis of Silver Nanoparticles as a Reliable Alternative for the Catalytic Degradation of Organic Dyes and Antibacterial Applications. Curr. Res. Green Sustain. Chem. 2024, 8, 100408. [Google Scholar] [CrossRef]
- Kurra, H.; Velidandi, A.; Pabbathi, N.P.P.; Godishala, V. Aqueous Cymbopogon Citratus Extract Mediated Silver Nanoparticles: Part II. Dye Degradation Studies. Eng 2025, 6, 102. [Google Scholar] [CrossRef]
- Kaliraja, T.; Kalla, R.M.N.; Al-Zahrani, F.A.M.; Vattikuti, S.V.P.; Lee, J. Eco-Friendly Synthesis of Silver Nanoparticles from Ligustrum Ovalifolium Flower and Their Catalytic Applications. Nanomaterials 2025, 15, 1087. [Google Scholar] [CrossRef]
- Priyadarshini, V.; Tharini, K.; Kalaimagal, G.; Alvin Kalicharan, A.; Subhashini, B.; Rathinavelu, A.; Mohan, S. Green Engineered Silver (Ag NPs) Nanoparticles Enable for Thermal, Optical Behavior and Catalytic Elimination of Organic Pollutants. Results Surf. Interfaces 2025, 20, 100593. [Google Scholar] [CrossRef]
- Goswami, P.J.; Kashyap, K.; Dutta, D.; Lal, M.; Hmar, J.J.L.; Bori, J. A Facile Green Synthesis of Ultra Small Silver Nanoparticles Using Aqueous Branch Extract of Dipterocarpus Retusus (Hollong) Promoting Catalytic Degradation of Organic Pollutants for Environmental Remediation. Ind. Crops Prod. 2025, 235, 121689. [Google Scholar] [CrossRef]
- Basappa, K.S.; Raghava, S.; Umesha, S. Biogenic Silver Nanoparticles from Annona Reticulata Endophyte: Antibacterial, Anticancer, and Dye Degradation Potential. Vegetos 2025. [Google Scholar] [CrossRef]
- Lima, A.K.O.; Vieira, Í.R.S.; Souza, L.M.d.S.; Florêncio, I.; Silva, I.G.M.d.; Tavares Junior, A.G.; Machado, Y.A.A.; Santos, L.C.d.; Taube, P.S.; Nakazato, G.; et al. Green Synthesis of Silver Nanoparticles Using Paullinia Cupana Kunth Leaf Extract Collected in Different Seasons: Biological Studies and Catalytic Properties. Pharmaceutics 2025, 17, 356. [Google Scholar] [CrossRef] [PubMed]
- Chetry, L.; Sarma, P.P.; Baruah, P.K. Zingiber Sianginensis-Mediated Green Synthesis of Multifunctional Silver Nanoparticles for Antimicrobial, Antioxidant, Heavy Metal Sensing, and Environmental Remediation. Colloids Surf. A Physicochem. Eng. Asp. 2025, 720, 137156. [Google Scholar] [CrossRef]
- Fahimirad, B.; Malekshah, R.E.; Chamjangali, M.A.; Abasabadi, R.K.; Bromand, S. Theoretical and Experimental Study of the Photodegradation of Methyl Orange in the Presence of Different Morphologies of Au-ZnO Using Monte Carlo Dynamic Simulation. Environ. Sci. Pollut. Res. 2022, 29, 55131–55146. [Google Scholar] [CrossRef]
- Boumya, W.; Khnifira, M.; Farid, Z.; Sadiq, M.; Elhalil, A.; Achak, M.; Kaya, S.; Barka, N.; Abdennouri, M. Comparative Study of Cationic Nile Blue and Anionic Methyl Orange Dyes Adsorption in Water on the (110) Surface of Metal Chlorides by DFT and MD Approaches. J. Phys. Chem. Solids 2024, 185, 111738. [Google Scholar] [CrossRef]
- Qutob, M.; Doğan, Ş.; Rafatullah, M. Heterogeneous Activation of Persulfate by Activated Carbon for Efficient Acetaminophen Degradation: Mechanism, Kinetics, Mineralization, and Density Functional Theory. ChemistrySelect 2022, 7, e202201249. [Google Scholar] [CrossRef]
- Oláh, J.; Alsenoy, C.V.; Sannigrahi, A.B. Condensed Fukui Functions Derived from Stockholder Charges: Assessment of Their Performance as Local Reactivity Descriptors. J. Phys. Chem. A 2002, 106, 3885–3890. [Google Scholar] [CrossRef]
- Roy, R.K. Stockholders Charge Partitioning Technique. A Reliable Electron Population Analysis Scheme to Predict Intramolecular Reactivity Sequence. J. Phys. Chem. A 2003, 107, 10428–10434. [Google Scholar] [CrossRef]
- Wonglakhon, T.; Surawatanawong, P. Mechanistic Insights into HCO2H Dehydrogenation and CO2 Hydrogenation Catalyzed by Ir(Cp*) Containing Tetrahydroxy Bipyrimidine Ligand: The Role of Sodium and Proton Shuttle. Dalton Trans. 2018, 47, 17020–17031. [Google Scholar] [CrossRef]
- Bolton, P.D.; Ellis, J.; Fleming, K.A.; Lantzke, I.R. Protonation of Azobenzene Derivatives. I. Methyl Orange and Ortho-Methyl Orange. Aust. J. Chem. 1973, 26, 1005–1014. [Google Scholar] [CrossRef]
- Kim, H.J.; Jung, Y.J.; Son, S.H.; Choi, W.S. Compressible Separator and Catalyst for Simultaneous Separation and Purification of Emulsions and Aqueous Pollutants. ACS Omega 2023, 8, 40741–40753. [Google Scholar] [CrossRef]
- Kgatle, M.; Sikhwivhilu, K.; Ndlovu, G.; Moloto, N. Degradation Kinetics of Methyl Orange Dye in Water Using Trimetallic Fe/Cu/Ag Nanoparticles. Catalysts 2021, 11, 428. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Fukui, K. The Path of Chemical Reactions—The IRC Approach. Acc. Chem. Res. 1981, 14, 363–368. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735–746. [Google Scholar] [CrossRef]
- Wang, B.; Rong, C.; Chattaraj, P.K.; Liu, S. A Comparative Study to Predict Regioselectivity, Electrophilicity and Nucleophilicity with Fukui Function and Hirshfeld Charge. Theor. Chem. Acc. 2019, 138, 124. [Google Scholar] [CrossRef]
- Liu, S.; Rong, C.; Lu, T. Information Conservation Principle Determines Electrophilicity, Nucleophilicity, and Regioselectivity. J. Phys. Chem. A 2014, 118, 3698–3704. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Zahn, D.; Schilling, B.; Kast, S.M. Enhancement of the Wolf Damped Coulomb Potential: Static, Dynamic, and Dielectric Properties of Liquid Water from Molecular Simulation. J. Phys. Chem. B 2002, 106, 10725–10732. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Polyak, B.T. The Conjugate Gradient Method in Extremal Problems. USSR Comput. Math. Math. Phys. 1969, 9, 94–112. [Google Scholar] [CrossRef]
- Jin, J.; Wang, X.; Wick, C.D.; Dang, L.X.; Miller, J.D. Silica Surface States and Their Wetting Characteristics. Surf. Innov. 2019, 8, 145–157. [Google Scholar] [CrossRef]
- Ji, S.; Torres, S.A.G.; Chen, J.; Lei, L.; Li, L. Molecular Dynamics Simulation of Film Water Thickness and Properties at Different Interfaces in Partially Saturated Frozen Soil Systems. Sci. Rep. 2025, 15, 2343. [Google Scholar] [CrossRef]
- Williams, P.L.; Mishin, Y.; Hamilton, J.C. An Embedded-Atom Potential for the Cu–Ag System. Model. Simul. Mat. Sci. Eng. 2006, 14, 817. [Google Scholar] [CrossRef]
- Heinz, H.; Vaia, R.A.; Farmer, B.L.; Naik, R.R. Accurate Simulation of Surfaces and Interfaces of Face-Centered Cubic Metals Using 12−6 and 9−6 Lennard-Jones Potentials. J. Phys. Chem. C 2008, 112, 17281–17290. [Google Scholar] [CrossRef]
- Mamatkulov, S.; Polák, J.; Razzokov, J.; Tomaník, L.; Slavíček, P.; Dzubiella, J.; Kanduč, M.; Heyda, J. Unveiling the Borohydride Ion through Force-Field Development. J. Chem. Theory Comput. 2024, 20, 1263–1273. [Google Scholar] [CrossRef]
Condition | Optimized Parameter |
---|---|
pH | 9 |
Concentration of Ag | 1.0 mM |
Concentration of NF extract | 0.2% w/v |
Volume ratio of NF extract: Ag | 1:20 |
Temperature | 60 °C |
Reaction time | 45 min |
, (M) | % Degradation | R2 | k (min−1) | Time (min) |
---|---|---|---|---|
0.05 | 95.99 | 0.8533 | 0.030995 | 6.5 |
0.10 | 95.55 | 0.9487 | 0.686816 | 4.5 |
0.15 | 95.33 | 0.9762 | 0.929336 | 4.5 |
0.20 | 99.50 | 0.9961 | 1.502668 | 2.5 |
0.25 | 99.66 | 0.9824 | 2.457128 | 2.5 |
0.30 | 99.03 | 0.9806 | 1.912067 | 2.5 |
Volume of Ag NPs (μL) | % Degradation | R2 | k (min−1) | Time (min) |
---|---|---|---|---|
25 | 95.36 | 0.9929 | 0.523583 | 4.5 |
50 | 95.73 | 0.9963 | 1.405366 | 1.5 |
75 | 95.58 | 0.9925 | 2.404223 | 1.0 |
100 | 99.26 | 0.9905 | 2.763169 | 1.0 |
Source of Ag NP Synthesis | Size (nm) a | Degradation Percentage (%) | Reaction Rate (min−1) | Time (min) | [Ref.] (Year) |
---|---|---|---|---|---|
Trigonella foenum-graecum seeds | 10–30 | 100 b | 0.6626 | 6 | [20] (2014) |
Biophytum sensitivum | 19.06 | 100 b | 0.2758 | 9 | [21] (2015) |
Punica granatum | 36 | 99 | 0.2175 | 12 | [22] (2015) |
Anacardium occidentale testa | 25 | 100 b | 0.1178 | 20 | [23] (2016) |
Sterculia acuminata fruit | 10 | 100 b | 0.0879 | 3 | [24] (2016) |
Mussaenda erythrophylla leaf | 24–91 | - | - | 45 | [25] (2016) |
Zanthoxylum armatum leaves | 15–50 | - | 0.00186 | >24 h | [26] (2016) |
Durio zibethinus | 10–25 | 100 b | 0.636 | 7.5 | [27] (2018) |
Medicago polymorpha | 25–33 | 97 | 0.348 | 3 | [28] (2019) |
Euphorbia geniculata leaf | 17 | 97.28 | - | 30 | [29] (2019) |
Centella asiatica | 30–50 | 84.38 | - | 180 | [30] (2020) |
Prunus mume (P. mume) fruit | 30 | 99.96 | 0.0785 | 30 | [31] (2020) |
Terminalia arjuna leaf | 10–50 | 86.68 | 0.166 | 14 | [32] (2020) |
Calendula officinalis | 50–60 | >95 | 0.18 | 10 | [33] (2020) |
Dodonaea viscosa | 60 | 96.2 | 0.2925 | 4 | [34] (2021) |
Eucalyptus globulus fruit | 20–100 | >90% | 0.247 | 10 | [35] (2021) |
Sargassum serratifolium | 27.84 | - | 0.1580 | 16 | [36] (2021) |
Simarouba glauca oil seed meal | 4.61 | 100 b | 0.055 | 40 | [37] (2021) |
Bacillus cereus | 5–7.06 | - | 0.0976 | >25 | [38] (2021) |
Heterotheca subaxillaris flower | 20–30 | 100 b | 0.12 | 11 | [39] (2022) |
Neem | 5–13 | 94.27 | 0.0857 | 35 | [40] (2022) |
Rhus javanica, Rumex hastatus, and Callistemon viminalis | 55–67 | 80–83 | - | 120 | [41] (2022) |
Sargassum horneri | 22.72 | - | 0.2266 | 22 | [42] (2022) |
Tea leaf and aloe vera leaf | 90 | 100 | 0.500 | 12 | [43] (2023) |
Klebsiella pneumoniae | 22.25–47.99 | 26.6 | - | 50 | [44] (2024) |
Camellia sinensis | 74.85 | 93 | 0.087 | 40 | [45] (2024) |
Usnea longissima (Lichenan) | 6.3 | 100 b | 1.481 | 2.67 | [46] (2024) |
Trigonella foenum-graecum L. seed (HM 425) | 28 | 83.63 | 0.0412 | 39 | [47] (2024) |
S. costus root aqueous | 22 | 72.88 | 0.0072 | 135 | [48] (2024) |
Cymbopogon citratus (lemongrass) | 15–62.5 | 95.82 | 0.0413 | 90 | [49] (2025) |
Ligustrum ovalifolium flower | 50–100 | 92 | 0.8344 | 8 | [50] (2025) |
Morinda citrifolia leaf | 22.72 | 98.6 | 0.923 | 6 | [51] (2025) |
Dipterocarpus retusus branch | 2.76 | 99.1 | 0.0692 | 14 | [52] (2025) |
Annona reticulata endophyte | 175.2 | 95 | - | 15 | [53] (2025) |
Paullinia cupana Kunth leaf | 39.33–126.2 | 96.42 c | 0.0946 c | 14 c | [54] (2025) |
Zingiber sianginensis | 19.49 | 98 | 0.9918 | 3.67 | [55] (2025) |
Nypa fruticans fruit husk | 4 | >99 | 2.763 | ~1 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wonglakhon, T.; Chonsakon, A.; Nuengmatcha, P.; Ninwong, B.; Zahn, D.; Thepchuay, Y. Green Synthesized Silver Nanoparticles from Biowaste for Rapid Dye Degradation: Experimental Investigation and Computational Mechanistic Insights. Molecules 2025, 30, 3738. https://doi.org/10.3390/molecules30183738
Wonglakhon T, Chonsakon A, Nuengmatcha P, Ninwong B, Zahn D, Thepchuay Y. Green Synthesized Silver Nanoparticles from Biowaste for Rapid Dye Degradation: Experimental Investigation and Computational Mechanistic Insights. Molecules. 2025; 30(18):3738. https://doi.org/10.3390/molecules30183738
Chicago/Turabian StyleWonglakhon, Tanakorn, Areeya Chonsakon, Prawit Nuengmatcha, Benjawan Ninwong, Dirk Zahn, and Yanisa Thepchuay. 2025. "Green Synthesized Silver Nanoparticles from Biowaste for Rapid Dye Degradation: Experimental Investigation and Computational Mechanistic Insights" Molecules 30, no. 18: 3738. https://doi.org/10.3390/molecules30183738
APA StyleWonglakhon, T., Chonsakon, A., Nuengmatcha, P., Ninwong, B., Zahn, D., & Thepchuay, Y. (2025). Green Synthesized Silver Nanoparticles from Biowaste for Rapid Dye Degradation: Experimental Investigation and Computational Mechanistic Insights. Molecules, 30(18), 3738. https://doi.org/10.3390/molecules30183738