Advances in the Synthesis of Heterocyclic Compounds and Their Applications
Author Contributions
Conflicts of Interest
List of Contributions
- Prates, J.L.B.; de Matos Silva, S.; Medina-Alarcón, K.P.; dos Santos, K.S.; Belizario, J.A.; Lopes, J.R.; Marin-Dett, F.H.; Campos, D.L.; Mendes Giannini, M.J.S.; Fusco-Almeida, A.M.; et al. Synthesis and Evaluation of Boron-Containing Heterocyclic Compounds with Antimicrobial and Anticancer Activities. Molecules 2025, 30, 1117. https://doi.org/10.3390/molecules30051117.
- Iorkula, T.H.; Tolman, B.A.; Ganiyu, L.O.; Peterson, M.A. An Efficient Synthesis of 3,5-Bis-Aminated Pyrazolo[1,5-a]Pyrimidines: Microwave-Assisted Copper Catalyzed C-3 Amination of 5-Amino-3-Bromo-Substituted Precursors. Molecules 2025, 30, 458. https://doi.org/10.3390/molecules30030458.
- Srivastava, S.; Luo, J.; Whalen, D.; Robertson, K.N.; Jha, A. Concise Synthesis of Naphthalene-Based 14-Aza-12-Oxasteroids. Molecules 2025, 30, 415. https://doi.org/10.3390/molecules30020415.
- Murata, Y.; Kawakubo, M.; Maruyama, A.; Matsumura, M.; Yasuike, S. Synthesis and Optical Properties of N-Arylnaphtho- and Anthra[2,3-d]oxazol-2-amines. Molecules 2025, 30, 319. https://doi.org/10.3390/molecules30020319.
- Hegedűs, D.; Szemerédi, N.; Petrinca, K.; Berkecz, R.; Spengler, G.; Szatmári, I. Synthesis of Tumor Selective Indole and 8-Hydroxyquinoline Skeleton Containing Di-, or Triarylmethanes with Improved Cytotoxic Activity. Molecules 2024, 29, 4176. https://doi.org/10.3390/molecules29174176.
- Dresler, E.; Wróblewska, A.; Jasiński, R. Energetic Aspects and Molecular Mechanism of 3-Nitro-substituted 2-Isoxazolines Formation via Nitrile N-Oxide [3+2] Cycloaddition: An MEDT Computational Study. Molecules 2024, 29, 3042. https://doi.org/10.3390/molecules29133042.
- Khelwati, H.; van Geelen, L.; Kalscheuer, R.; Müller, T.J.J. Synthesis, Electronic, and Antibacterial Properties of 3,7-Di(hetero)aryl-substituted Phenothiazinyl N-Propyl Trimethylammonium Salts. Molecules 2024, 29, 2126. https://doi.org/10.3390/molecules29092126.
- Al-Matarneh, C.M.; Nicolescu, A.; Marinaş, I.C.; Găboreanu, M.D.; Shova, S.; Dascălu, A.; Silion, M.; Pinteală, M. New Library of Iodo-Quinoline Derivatives Obtained by an Alternative Synthetic Pathway and Their Antimicrobial Activity. Molecules 2024, 29, 772. https://doi.org/10.3390/molecules29040772.
- Ouzounthanasis, K.A.; Rizos, S.R.; Koumbis, A.E. A Convenient Synthesis of Novel Isoxazolidine and Isoxazole Isoquinolinones Fused Hybrids. Molecules 2024, 29, 91. https://doi.org/10.3390/molecules29010091.
- Gao, J.; Liu, Z.; Guo, X.; Wu, L.; Chen, Z.; Yang, K. 1,1,1,3,3,3-Hexafluoro-2-Propanol-Promoted Friedel–Crafts Reaction: Metal-Free Synthesis of C3-Difluoromethyl Carbinol-Containing Imidazo[1,2-a]pyridines at Room Temperature. Molecules 2023, 28, 7522. https://doi.org/10.3390/molecules28227522.
- Gach-Janczak, K.; Piekielna-Ciesielska, J.; Waśkiewicz, J.; Krakowiak, K.; Wtorek, K.; Janecka, A. Quinolin-4-ones: Methods of Synthesis and Application in Medicine. Molecules 2025, 30, 163. https://doi.org/10.3390/molecules30010163.
- Zhang, X.; Liu, M.; Qiu, W.; Zhang, W. 2-Azidobenzaldehyde-Based [4+2] Annulation for the Synthesis of Quinoline Derivatives. Molecules 2024, 29, 1241. https://doi.org/10.3390/molecules29061241.
References
- Naik, A.; Juvale, K. A comprehensive review on the role of nitrogen containing heterocycles in overcoming ABC transporter mediated multidrug resistance in cancer. Bioorg. Chem. 2025, 163, 108709. [Google Scholar] [CrossRef] [PubMed]
- Rusu, A.; Moga, I.-M.; Uncu, L.; Hancu, G. The Role of Five-Membered Heterocycles in the Molecular Structure of Antibacterial Drugs Used in Therapy. Pharmaceutics 2023, 15, 2554. [Google Scholar] [CrossRef] [PubMed]
- Boretti, A.; Banik, B. A Narrative Review of Four-Membered Heterocycles in Next-Generation Energy Conversion and Storage. Energy Storage 2025, 7, e70233. [Google Scholar] [CrossRef]
- Moldoveanu, C.; Mangalagiu, I.I.; Zbancioc, G. Fluorescent Azasteroids through Ultrasound Assisted Cycloaddition Reactions. Molecules 2021, 26, 5098. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wu, D.; Peng, W.; Li, X.; Hu, F.; Huang, B.; Zhu, J.; Wu, Y. Heterocyclic compound, application thereof and pharmaceutical composition comprising same. PCT Int. Appl. 2019, 2019, 158107. [Google Scholar]
- Pellissier, H. Synthesis of Chiral Heterocycles Through Enantioselective Silver-Catalyzed Transformations. Eur. J. Org. Chem. 2025, 28, e202401284. [Google Scholar] [CrossRef]
- Chaudhary, A.; Srivastava, R. Synthetic Approaches of Six Membered N-Heterocycles Using Bridged N-Based Ionic Liquids: A Review. Asian J. Org. Chem. 2025, 14, e202400785. [Google Scholar] [CrossRef]
- Takasu, K.; Shindo, N. Synthesis of Azaheterocycles and Related Molecules by Tf2NH-Catalyzed Cycloadditions. Heterocycles 2018, 96, 195–218. [Google Scholar] [CrossRef]
- Singh, M.K.; Lakshman, M.K. Recent developments in the utility of saturated azaheterocycles in peptidomimetics. Org. Biomol. Chem. 2022, 20, 963–979. [Google Scholar] [CrossRef] [PubMed]
- Maji, M.; Panja, D.; Borthakur, I.; Kundu, S. Recent advances in sustainable synthesis of N-heterocycles following acceptorless dehydrogenative coupling protocol using alcohols. Org. Chem. Front. 2021, 8, 2673–2709. [Google Scholar] [CrossRef]
- Wiesenfeldt, M.P.; Nairoukh, Z.; Dalton, T.; Glorius, F. Selective Arene Hydrogenation for Direct Access to Saturated Carbo- and Heterocycles. Angew. Chem. Int. Ed. Engl. 2019, 58, 10460–10476. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangalagiu, I.I.; Darabantu, M. Advances in the Synthesis of Heterocyclic Compounds and Their Applications. Molecules 2025, 30, 3723. https://doi.org/10.3390/molecules30183723
Mangalagiu II, Darabantu M. Advances in the Synthesis of Heterocyclic Compounds and Their Applications. Molecules. 2025; 30(18):3723. https://doi.org/10.3390/molecules30183723
Chicago/Turabian StyleMangalagiu, Ionel I., and Mircea Darabantu. 2025. "Advances in the Synthesis of Heterocyclic Compounds and Their Applications" Molecules 30, no. 18: 3723. https://doi.org/10.3390/molecules30183723
APA StyleMangalagiu, I. I., & Darabantu, M. (2025). Advances in the Synthesis of Heterocyclic Compounds and Their Applications. Molecules, 30(18), 3723. https://doi.org/10.3390/molecules30183723