Design and Evaluation of Indole-Based Schiff Bases as α-Glucosidase Inhibitors: CNN-Enhanced Docking, MD Simulations, ADMET Profiling, and SAR Analysis
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. α-Glucosidase Inhibition Assay
2.3. Density Functional Theory (DFT) Study
2.4. Molecular Docking Calculations
2.5. Molecular Dynamics Simulation for 4g and 4h
2.6. ADMET Predictions for 4e, 4g, 4h, 4i and Acarbose
2.7. Structure-Activity Relationship (SAR) Analysis
3. Materials and Methods
3.1. Materials
3.2. Synthesis and Characterization of Schiff Base Derivatives of Indole
3.2.1. 5-Methoxy Indole Ester (2)
3.2.2. 5-Methoxy Indole Hydrazide (3)
3.2.3. Hydrazone Derivatives (4a–j)
- (E)-5-Methoxy-N’-(thiazol-2-ylmethylene)-1H-indole-2-carbohydrazide (4a) was prepared using the general procedure; after purification, 4a was obtained as a white solid (116 mg, 79% yield). 1H NMR (600 MHz, DMSO-d6): δ 12.15 (s, 2H), 11.74 (s, 2H), 8.70 (s, 2H), 7.99 (d, J = 3.2 Hz, 2H), 7.87 (d, J = 3.2 Hz, 2H), 7.37 (d, J = 8.9 Hz, 2H), 7.25 (s, 2H), 7.16 (d, J = 2.4 Hz, 2H), 6.91 (dd, J = 8.9, 2.5 Hz, 2H). 13C NMR (151 MHz, DMSO-d6): δ 164.75, 158.10, 154.46, 144.51, 141.49, 133.15, 129.96, 127.59, 122.26, 116.14, 113.80, 104.43, 102.57, 55.77. HRMS (ESI-TOF) (m/z): [M + Na]+ calculated for C14H12N4O2SNa 323.0660; found 323.0571.
- (E)-5-Methoxy-N’-(pyridin-3-ylmethylene)-1H-indole-2-carbohydrazide (4b) was prepared from using the general procedure, after purification, 4b was obtained as a white solid (116 mg, 81% yield). 1H NMR (600 MHz, DMSO-d6): δ 12.04 (s, 1H), 11.71 (s, 1H), 8.90 (s, 1H), 8.63 (dd, J = 4.8, 1.7 Hz, 1H), 8.52 (s, 1H), 8.18 (d, J = 8.0 Hz, 1H), 7.55–7.49 (m, 1H), 7.37 (d, J = 8.9 Hz, 1H), 7.27 (s, 1H), 7.16 (s, 1H), 6.90 (dd, J = 8.9, 2.5 Hz, 1H), 3.78 (s, 3H). 13C NMR (151 MHz, DMSO-d6): δ 158.18, 154.40, 151.08, 149.20, 144.69, 133.89, 132.74, 130.78, 130.57, 127.78, 124.51, 115.84, 113.74, 104.04, 102.58, 55.75. HRMS (ESI-TOF) (m/z): [M + H]+ calculated for C16H15N4O2 295.1195; found 295.1183.
- (E)-N’-(4-Hydroxybenzylidene)-5-methoxy-1H-indole-2-carbohydrazide (4c) was prepared from using the general procedure, after purification, 4c was obtained as a white solid (115 mg, 76% yield). 1H NMR (600 MHz, DMSO-d6): δ 11.68 (s, 1H), 11.65 (s, 1H), 11.58–11.38 (m, 1H), 9.96 (s, 1H), 8.36 (s, 1H), 7.59 (d, J = 8.2 Hz, 3H), 7.35 (d, J = 8.9 Hz, 1H), 7.21 (s, 3H), 3.38 (s, 3H). 13C NMR (151 MHz, DMSO-d6): δ 159.84, 157.86, 154.33, 147.82, 132.54, 131.01, 129.30, 127.80, 125.82, 116.19, 115.45, 113.66, 103.41, 102.48, 55.73. HRMS (ESI-TOF) (m/z): [M + H]+ calculated for C17H16N3O3 310.1225; found 310.1181.
- (E)-N’-(4-Hydroxy-3-nitrobenzylidene)-5-methoxy-1H-indole-2-carbohydrazide (4d) was prepared from using the general procedure, after purification, 4d was obtained as a white solid (142 mg, 82% yield). 1H NMR (600 MHz, DMSO-d6): δ 11.91 (s, 1H), 11.67 (s, 1H), 11.50 (s, 1H), 8.42 (s, 1H), 8.27–8.15 (m, 1H), 7.95 (d, J = 8.7 Hz, 1H), 7.36 (d, J = 8.9 Hz, 1H), 7.31–7.20 (m, 2H), 7.19–7.09 (m, 1H), 6.89 (dd, J = 8.9, 2.4 Hz, 1H), 3.78 (s, 3H). 13C NMR (151 MHz, DMSO-d6): δ 158.06, 154.38, 153.76, 145.37, 137.62, 133.40, 132.67, 130.71, 127.77, 126.34, 124.34, 120.20, 115.69, 113.71, 103.84, 102.55, 55.76. HRMS (ESI-TOF) (m/z): [M + H]+ calculated for C17H15N4O5 354.1042; found 355.1031.
- (E)-N’-(2-Hydroxy-4-methoxybenzylidene)-5-methoxy-1H-indole-2-carbohydrazide (4e) was prepared using the general procedure; after purification, 4e was obtained as a white solid (129 mg, 78% yield). 1H NMR (600 MHz, DMSO-d6): δ 12.00 (s, 1H), 11.66 (s, 1H), 11.55 (s, 1H), 8.57 (s, 1H), 7.47 (d, J = 8.5 Hz, 1H), 7.37 (d, J = 8.9 Hz, 1H), 7.22 (s, 1H), 7.15 (d, J = 2.5 Hz, 1H), 6.89 (dd, J = 8.9, 2.4 Hz, 1H), 6.54 (dd, J = 8.6, 2.4 Hz, 1H), 6.51 (d, J = 2.5 Hz, 1H), 3.78 (s, 6H). 13C NMR (151 MHz, DMSO-d6): δ 162.48, 159.72, 157.65, 154.41, 148.28, 132.69, 131.36, 130.46, 127.80, 115.71, 113.72, 112.44, 106.92, 103.78, 102.55, 101.66, 55.78, 55.75. HRMS (ESI-TOF) (m/z): [M + Na]+ calculated for C18H17N3O4Na 362.1117; found 362.1104.
- (E)-N’-(2-Fluorobenzylidene)-5-methoxy-1H-indole-2-carbohydrazide (4f) was prepared using the general procedure, after purification; 4f was obtained as a white solid (121 mg, 80% yield). 1H NMR (600 MHz, DMSO-d6): δ 12.00 (s, 1H), 11.71 (s, 1H), 8.72 (s, 1H), 7.99 (t, J = 7.4 Hz, 1H), 7.50 (dd, J = 9.8, 4.0 Hz, 1H), 7.37 (d, J = 9.0 Hz, 1H), 7.34–7.30 (m, 2H), 7.26 (s, 1H), 7.16 (s, 1H), 6.90 (dd, J = 8.9, 2.4 Hz, 1H), 3.78 (s, 3H). 13C NMR (151 MHz, DMSO-d6): δ 162.07 (d, 1JC−F = 245.5 Hz), 158.11, 154.40, 140.06, 132.75, 132.35 (d, 2JC−F = 22.1 Hz), 130.57, 127.80, 126.78, 125.45, 122.40 (d, 3JC−F = 8.1 Hz), 116.50 (d, 2JC−F = 22.1 Hz), 115.84, 113.74, 103.96, 102.58, 55.75. HRMS (ESI-TOF) (m/z): [M + H]+ calculated for C17H15FN3O2 312.1148; found 312.1129.
- (E)-N’-(3-Bromobenzylidene)-5-methoxy-1H-indole-2-carbohydrazide (4g) was prepared using the general procedure; after purification, compound 4g was obtained as a white solid (156 mg, 86% yield). 1H NMR (600 MHz, DMSO-d6): δ 12.01 (s, 1H), 11.70 (s, 1H), 8.43 (s, 1H), 7.95 (s, 1H), 7.79–7.71 (m, 1H), 7.66–7.61 (m, 1H), 7.44 (t, J = 7.8 Hz, 1H), 7.37 (d, J = 8.9 Hz, 1H), 7.26 (s, 1H), 7.18–7.11 (m, 1H), 6.90 (dd, J = 8.9, 2.5 Hz, 1H), 3.78 (s, 3H). 13C NMR (151 MHz, DMSO-d6): δ 158.18, 154.39, 145.58, 137.35, 132.95, 132.72, 131.51, 130.57, 129.52, 127.76, 126.68, 122.68, 115.82, 113.74, 104.04, 102.56, 55.76. HRMS (ESI-TOF) (m/z): [M + H]+ calculated for C17H15BrN3O2 372.0348; found 372.0335.
- (E)-5-Methoxy-N’-(4-nitrobenzylidene)-1H-indole-2-carbohydrazide (4h) was prepared using the general procedure; after purification, 4h was obtained as a white solid (152 mg, 92% yield). 1H NMR (600 MHz, DMSO-d6): δ 12.17 (s, 1H), 11.74 (s, 1H), 8.56 (s, 1H), 8.33 (d, J = 8.7 Hz, 2H), 8.02 (d, J = 8.5 Hz, 2H), 7.37 (d, J = 8.9 Hz, 1H), 7.28 (s, 1H), 7.17 (s, 1H), 6.91 (dd, J = 8.9, 2.4 Hz, 1H), 3.79 (s, 3H). 13C NMR (151 MHz, DMSO-d6): δ 158.28, 154.42, 148.23, 144.85, 141.21, 132.82, 130.43, 128.42, 127.76, 124.59, 116.03, 113.77, 104.34, 102.59, 55.75. HRMS (ESI-TOF) (m/z): [M + H]+ calculated for C17H15N4O4 339.1093; found 339.1082.
- (E)-5-Methoxy-N’-(naphthalen-2-ylmethylene)-1H-indole-2-carbohydrazide (4i) was prepared using the general procedure; after purification, 4i was obtained as a white solid (125 mg, 75% yield). 1H NMR (600 MHz, DMSO-d6): δ 11.99 (s, 1H), 11.73 (s, 1H), 8.64 (s, 1H), 8.18 (s, 1H), 8.07–7.90 (m, 4H), 7.62–7.52 (m, 2H), 7.39 (d, J = 8.9 Hz, 1H), 7.30 (s, 1H), 7.17 (s, 1H), 6.91 (dd, J = 8.8, 2.4 Hz, 1H), 3.79 (s, 3H). 13C NMR (151 MHz, DMSO-d6): δ 158.16, 154.41, 147.44, 134.18, 133.39, 132.72, 132.62, 130.81, 129.07, 128.98, 128.81, 128.27, 127.82, 127.58, 127.25, 123.23, 115.72, 113.75, 103.90, 102.57, 55.76. HRMS (ESI-TOF) (m/z): [M + H]+ calculated for C21H18N3O2 344.1399; found 344.1387.
- (E)-N’-Benzylidene-5-methoxy-1H-indole-2-carbohydrazide (4j) was prepared using the general procedure; after purification, 4j was obtained as a white solid (103 mg, 72% yield). 1H NMR (600 MHz, DMSO-d6): δ 11.94 (s, 1H), 11.74 (s, 1H), 8.51 (s, 1H), 7.77 (d, J = 7.3 Hz, 2H), 7.47–7.41 (m, 4H), 7.31 (s, 1H), 7.16 (s, 1H), 6.92 (dd, J = 8.9, 2.5 Hz, 1H), 3.78 (s, 3H). 13C NMR (151 MHz, DMSO-d6): δ 158.24, 154.42, 147.55, 134.85, 132.73, 130.79, 130.45, 129.31, 127.85, 127.54, 115.73, 113.76, 103.90, 102.56, 55.72. HRMS (ESI-TOF) (m/z): [M + H]+ calculated for C17H15N3O2Na 316.1062 found 316.1050.
3.3. Biological Assay
3.4. Theoretical Study
3.4.1. Density Functional Theory (DFT) and Molecular Electrostatic Potential (MEP)
3.4.2. Molecular Docking Simulations
3.4.3. Molecular Dynamics Simulations (MDS)
3.4.4. ADMET Profiling, SAR and Statistical Analysis
3.4.5. Statistical Analysis and Data Visualization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Diabetes. Fact Sheet. November 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 31 December 2024).
- Ratner, R.E. Controlling Postprandial Hyperglycemia. Am. J. Cardiol. 2001, 88, 26–31. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; IDF: Brussels, Belgium, 2021; Available online: https://diabetesatlas.org (accessed on 31 December 2024).
- International Diabetes Federation. Diabetes Facts and Figures. 2024. Available online: https://idf.org (accessed on 31 December 2024).
- American Diabetes Association Professional Practice Committee. Retinopathy, Neuropathy, and Foot Care: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022, 45, S185–S194. [Google Scholar] [CrossRef]
- Citarella, A.; Cavinato, M.; Rosini, E.; Shehi, H.; Ballabio, F.; Camilloni, C.; Fasano, V.; Silvani, A.; Passarella, D.; Pollegioni, L.; et al. Nicotinic Acid Derivatives as Novel Noncompetitive α-Amylase and α-Glucosidase Inhibitors for Type 2 Diabetes Treatment. ACS Med. Chem. Lett. 2024, 15, 1474–1481. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, C.; Hu, L. Fragment-Based Dynamic Combinatorial Chemistry for Identification of Selective α-Glucosidase Inhibitors. ACS Med. Chem. Lett. 2022, 13, 1791–1796. [Google Scholar] [CrossRef]
- Mwakalukwa, R.; Amen, Y.; Nagata, M.; Shimizu, K. Postprandial Hyperglycemia Lowering Effect of the Isolated Compounds from Olive Mill Wastes—An Inhibitory Activity and Kinetics Studies on α-Glucosidase and α-Amylase Enzymes. ACS Omega 2020, 5, 20070–20079. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, L.; Xie, J.; Liu, Y.; Chen, W. Pelargonidin-3-O-Rutinoside as a Novel α-Glucosidase Inhibitor for Improving Postprandial Hyperglycemia. Chem. Commun. 2019, 55, 39–42. [Google Scholar] [CrossRef]
- American Diabetes Association. Postprandial Blood Glucose. Diabetes Care 2001, 24, 775–778. [Google Scholar] [CrossRef]
- Kageyama, S.; Nakamichi, N.; Sekino, H.; Nakano, S. Comparison of the Effects of Acarbose and Voglibose in Healthy Subjects. Clin. Ther. 1997, 19, 720–729. [Google Scholar] [CrossRef]
- Hanefeld, M. The Role of Acarbose in the Treatment of Non-Insulin-Dependent Diabetes Mellitus. J. Diabetes Complicat. 1998, 12, 228–237. [Google Scholar] [CrossRef]
- Cai, Y.-S.; Xie, H.-X.; Zhang, J.-H.; Li, Y.; Zhang, J.; Wang, K.-M.; Jiang, C.-S. An Updated Overview of Synthetic α-Glucosidase Inhibitors: Chemistry and Bioactivities. Curr. Med. Chem. 2023, 23, 2488–2526. [Google Scholar] [CrossRef]
- Kashtoh, H.; Baek, K.-H. Recent Updates on Phytoconstituent Alpha-Glucosidase Inhibitors: An Approach towards the Treatment of Type Two Diabetes. Plants 2022, 11, 2722. [Google Scholar] [CrossRef] [PubMed]
- Thakor, P.M.; Patel, J.D.; Patel, R.J.; Chaki, S.H.; Khimani, A.J.; Vaidya, Y.H.; Chauhan, A.P.; Dholakia, A.B.; Patel, V.C.; Patel, A.J.; et al. Exploring New Schiff Bases: Synthesis, Characterization, and Multifaceted Analysis for Biomedical Applications. ACS Omega 2024, 9, 35431–35448. [Google Scholar] [CrossRef] [PubMed]
- Harohally, N.V.; Cherita, C.; Bhatt, P.; Appaiah, K.A. Antiaflatoxigenic and Antimicrobial Activities of Schiff Bases of 2-Hydroxy-4-methoxybenzaldehyde, Cinnamaldehyde, and Similar Aldehydes. J. Agric. Food Chem. 2017, 65, 8773–8778. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, M.; Ayyaz, M.; Rauf, A.; Yaqoob, A.; Tooba; Ali, M.A.; Siddique, S.A.; Qureshi, A.M.; Sarfraz, M.H.; Aljowaie, R.M.; et al. New Pyrimidinone Bearing Aminomethylenes and Schiff Bases as Potent Antioxidant, Antibacterial, SARS-CoV-2, and COVID-19 Main Protease MPro Inhibitors: Design, Synthesis, Bioactivities, and Computational Studies. ACS Omega 2024, 9, 25730–25747. [Google Scholar] [CrossRef]
- Mushtaq, I.; Ahmad, M.; Saleem, M.; Ahmed, A. Pharmaceutical Significance of Schiff Bases: An Overview. Futur. J. Pharm. Sci. 2024, 10, 16. [Google Scholar] [CrossRef]
- Afzal, H.R.; Khan, N.H.; Sultana, K.; Mobashar, A.; Lareb, A.; Khan, A.; Gull, A.; Afzaal, H.; Khan, M.T.; Rizwan, M.; et al. Schiff Bases of Pioglitazone Provide Better Antidiabetic and Potent Antioxidant Effect in a Streptozotocin–Nicotinamide-Induced Diabetic Rodent Model. ACS Omega 2021, 6, 4470–4479. [Google Scholar] [CrossRef]
- Mo, X.; Rao, D.P.; Kaur, K.; Hassan, R.; Abdel-Samea, A.S.; Farhan, S.M.; Bräse, S.; Hashem, H. Indole Derivatives: A Versatile Scaffold in Modern Drug Discovery—An Updated Review on Their Multifaceted Therapeutic Applications (2020–2024). Molecules 2024, 29, 4770. [Google Scholar] [CrossRef]
- Puri, S.; Stefan, K.; Khan, S.L.; Pahnke, J.; Stefan, S.M.; Juvale, K. Indole Derivatives as New Structural Class of Potent and Antiproliferative Inhibitors of Monocarboxylate Transporter 1 (MCT1; SLC16A1). J. Med. Chem. 2023, 66, 657–676. [Google Scholar] [CrossRef]
- Mahmoud, E.; Abdelhamid, D.; Youssif, B.G.M.; Gomaa, H.A.M.; Hayallah, A.M.; Abdel-Aziz, M. Design, Synthesis, and Antiproliferative Activity of New Indole/1,2,4-Triazole/Chalcone Hybrids as EGFR and/or c-MET Inhibitors. Arch. Pharm. 2024, 357, e2300562. [Google Scholar] [CrossRef]
- Al-Humaidi, J.Y.; Gomha, S.M.; Riyadh, S.M.; Ibrahim, M.S.; Zaki, M.E.A.; Abolibda, T.Z.; Jefri, O.A.; Abouzied, A.S. Synthesis, Biological Evaluation, and Molecular Docking of Novel Azolylhydrazonothiazoles as Potential Anticancer Agents. ACS Omega 2023, 8, 34044–34058. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, D.; Wang, J.; Kang, C. Efficient Synthesis and Biological Activity of Novel Indole Derivatives as VEGFR-2 Tyrosine Kinase Inhibitors. Russ. J. Gen. Chem. 2017, 87, 3006–3016. [Google Scholar] [CrossRef]
- Bang, E.J.; Ra, J.; Choi, H.Y.; Ko, H.M. Synthesis of Benzazepinoindole Derivatives via a One-Pot Process of TiCl4-Catalyzed Indole Alkylation/Pictet-Spengler Cyclization. Asian J. Org. Chem. 2022, 11, e202100645. [Google Scholar] [CrossRef]
- Duan, S.-F.; Song, L.; Guo, H.-Y.; Deng, H.; Huang, X.; Shen, Q.-K.; Quan, Z.-S.; Yin, X.-M. Research Status of Indole-Modified Natural Products. RSC Med. Chem. 2023, 14, 2535–2563. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.Y. The Discovery of Indomethacin and the Proliferation of NSAIDs. Semin. Arthritis Rheum. 1982, 12, 89–93. [Google Scholar] [CrossRef]
- Morse, G.D.; Fischl, M.A.; Shelton, M.J.; Cox, S.R.; Driver, M.; DeRemer, M.; Freimuth, W.W. Single-Dose Pharmacokinetics of Delavirdine Mesylate and Didanosine in Patients with Human Immunodeficiency Virus Infection. Antimicrob. Agents Chemother. 1997, 41, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Tansey, M.J.; Pilgrim, A.J.; Lloyd, K. Sumatriptan in the Acute Treatment of Migraine. J. Neurol. Sci. 1993, 114, 109–116. [Google Scholar] [CrossRef]
- Dekhuijzen, P.N.; Koopmans, P.P. Pharmacokinetic Profile of Zafirlukast. Clin. Pharmacokinet. 2002, 41, 105–114. [Google Scholar] [CrossRef]
- Tuladhar, B.R.; Costall, B.; Naylor, R.J. Pharmacological Characterization of the 5-Hydroxytryptamine Receptor Mediating Relaxation in the Rat Isolated Ileum. Br. J. Pharmacol. 1996, 119, 303–310. [Google Scholar] [CrossRef]
- Reckweg, J.T.; Uthaug, M.V.; Szabo, A.; Davis, A.K.; Lancelotta, R.; Mason, N.L.; Ramaekers, J.G. The Clinical Pharmacology and Potential Therapeutic Applications of 5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT). J. Neurochem. 2022, 162, 128–146. [Google Scholar] [CrossRef]
- Taha, M.; Ismail, N.H.; Javaid, K.; Imran, S.; Anouar, E.H.; Wadood, A.; Wahab, A.; Ali, M.; Khan, K.M.; Saad, S.M.; et al. Evaluation of 2-Indolcarbohydrazones as Potent α-Glucosidase Inhibitors, in Silico Studies and DFT-Based Stereochemical Predictions. Bioorg. Chem. 2015, 63, 24–35. [Google Scholar] [CrossRef]
- Mirfazli, S.S.; Khoshneviszadeh, M.; Jeiroudi, M.; Foroumadi, A.; Kobarfard, F.; Shafiee, A. Design, Synthesis and QSAR Study of Arylidene Indoles as Anti-platelet Aggregation Inhibitors. Med. Chem. Res. 2016, 25, 1–18. [Google Scholar] [CrossRef]
- Shang, Y.; Hao, Q.; Jiang, K.; He, M.; Wang, J. Discovery of Heterocyclic Carbohydrazide Derivatives as Novel Selective Fatty Acid Amide Hydrolase Inhibitors: Design, Synthesis and Anti-neuroinflammatory Evaluation. Bioorg. Med. Chem. Lett. 2020, 30, 127118. [Google Scholar] [CrossRef] [PubMed]
- Demurtas, M.; Baldisserotto, A.; Lampronti, I.; Moi, D.; Balboni, G.; Pacifico, S.; Vertuani, S.; Manfredini, S.; Onnis, V. Indole Derivatives as Multifunctional Drugs: Synthesis and Evaluation of Antioxidant, Photoprotective and Antiproliferative Activity of Indole Hydrazones. Bioorg. Chem. 2019, 85, 568–576. [Google Scholar] [CrossRef]
- Baharudin, M.S.; Taha, M.; Imran, S.; Ismail, N.H.; Rahim, F.; Javid, M.T.; Khan, K.M.; Ali, M. Synthesis of Indole Analogs as Potent β-Glucuronidase Inhibitors. Bioorg. Chem. 2017, 72, 323–332. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, T.; Chen, M.; Liu, F.; Liu, X.; Zhang, J.; Lin, J.; Jin, Y. Synthesis and Biological Evaluation of Indole-2-carbohydrazide Derivatives as Anticancer Agents with Anti-angiogenic and Antiproliferative Activities. ChemMedChem 2018, 13, 1181–1192. [Google Scholar] [CrossRef]
- Hu, H.; Wu, J.; Ao, M.; Wang, H.; Zhou, T.; Xue, Y.; Qiu, Y.; Fang, M.; Wu, Z. Synthesis, Structure–Activity Relationship Studies and Biological Evaluation of Novel 2,5-Disubstituted Indole Derivatives as Anticancer Agents. Chem. Biol. Drug Des. 2016, 88, 766–778. [Google Scholar] [CrossRef]
- Bhagwat, S.K.; Hernandez-Rosas, F.; Vidal-Limon, A.; Jimenez-Halla, J.O.C.; Ghotekar, B.K.; Bobade, V.D.; Delgado-Alvarado, E.; Patil, S.V.; Pawar, T.J. Iodinated Salicylhydrazone Derivatives as Potent α-Glucosidase Inhibitors: Synthesis, Enzymatic Activity, Molecular Modeling, and ADMET Profiling. Chemistry 2025, 7, 117. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Sim, L.; Quezada-Calvillo, R.; Sterchi, E.E.; Nichols, B.L.; Rose, D.R. Human Intestinal Maltase–Glucoamylase: Crystal Structure of the N-Terminal Catalytic Subunit and Basis of Inhibition and Substrate Specificity. J. Mol. Biol. 2008, 375, 782–792. [Google Scholar] [CrossRef]
- McNutt, A.T.; Francoeur, P.; Aggarwal, R.; Masuda, T.; Meli, R.; Ragoza, M.; Sunseri, J.; Koes, D.R. GNINA 1.0: Molecular Docking with Deep Learning. J. Cheminf. 2021, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Olsson, M.H.M.; Søndergaard, C.R.; Rostkowski, M.; Jensen, J.H. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. J. Chem. Theory Comput. 2011, 7, 525–537. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Quiroga, R.; Villarreal, M.A. Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening. PLoS ONE 2016, 11, e0155183. [Google Scholar] [CrossRef]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Ben-Shalom, I.Y.; Berryman, J.T.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E., III; Cisneros, G.A.; Cruzeiro, V.W.D.; et al. Amber 2024; University of California: San Francisco, CA, USA, 2024. [Google Scholar]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Chen, X.; et al. ADMETlab 2.0: An Integrated Online Platform for Accurate and Comprehensive Predictions of ADMET Properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Nielsen, A.B.; Holder, A.J. GaussView 5.0, User’s Reference; Gaussian Inc.: Pittsburgh, PA, USA, 2009. [Google Scholar]
Entry | Compounds | Ar | % Inhibition [a] | IC50 (µM) | ΔE [b] (eV) | BFE [c] (Kcal mol−1) | Affinity [d] (pK Units) |
---|---|---|---|---|---|---|---|
1 | 4a | thiazole | 31.75 ± 8.42 | n.d. [e] | 6.74 | −5.64 | 5.7 |
2 | 4b | pyridine | 26.37 ± 8.04 | n.d. | 7.00 | −6.26 | 6.0 |
3 | 4c | 4-OH-Ph | 32.51 ± 8.99 | n.d. | 7.28 | −6.64 | 6.4 |
4 | 4d | 3-NO2-4-OH-Ph | 27.97 ± 7.96 | n.d. | 6.20 | −6.53 | 6.3 |
5 | 4e | 2-OH-4-OCH3-Ph | 82.21 ± 4.47 | 16.42 ± 0.08 | 7.71 | −6.37 | 6.1 |
6 | 4f | 2-F-Ph | 50.65 ± 3.86 | n.d. | 6.96 | −6.60 | 6.5 |
7 | 4g | 3-Br-Ph | 91.06 ± 1.25 | 10.89 ± 0.08 | 7.01 | −6.75 | 6.6 |
8 | 4h | 4-NO2-Ph | 89.11 ± 1.39 | 14.53 ± 0.76 | 6.23 | −6.77 | 6.9 |
9 | 4i | Naph | 82.73 ± 1.90 | 19.54 ± 1.37 | 6.99 | −6.43 | 6.2 |
10 | 4j | Ph | 53.23 ± 3.11 | n.d. | 7.14 | −6.20 | 6.0 |
11 | Acarbose | — | 84.66 ± 0.71 | 48.95 ± 15.98 | — | −7.40 | 7.1 |
Parameter [a] | 4e | 4g | 4h | 4i | Acarbose [m] |
---|---|---|---|---|---|
MW (g/mol) [b] | 339.12 | 371.03 | 338.1 | 343.13 | 645.25 |
H-donor [c] | 3 | 2 | 2 | 2 | 14 |
H-acceptor [d] | 7 | 5 | 8 | 5 | 19 |
LogP [e] | 3.184 | 4.126 | 2.925 | 3.845 | −4.48 |
TPSA (Å2) [f] | 95.94 | 66.48 | 109.62 | 66.48 | 321.17 |
Caco-2 Permeability [g] | −5.394 | −5.201 | −5.421 | −5.282 | −7.289 |
HIA [h] | Low | Low | Low | Low | High |
PPB [i] | 93.401 | 98.439 | 97.463 | 98.841 | 15.221 |
BBB Penetration [j] | Low | Low | Low | Low | Low |
CYP Inhibition [k] | CYP3A2, CYP2C19, CYP2C8 | CYP1A2, CYP2C19, CYP2C8 | CYP1A2, CYP2C19, CYP2C8 | CYP1A2, CYP2C19, CYP2C8 | CYP2C8 |
hERG Blocker [l] | 0.288 | 0.342 | 0.44 | 0.44 | 0.001 |
Toxicity Predictions | Moderate | Moderate | Moderate | Moderate | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhagwat, S.K.; Patil, S.V.; Vidal-Limon, A.; Jimenez-Halla, J.O.C.; Ghotekar, B.K.; Bobade, V.D.; Pérez-Landa, I.D.; Delgado-Alvarado, E.; Hernández-Rosas, F.; Pawar, T.J. Design and Evaluation of Indole-Based Schiff Bases as α-Glucosidase Inhibitors: CNN-Enhanced Docking, MD Simulations, ADMET Profiling, and SAR Analysis. Molecules 2025, 30, 3651. https://doi.org/10.3390/molecules30173651
Bhagwat SK, Patil SV, Vidal-Limon A, Jimenez-Halla JOC, Ghotekar BK, Bobade VD, Pérez-Landa ID, Delgado-Alvarado E, Hernández-Rosas F, Pawar TJ. Design and Evaluation of Indole-Based Schiff Bases as α-Glucosidase Inhibitors: CNN-Enhanced Docking, MD Simulations, ADMET Profiling, and SAR Analysis. Molecules. 2025; 30(17):3651. https://doi.org/10.3390/molecules30173651
Chicago/Turabian StyleBhagwat, Seema K., Sachin V. Patil, Abraham Vidal-Limon, J. Oscar C. Jimenez-Halla, Balasaheb K. Ghotekar, Vivek D. Bobade, Irving David Pérez-Landa, Enrique Delgado-Alvarado, Fabiola Hernández-Rosas, and Tushar Janardan Pawar. 2025. "Design and Evaluation of Indole-Based Schiff Bases as α-Glucosidase Inhibitors: CNN-Enhanced Docking, MD Simulations, ADMET Profiling, and SAR Analysis" Molecules 30, no. 17: 3651. https://doi.org/10.3390/molecules30173651
APA StyleBhagwat, S. K., Patil, S. V., Vidal-Limon, A., Jimenez-Halla, J. O. C., Ghotekar, B. K., Bobade, V. D., Pérez-Landa, I. D., Delgado-Alvarado, E., Hernández-Rosas, F., & Pawar, T. J. (2025). Design and Evaluation of Indole-Based Schiff Bases as α-Glucosidase Inhibitors: CNN-Enhanced Docking, MD Simulations, ADMET Profiling, and SAR Analysis. Molecules, 30(17), 3651. https://doi.org/10.3390/molecules30173651