Ni-Catalyzed [2 + 2 + 2] Cycloaddition via the Capture of Azametallacyclopentadienes with Allyl Boronate: Facile Access to Fused Pyridine Derivatives
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. General Methods for the Preparation of Fused Pyridine Derivatives
3.3. General Procedure for the Derivatization of Pyridine Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marshall, C.M.; Federice, J.G.; Bell, C.N.; Cox, P.B.; Njardarson, J.T. An Update on the Nitrogen Heterocycle Compositions and Properties of U.S. FDA Approved Pharmaceuticals (2013–2023). J. Med. Chem. 2024, 67, 11622–11655. [Google Scholar] [CrossRef]
- Guan, A.-Y.; Liu, C.-L.; Sun, X.-F.; Xie, Y.; Wang, M.-A. Discovery of Pyridine-based Agrochemicals by Using Intermediate Derivatization Methods. Bioorg. Med. Chem. 2016, 24, 342–353. [Google Scholar] [CrossRef]
- Desimoni, G.; Faita, G.; Quadrelli, P. Pyridine-2,6-bis-(oxazolines), Helpful Ligands for Asymmetric Catalysts. Chem. Rev. 2003, 103, 3119–3154. [Google Scholar] [CrossRef]
- Gibson, V.C.; Redshaw, C.; Solan, G.A. Bis(imino)pyridines: Surprisingly Reactive Ligands and a Gateway to New Families of Catalysts. Chem. Rev. 2007, 107, 1745–1776. [Google Scholar] [CrossRef] [PubMed]
- Wurz, R.P. Chiral Dialkylaminopyridine Catalysts in Asymmetric Synthesis. Chem. Rev. 2007, 107, 5570–5595. [Google Scholar] [CrossRef] [PubMed]
- Kwong, H.-L.; Yeung, H.-L.; Yeung, C.-T.; Lee, W.-S.; Lee, C.-S.; Wong, W.-L. Chiral Pyridine-containing Ligands in Asymmetric Catalysis. Coord. Chem. Rev. 2007, 251, 2188–2222. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, W. Renaissance of Pyridine-oxazolines as Chiral Ligands for Asymmetric Catalysis. Chem. Soc. Rev. 2018, 47, 1783–1810. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.D. Recent Strategies for the Synthesis of Pyridine Derivatives. Chem. Eur. J. 2010, 16, 12052–12062. [Google Scholar] [CrossRef]
- Gulevich, A.V.; Dudnik, A.S.; Chernyak, N.; Gevorgyan, V. Transition Metal-mediated Synthesis of Monocyclic Aromatic Heterocycles. Chem. Rev. 2013, 113, 3084–3213. [Google Scholar] [CrossRef]
- Allais, C.; Grassot, J.-M.; Rodriguez, J.; Constantieux, T. Metal-free Multicomponent Syntheses of Pyridines. Chem. Rev. 2014, 114, 10829–10868. [Google Scholar] [CrossRef]
- Cao, X.-Y.; Li, Z.-H.; Cao, Z.-H.; Li, Z.; Pang, C.-M.; Zhang, Z.-Q.; Wang, Z.-Y. Multifunctional 3-Cyanopyridine Compounds: Synthesis Based on A Tandem Reaction with 100% Atom Economy and Their Applications. Green Chem. 2025, 27, 7300–7306. [Google Scholar] [CrossRef]
- Zeng, J.; Zhou, T.; Liu, J.; Wan, J.-P. Photocatalytic Pyridine Synthesis with Enaminones and TMEDA under Metal-Free Conditions. J. Org. Chem. 2024, 89, 11060–11066. [Google Scholar] [CrossRef]
- Zhan, J.-L.; Wu, M.-W.; Wei, D.; Wei, B.-Y.; Jiang, Y.; Yu, W.; Han, B. 4-HO-TEMPO-Catalyzed Redox Annulation of Cyclopropanols with Oxime Acetates toward Pyridine Derivatives. ACS Catal. 2019, 9, 4179–4188. [Google Scholar] [CrossRef]
- Roglans, A.; Pla-Quintana, A.; Solà, M. Mechanistic Studies of Transition-Metal-Catalyzed [2 + 2 + 2] Cycloaddition Reactions. Chem. Rev. 2021, 121, 1894–1979. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Cen, K.; Shen, W.; Bai, L.-G.; Liu, W.-B. [2 + 2 + 2] Cycloaddition of Nitriles to Enantioenriched and Highly Substituted Pyridines. Chem. Catal. 2022, 2, 2889–2897. [Google Scholar] [CrossRef]
- Domínguez, G.; Pérez-Castells, J. Alkenes in [2 + 2 + 2] Cycloadditions. Chem. Eur. J. 2016, 22, 6720–6739. [Google Scholar] [CrossRef]
- Lv, Z.-J.; Liu, W.; Zhang, W.-X. Progress of Azametallacyclopentadienes in the New Century. Chem. Eur. J. 2023, 29, e202204079. [Google Scholar] [CrossRef]
- Whitehurst, W.G.; Kim, J.; Koenig, S.G.; Chirik, P.J. Three-Component Coupling of Arenes, Ethylene, and Alkynes Catalyzed by a Cationic Bis(phosphine) Cobalt Complex: Intercepting Metallacyclopentenes for C-H Functionalization. J. Am. Chem. Soc. 2022, 144, 4530–4540. [Google Scholar] [CrossRef]
- Ning, C.; Rui, K.-H.; Wei, Y.; Shi, M. Rh(I)-Catalyzed Dimerization of Ene-Vinylidenecyclopropanes for the Construction of Spiro[4,5]decanes and Mechanistic Studies. Chem. Sci. 2022, 13, 7310–7317. [Google Scholar] [CrossRef]
- Peng, J.-H.; Zheng, Y.-Q.; Bai, L.-G.; Liu, W.-B. Chiral Discrimination of Small Substituents in Biaryl Atropisomer Construction: Enantioselective Synthesis of Axially Chiral 1-Azafluorene via Ni-catalyzed [2 + 2 + 2] Cycloaddition. Sci. China Chem. 2023, 66, 3148–3153. [Google Scholar] [CrossRef]
- Huh, D.N.; Cheng, Y.; Frye, C.W.; Egger, D.T.; Tonks, I.A. Multicomponent Syntheses of 5- and 6-Membered Aromatic Heterocycles using Group 4-8 Transition Metal Catalysts. Chem. Sci. 2021, 12, 9574–9590. [Google Scholar] [CrossRef]
- Sheng, J.; Wang, Y.; Su, X.; He, R.; Chen, C. Copper-catalyzed [2 + 2 + 2] Modular Synthesis of Multisubstituted Pyridines: Alkenylation of Nitriles with Vinyliodonium Salts. Angew. Chem. Int. Ed. 2017, 56, 4824–4828. [Google Scholar] [CrossRef]
- Kumar, P.; Prescher, S.; Louie, J. A Serendipitous Discovery: Nickel Catalyst for the Cycloaddition of Diynes with Unactivated Nitriles. Angew. Chem. Int. Ed. 2011, 50, 10694–10698. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Ogawa, R.; Itoh, K. Significant Chemo- and Regioselectivies in the Ru(II)-Catalyzed [2 + 2 + 2] Cycloaddition of 1,6-Diynes with Dicyanides. J. Am. Chem. Soc. 2001, 123, 6189–6190. [Google Scholar] [CrossRef] [PubMed]
- Cioni, P.; Diversi, P.; Ingrosso, G.; Lucherini, A.; Ronca, P. Rhodium-catalyzed Synthesis of Pyridines from Alkynes and Nitriles. J. Mol. Catal. 1987, 40, 337–357. [Google Scholar] [CrossRef]
- Onodera, G.; Shimizu, Y.; Kimura, J.; Kobayashi, J.; Ebihara, Y.; Kondo, K.; Sakata, K.; Takeuchi, R. Iridium-Catalyzed [2 + 2 + 2] Cycloaddition of α,ω-Diynes with Nitriles. J. Am. Chem. Soc. 2012, 134, 10515–10531. [Google Scholar] [CrossRef]
- Wakatsuki, Y.; Yamazaki, H. Cobalt-catalyzed Synthesis of Pyridines from Acetylenes and Nitriles. Tetrahedron Lett. 1973, 14, 3383–3384. [Google Scholar] [CrossRef]
- Schmidt, U.; Zenneck, U. Katalytische Cocyclisierungen von Ethin Mit Nitrilen an Bis(η2-ethen)(η6-toluol)eisen als Katalysator. J. Organomet. Chem. 1992, 440, 187–190. [Google Scholar] [CrossRef]
- McCormick, M.M.; Duong, H.A.; Zuo, G.; Louie, J. A Nickel Catalyzed Route to Pyridines. J. Am. Chem. Soc. 2005, 127, 5030–5031. [Google Scholar] [CrossRef]
- Stolley, R.M.; Duong, H.A.; Thomas, D.R.; Louie, J. The Discovery of [Ni(NHC)RCN]2 Species and Their Role as Cycloaddition Catalysts for the Formation of Pyridines. J. Am. Chem. Soc. 2012, 134, 15154–15162. [Google Scholar] [CrossRef]
- Satoh, Y.; Obora, Y. Low-Valent Niobium-Catalyzed Intermolecular [2 + 2 + 2] Cycloaddition of tert-Butylacetylene and Arylnitriles to Form 2,3,6-Trisubstituted Pyridine Derivatives. J. Org. Chem. 2013, 78, 7771–7776. [Google Scholar] [CrossRef]
- Mulcahy, S.P.; Varelas, J.G. Three-step Synthesis of an Annulated β-Carboline via Palladium Catalysis. Tetrahedron Lett. 2013, 54, 6599–6601. [Google Scholar] [CrossRef] [PubMed]
- Saliba, B.M.; Khanal, S.; O’Donnell, M.A.; Queenan, K.E.; Song, J.; Gentile, M.R.; Mulcahy, S.P. Parallel Strategies for the Synthesis of Annulated Pyrido[3,4-b]indoles via Rh(I)-and Pd(0)-Catalyzed Cyclotrimerization. Tetrahedron Lett. 2018, 59, 4311–4314. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Nie, B.; Li, X.; Liu, T.; Li, C.; Huang, J. Ligand-controlled Regiodivergent Ni-Catalyzed trans-Hydroboration/Carboboration of Internal Alkynes with B2pin2. Chem. Sci. 2024, 15, 2236–2242. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liu, T.; Li, S.; Li, G.; Wu, G.; Gao, Y.; Xu, Z.; Wu, Y.; Peng, X.; Huang, J. Redox-Neutral Nickel-Catalyzed Selective Hydroalkynylation of Internal Alkyne and Its Application in Anticancer Agent Discovery. Chin. J. Chem. 2024, 42, 3317–3323. [Google Scholar] [CrossRef]
- Huang, J.; Yan, W.; Tan, C.; Wu, W.; Jiang, H. Palladium(II)-catalyzed Hydroboration of Alkene with B2pin2. Chem. Comm. 2018, 54, 1770–1773. [Google Scholar] [CrossRef]
- Ma, W.; Yu, C.; Chen, T.; Xu, L.; Zhang, W.-X.; Xi, Z. Metallacyclopentadienes: Synthesis, Structure and Reactivity. Chem. Soc. Rev. 2017, 46, 1160–1192. [Google Scholar] [CrossRef]
- Li, M.; Wu, W.; Jiang, H. Recent Advances in Silver-Catalyzed Transformations of Electronically Unbiased Alkenes and Alkyne. Chem. Cat. Chem. 2020, 12, 5034–5050. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, C.; Hu, X.; Xie, X.; Liu, Y. Nickel-Catalyzed C(sp3)-H Functionalization of Benzyl Nitriles: Direct Michael Addition to Terminal Vinyl Ketones. Org. Lett. 2021, 23, 6004–6009. [Google Scholar] [CrossRef]
- Chen, X.; He, Q.; Xie, Y.; Yang, C. Palladium(II)-Catalyzed Synthesis of Functionalized Indenones via Oxidation and Cyclization of 2-(2-Arylethynylphenyl)acetonitriles. Org. Biomol. Chem. 2013, 11, 2582–2585. [Google Scholar] [CrossRef]
- Chen, L.L.; Zhang, J.W.; Yang, W.W.; Fu, J.Y.; Zhu, J.Y.; Wang, Y.B. Synthesis of 1-Cyano-3-acylnaphthalenes via Formal [4+2] Benzannulation of 2-(2-Alkynylphenyl)acetonitriles and Alkynones. J. Org. Chem. 2019, 84, 8090–8099. [Google Scholar] [CrossRef]
- Lin, H.S.; Pan, Y.Z.; Tian, Y.H.; Pan, Y.M.; Wang, X. Palladium-Catalyzed Tandem Cyclization of 2-(2 Ethynylphenyl)acetonitriles and Isocyanides: Access to Indeno[2,1-b]pyrroles. Adv. Synth. Catal. 2022, 364, 1117–1121. [Google Scholar] [CrossRef]
- Sedelmeier, J.; Ley, S.V.; Lange, H.; Baxendale, I.R. Pd-EnCatTM TPP30 as a Catalyst for the Generation of Highly Functionalized Aryl- and Alkenyl-Substituted Acetylenes via Microwave-Assisted Sonogashira Type Reactions. Eur. J. Org. Chem. 2009, 26, 4412–4420. [Google Scholar] [CrossRef]
Entry a | Variation from Standard Conditions | Yield of 3a b |
---|---|---|
1 | none | 84% (80%) |
2 | w/o Ni(PPh3)2Cl2 | N.R. |
3 | w/o XantPhos | N.R. |
4 | w/o K3PO4 | N.R. |
5 | Ni(acac)2 instead of Ni(PPh3)2Cl2 | 55% |
6 | DPEphos instead of XantPhos | 30% |
7 | dppp instead of XantPhos | 35% |
8 | dppf instead of XantPhos | <5% |
9 | Cy3P instead of XantPhos | 32% |
10 | Na3PO4 instead of K3PO4 | 15% |
11 | Toluene instead of PhCF3 | 70% |
12 | CH3CN instead of PhCF3 | 25% |
13 | under air atmosphere | 72% |
14 | reaction temperature 120 °C | 70% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, K.; Zhu, T.; Li, G.; Shi, T.; Li, C.; Hu, S.; Gao, R.; Wang, Z.-Y.; Huang, J. Ni-Catalyzed [2 + 2 + 2] Cycloaddition via the Capture of Azametallacyclopentadienes with Allyl Boronate: Facile Access to Fused Pyridine Derivatives. Molecules 2025, 30, 3629. https://doi.org/10.3390/molecules30173629
Du K, Zhu T, Li G, Shi T, Li C, Hu S, Gao R, Wang Z-Y, Huang J. Ni-Catalyzed [2 + 2 + 2] Cycloaddition via the Capture of Azametallacyclopentadienes with Allyl Boronate: Facile Access to Fused Pyridine Derivatives. Molecules. 2025; 30(17):3629. https://doi.org/10.3390/molecules30173629
Chicago/Turabian StyleDu, Kesi, Tao Zhu, Guangyu Li, Taohong Shi, Chunsheng Li, Siting Hu, Ruiran Gao, Zhao-Yang Wang, and Jiuzhong Huang. 2025. "Ni-Catalyzed [2 + 2 + 2] Cycloaddition via the Capture of Azametallacyclopentadienes with Allyl Boronate: Facile Access to Fused Pyridine Derivatives" Molecules 30, no. 17: 3629. https://doi.org/10.3390/molecules30173629
APA StyleDu, K., Zhu, T., Li, G., Shi, T., Li, C., Hu, S., Gao, R., Wang, Z.-Y., & Huang, J. (2025). Ni-Catalyzed [2 + 2 + 2] Cycloaddition via the Capture of Azametallacyclopentadienes with Allyl Boronate: Facile Access to Fused Pyridine Derivatives. Molecules, 30(17), 3629. https://doi.org/10.3390/molecules30173629