Hairy Roots as Producers of Coumarins, Lignans, and Xanthones
Abstract
1. Introduction
2. Coumarins, Lignans, and Xanthones in HRs
2.1. Coumarins
2.1.1. Apiaceae
2.1.2. Asteraceae
2.1.3. Rutaceae
2.1.4. Violaceae
2.1.5. Lamiaceae
2.1.6. Malvaceae
2.1.7. Fabaceae
2.1.8. Geraniaceae
2.2. Lignans and Neolignans
2.2.1. Asteraceae
2.2.2. Brassicaceae
2.2.3. Linaceae
2.2.4. Phrymaceae
2.2.5. Phyllanthaceae
2.2.6. Pedaliaceae
2.2.7. Taxaceae
2.3. Xanthones
2.3.1. Fabaceae
2.3.2. Gentianaceae
2.3.3. Hypericaceae
2.3.4. Polygalaceae
2.4. Coumarins, Lignans, and Xanthones: Variety of Sources and Prospects for Their Production by HRs
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
1:3,5-THXS | 1,3,5-Trihydroxyxanthone synthase |
1,3,7-THXS | 1,3,7-Trihydroxyxanthone synthase |
3-BZL | 3-Hydroxybenzoate:CoA ligase |
4CL | 4-Coumaroyl:CoA-ligase |
6-MPTOX | 6-Methoxypodophyllotoxin |
B3′H | Benzophenone 3′-hydroxylase |
B5 | Gamborg’s B5 medium |
BD | Benzaldehyde dehydrogenase |
BPS | Benzophenone synthase |
BZL | Benzoate:CoA ligase |
C2H | Cinnamate 2-hydroxylase |
C3H | Coumarate 3-hydroxylase |
C4H | Cinnamate 4-hydroxylase |
CAD | Cinnamyl alcohol dehydrogenase |
CaMV | Cauliflower mosaic virus |
CCoAOMT | Caffeoyl-CoA O-methyl transferase |
CCR | Cinnamoyl-CoA reductase |
CHL | Cinnamoyl-CoA hydratase/lyase |
CNL | Cinnamate:CoA ligase |
COMT | Caffeic acid O-methyl transferase |
CRISPR/Cas9 | Clustered regularly interspaced short palindromic repeats/ |
CRISPR-associated protein 9 | |
DAD | Diode array detector |
DIR | Dirigent protein |
DW | Dry weight |
ESI-MS | Mass spectrometry with electrospray ionization |
F5H | Ferulate 5-hydroxylase |
F6H | Feruloyl-CoA 6-hydroxylase |
FW | Fresh weight |
GA3 | Giberelic acid |
GC-MS | Gas chromatography with mass spectroscopic detection |
GI | Growth index |
GPX | Glutathione peroxidase |
GUS | β-Glucuronidase |
HMR | Hydroxymatairesinol |
HPLC | High-performance liquid chromatography |
HR | Hairy root |
LARI | Lariciresinol |
MAT | Matairesinol |
MDA | Malonyl dialdehyde |
MJ | Methyl jasmonate |
MS | Murashige and Skoog’s medium |
PAL | Phenylalanine ammonia-lyase |
PGR | Plant growth regulator |
PINO | Pinoresinol |
PLR | Pinoresinol reductase |
PSS | Piperitol/sesamin synthase |
PTOX | Podophyllotoxin |
SA | Salicylic acid |
SECO | Secoisolariciresinol |
SNP | Single-nucleotide polymorphism |
SOD | Superoxide dismutase |
TAL | Tyrosine ammonia-lyase |
TPC | Total phenolic content |
UPLC | Ultra-high-performance liquid chromatography |
WPM | Woody Plant Medium |
YE | Yeast extract |
References
- Hamill, J.D.; Lidgett, A.J. Hairy root cultures—Opportunities and key protocols for studies in metabolic engineering. In Hairy Roots. Culture and Applications, 1st ed.; Doran, P., Ed.; Harwood Academic Publishers: Amsterdam, The Netherlands, 1997; pp. 1–29. [Google Scholar]
- Young, J.M.; Kuykendall, L.D.; Martínez-Romero, E.; Kerr, A.; Sawada, H. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int. J. Syst. Evol. Microbiol. 2001, 51, 89–103. [Google Scholar] [CrossRef]
- Giri, A.; Narasu, M.L. Transgenic hairy roots: Recent trends and applications. Biotechnol. Adv. 2000, 18, 1–22. [Google Scholar] [CrossRef]
- Guillon, S.; Trémouillaux-Guiller, J.; Pati, P.K.; Rideau, M.; Gantet, P. Harnessing the potential of hairy roots: Dawn of a new era. Trends Biotechnol. 2006, 24, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Ono, N.N.; Tian, L. The multiplicity of hairy root cultures: Prolific possibilities. Plant Sci. 2011, 180, 439–446. [Google Scholar] [CrossRef]
- Gutierrez-Valdes, N.; Häkkinen, S.T.; Lemasson, C.; Guillet, M.; Oksman-Caldentey, K.M.; Ritala, A.; Cardon, F. Hairy root cultures—A versatile tool with multiple applications. Front. Plant Sci. 2020, 11, 33. [Google Scholar] [CrossRef]
- Shi, M.; Liao, P.; Nile, S.H.; Georgiev, M.I.; Kai, G. Biotechnological exploration of transformed root culture for value-added products. Trends Biotechnol. 2021, 39, 137–149. [Google Scholar] [CrossRef]
- Mirmazloum, I.; Slavov, A.K.; Marchev, A.S. The unntapped potential of hairy root cultures and their multiple applications. Int. J. Mol. Sci. 2024, 25, 12682. [Google Scholar] [CrossRef]
- Sosa Alderete, L.G.; Talano, M.A.; Ibáñez, S.G.; Purro, S.; Agostini, E.; Milrad, S.R.; Medina, M.I. Establishment of transgenic tobacco hairy roots expressing basic peroxidases and its application for phenol removal. J. Biotechnol. 2009, 139, 273–279. [Google Scholar] [CrossRef]
- Jha, P.; Sen, R.; Jobby, R.; Sachar, S.; Bhatkalkar, S.; Desai, N. Biotransformation of xenobiotics by hairy roots. Phytochemistry 2020, 176, 112421. [Google Scholar] [CrossRef]
- Gantait, S.; Mukherjee, E. Hairy root culture technology: Applications, constraints and prospect. Appl. Microbiol. Biotechnol. 2021, 105, 35–53. [Google Scholar] [CrossRef]
- Lystvan, K.; Lystvan, V.; Shcherbak, N.; Kuchuk, M. Rhizoextraction potential of Convolvulus tricolor hairy roots for Cr6+, Ni2+, and Pb2+ removal from aqueous solutions. Appl. Biochem. Biotechnol. 2021, 193, 1215–1230. [Google Scholar] [CrossRef]
- Wink, M.; Alfermann, A.W.; Franke, R.; Wetterauer, B.; Distl, M.; Windhövel, J.; Krohn, O.; Fuss, E.; Garden, H.; Mohagheghzadeh, A.; et al. Sustainable bioproduction of phytochemicals by plant in vitro cultures: Anticancer agents. Plant Genet. Resour. 2005, 3, 90–100. [Google Scholar] [CrossRef]
- Li, C.; Galani, S.; Hassan, F.; Rashid, Z.; Naveed, M.; Fang, D.; Ashraf, A.; Wang, Q.; Arif, A.; Saeed, M.; et al. Biotechnological approaches to the production of plant-derived promising anticancer agents: An update and overview. Biomed. Pharmacother. 2020, 132, 110918. [Google Scholar] [CrossRef]
- Qua, Z.; Zenga, J.; Zeng, L.; Li, X.; Zhang, F. Esculetin triggers ferroptosis via inhibition of the Nrf2-xCT/GPx4 axis in hepatocellular carcinoma. Chin. J. Nat. Med. 2025, 23, 443–456. [Google Scholar] [CrossRef]
- Younes, A.H.; Mustafa, Y.F. Plant-Derived Coumarins: A narrative review of their structural and biomedical diversity. Chem. Biodiv. 2024, 21, e202400344. [Google Scholar] [CrossRef]
- Nan, Z.-D.; Shang, Y.; Zhu, Y.-D.; Zhang, H.; Sun, R.-R.; Tian, J.-J.; Jiang, Z.-B.; Ma, X.-L.; Bai, C. Systematic review of natural coumarins in plants (2019–2024): Chemical structures and pharmacological activities. Phytochemistry 2025, 235, 114480. [Google Scholar] [CrossRef] [PubMed]
- Zálešák, F.; Bon, D.J.-Y.D.; Pospíšil, J. Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacol. Res. 2019, 146, 104284. [Google Scholar] [CrossRef] [PubMed]
- Teponno, R.B.; Kusari, S.; Spiteller, M. Recent advances in research on lignans and neolignans. Nat. Prod. Rep. 2016, 33, 1044. [Google Scholar] [CrossRef] [PubMed]
- Zafar, S.; Jian, Y.-Q.; Li, B.; Peng, C.-Y.; Choudhary, M.I.; Rahman, A.; Wang, W. Antioxidant nature adds further therapeutic value: Review on natural xanthones and their glycosides. Digit. Chin. Med. 2019, 2, 166–192. [Google Scholar] [CrossRef]
- Klein-Júnior, L.C.; Campos, A.; Niero, R.; Corrêa, R.; Vander Heyden, Y.; Filho, V.C. Xanthones and cancer: From natural sources to mechanisms of action. Chem. Biodiv. 2020, 17, e1900499. [Google Scholar] [CrossRef]
- Malarz, J.; Michalska, K.; Yudina, Y.V.; Stojakowska, A. Hairy root cultures as a source of polyphenolic antioxidants: Flavonoids, stilbenoids and hydrolyzable tannins. Plants 2022, 11, 1950. [Google Scholar] [CrossRef]
- Malarz, J.; Yudina, Y.V.; Stojakowska, A. Hairy root cultures as a source of phenolic antioxidants: Simple phenolics, phenolic acids, phenylethanoids, and hydroxycinnamates. Int. J. Mol. Sci. 2023, 24, 6920. [Google Scholar] [CrossRef]
- Huang, X.-C.; Tang, H.; Wei, X.; He, Y.; Hu, S.; Wu, J.-Y.; Xu, D.; Qiao, F.; Xue, J.-Y.; Zhao, Y. The gradual establishment of complex coumarin biosynthetic pathway in Apiaceae. Nat. Commun. 2024, 15, 6864. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, T.; Yue, X.; Yang, J.; Zhao, X.; Chang, A.; Yang, C.; Fan, Z.; Liu, K.; Li, Y. The biosynthetic pathway of coumarin and its genetic regulation in response to biotic and abiotic stresses. Front. Plant Sci. 2025, 16, 1599591. [Google Scholar] [CrossRef]
- Canty, N.K.; Chang, W. Current understanding of lignan biosynthesis. Arkivoc 2023, 2, 202312006. [Google Scholar] [CrossRef]
- Remali, J.; Sahidin, I.; Aizat, W.M. Xanthone Biosynthetic Pathway in Plants: A Review. Front. Plant Sci. 2022, 13, 809497. [Google Scholar] [CrossRef]
- Stringlis, I.A.; de Jonge, R.; Pieterse, C.M.J. The Age of Coumarins in Plant–Microbe Interactions. Plant Cell Physiol. 2019, 60, 1405–1419. [Google Scholar] [CrossRef]
- Badiali, C.; Petruccelli, V.; Brasili, E.; Pasqua, G. Xanthones: Biosynthesis and trafficking in plants, fungi and lichens. Plants 2023, 12, 694. [Google Scholar] [CrossRef] [PubMed]
- Jha, Y.; Mohamed, H.I. Plant secondary metabolites as a tool to investigate biotic stress tolerance in plants: A review. Gesunde Pflanz. 2022, 74, 771–790. [Google Scholar] [CrossRef]
- Paniagua, C.; Bilkova, A.; Jackson, P.; Dabravolski, S.; Riber, W.; Didi, V.; Houser, J.; Gigli-Bisceglia, N.; Wimmerova, M.; Budínská, E.; et al. Dirigent proteins in plants: Modulating cell wall metabolism during abiotic and biotic stress exposure. J. Exp. Bot. 2017, 68, 3287–3301. [Google Scholar] [CrossRef] [PubMed]
- Sidwa-Gorycka, M.; Królicka, A.; Orlita, A.; Maliński, E.; Gołębiowski, M.; Kumirska, J.; Chromik, A.; Biskup, E.; Stepnowski, P.; Łojkowska, E. Genetic transformation of Ruta graveolens L. by Agrobacterium rhizogenes: Hairy root cultures a promising approach for production of coumarins and furanocoumarins. Plant Cell Tiss. Org. Cult. 2009, 97, 59–69. [Google Scholar] [CrossRef]
- Khazaei, A.; Bahramnejad, B.; Mozafari, A.A.; Dastan, D.; Mohammadi, S. Hairy root induction and Farnesiferol B production of endemic medicinal plant Ferula pseudalliacea. 3 Biotech 2019, 9, 407. [Google Scholar] [CrossRef]
- Stassen, N.J.J.; Hsu, S.-H.; Pieterse, C.M.J.; Stringlis, I.A. Coumarin communication along the microbiome–root–shoot axis. Trends Plant Sci. 2021, 26, 169–183. [Google Scholar] [CrossRef]
- Rostom, B.; Karaky, R.; Kassab, I.; Veitía, M.S.-I. Coumarins derivatives and inflammation: Review of their effects on the inflammatory signaling pathways. Eur. J. Pharmacol. 2022, 922, 174867. [Google Scholar] [CrossRef]
- Keri, R.S.; Budagumpi, S.; Somappa, S.B. Synthetic and natural coumarins as potent anticonvulsant agents: A review with structure–activity relationship. J. Clin. Pharm. Ther. 2022, 47, 915–931. [Google Scholar] [CrossRef] [PubMed]
- Akwu, N.A.; Lekhooa, M.; Deqiang, D.; Aremu, A.O. Antidepressant effects of coumarins and their derivatives: A critical analysis of research advances. Eur. J. Pharmacol. 2023, 956, 175958. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Cheng, X.; Zheng, H. Umbelliferon: A review of its pharmacology, toxicity and pharmacokinetics. Inflammopharmacology 2023, 31, 1731–1750. [Google Scholar] [CrossRef]
- Santos Junior, C.M.; Cardoso Silva, S.M.; Matos Sales, E.; da Silva Velozo, E.; Porto dos Santos, E.K.; Baptista Canuto, G.A.; Johansson Azeredo, F.; Fraga Barros, T.; Biegelmeyer, R. Coumarins from Rutaceae: Chemical diversity and biological activities. Fitoterapia 2023, 168, 105489. [Google Scholar] [CrossRef]
- Hussain, M.K.; Khatoon, S.; Khan, M.F.; Akhtar, M.S.; Ahamad, S.; Saquib, M. Coumarins as versatile therapeutic phytomolecules: A systematic review. Phytomedicine 2024, 134, 155972. [Google Scholar] [CrossRef] [PubMed]
- Park, N.I.; Park, J.H.; Park, S.U. Overexpression of cinnamate 4-hydroxylase gene enhances biosynthesis of decursinol angelate in Angelica gigas hairy roots. Mol. Biotechnol. 2012, 50, 114–120. [Google Scholar] [CrossRef]
- Królicka, A.; Staniszewska, I.; Bielawski, K.; Maliński, E.; Szafranek, J.; Łojkowska, E. Establishment of hairy root cultures of Ammi majus. Plant Sci. 2001, 160, 259–264. [Google Scholar] [CrossRef]
- Królicka, A.; Łojkowska, E.; Staniszewska, I.; Maliński, E.; Szafranek, J. Identification of secondary metabolites in in vitro culture of Ammi majus treated with elicitors. Acta Hortic. 2001, 560, 255–258. [Google Scholar] [CrossRef]
- Park, J.H.; Park, N.I.; Xu, H.; Park, S.U. Cloning and characterization of phenylalanine ammonia-lyase and cinnamate 4-hydroxylase and pyranocoumarin biosynthesis in Angelica gigas. J. Nat. Prod. 2010, 73, 1394–1397. [Google Scholar] [CrossRef]
- Zhang, L.; Fu, X.; Gui, T.; Wang, T.; Wang, Z.; Kullak-Ublick, G.A.; Gai, Z. Effects of Farnesiferol B on ischemia-reperfusion-induced renal damage, inflammation, and NF-κB signaling. Int. J. Mol. Sci. 2019, 20, 6280. [Google Scholar] [CrossRef]
- Appendino, G.; Maxia, L.; Bascope, M.; Houghton, P.J.; Sanchez-Duffhues, G.; Munoz, E.; Sterner, O. A meroterpenoid NF-κB inhibitor and drimane sesquiterpenoids from Asafetida. J. Nat. Prod. 2006, 69, 1101–1104. [Google Scholar] [CrossRef]
- Kasaian, J.; Mosaffa, F.; Behravan, J.; Masullo, M.; Piacente, S.; Iranshahi, M. Modulation of multidrug resistance protein 2 efflux in the cisplatin resistance human ovarian carcinoma cells A2780/RCIS by sesquiterpene coumarins. Phytother. Res. 2016, 30, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Zhai, D.-D.; Zhong, J.-J. Simultaneous analysis of three bioactive compounds in Artemisia annua hairy root cultures by reversed-phase high-performance liquid chromatography–diode array detector. Phytochem. Anal. 2010, 21, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Kisiel, W.; Stojakowska, A. A sesquiterpene coumarin ether from transformed roots of Tanacetum parthenium. Phytochemistry 1997, 46, 515–516. [Google Scholar] [CrossRef]
- Bais, H.P.; Sudha, G.; Ravishankar, G.A. Putrescine influences growth and production of coumarins in hairy root cultures of Witloof chicory (Cichorium intybus L. cv. Lucknow Local). J. Plant Growth Regul. 1999, 18, 159–165. [Google Scholar] [CrossRef]
- Bais, H.P.; Govindaswamy, S.; Ravishankar, G.A. Enhancement of growth and coumarin production in hairy root cultures of Witloof chicory (Cichorium intybus L. cv. Lucknow local) under the influence of fungal elicitors. J. Biosci. Bioeng. 2000, 90, 648–653. [Google Scholar] [CrossRef]
- Bais, H.P.; Sudha, G.; George, J.; Ravishankar, G.A. Influence of exogenous hormones on growth and secondary metabolite production in hairy root cultures of Cichorium intybus L. cv. Lucknow local. Vitr. Cell. Dev. Biol.-Plant 2001, 37, 293–299. [Google Scholar] [CrossRef]
- Bais, H.P.; Ravishankar, G.A. Synergistic effect of auxins and polyamines in hairy roots of Cichorium intybus L. during growth, coumarin production and morphogenesis. Acta Physiol. Plant. 2003, 25, 193–208. [Google Scholar] [CrossRef]
- Fathi, R.; Mohebodini, M.; Chamani, E. High-efficiency Agrobacterium rhizogenes-mediated genetic transformation in Cichorium intybus L. via removing macronutrients. Ind. Crop Prod. 2019, 128, 572–580. [Google Scholar] [CrossRef]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Huang, Y.-H.; Bajpai, A.; Frosig-Jorgensen, M.; Zhao, G.; Craik, D.J. Evaluation of the in vivo aphrodisiac activity of a cyclotide extract from Hybanthus enneaspermus. J. Nat. Prod. 2020, 83, 3736–3743. [Google Scholar] [CrossRef] [PubMed]
- Behera, P.R.; Jena, R.C.; Das, A.; Thirunavoukkarasu, M.; Chand, P.K. Genetic stability and coumarin content of transformed rhizoclones and regenerated plants of a multi-medicinal herb, Hybanthus enneaspermus (L.) F. Muell. Plant Growth Regul. 2016, 80, 103–114. [Google Scholar] [CrossRef]
- Kowalczyk, T.; Merecz-Sadowska, A.; Rijo, P.; Isca, V.M.S.; Picot, L.; Wielanek, M.; Śliwiński, T.; Sitarek, P. Preliminary phytochemical analysis and evaluation of the biological activity of Leonotis nepetifolia (L.) R. Br transformed roots extracts obtained through Rhizobium rhizogenes-mediated transformation. Cells 2021, 10, 1242. [Google Scholar] [CrossRef]
- Reyes-Pérez, R.; Herrera-Ruiz, M.; Perea-Arango, I.; Martínez-Morales, F.; De Jesús Arellano García, J.; Nicasio-Torres, P. Anti-inflammatory compounds produced in hairy roots culture of Sphaeralcea angustifolia. Plant Cell Tissue Organ Cult. 2022, 149, 351–361. [Google Scholar] [CrossRef]
- Cao, D.M.; Bui, A.L.; Bui, L.V.; Quach, P.N.D. Development of an efficient selection procedure for high imperatorin-yielding hairy root clones of Urena lobata L. using morphological and molecular markers. Plant Cell Tissue Organ Cult. 2024, 159, 35. [Google Scholar] [CrossRef]
- McCown, B.H.; Lloyd, G. Woody Plant Medium (WPM)—A Mineral Nutrient Formulation for Microculture of Woody Plant Species. HortScience 1981, 16, 453. [Google Scholar] [CrossRef]
- Nguyen, D.M.; Quach, P.N.D.; Cao, D.M. An investigation of elicitation and precursor feeding to increased imperatorin synthesis in hairy root culture of Urena lobata L. Res. J. Biotechnol. 2025, 20, 206–214. [Google Scholar] [CrossRef]
- Cao, D.M.; Bui, A.L.; Bui, L.V.; Quach, P.N.D. An efficient droplet-vitrification cryopreservation procedure for high imperatorin-yielding hairy root clones of Urena lobata. Cryobiology 2025, 118, 105186. [Google Scholar] [CrossRef]
- Nie, G.; Wu, F.; Duan, Z.; Wang, S.; Ao, B.; Zhou, P.; Zhang, J. Genome-wide analysis of the cytochrome P450 superfamily suggests its roles in coumarin biosynthesis and salt stress response in Melilotus albus. Environ. Exp. Bot. 2024, 220, 105718. [Google Scholar] [CrossRef]
- Kayser, O.; Kolodziej, H. Highly oxygenated coumarins from Pelargonium sidoides. Phytochemistry 1995, 39, 1181–1185. [Google Scholar] [CrossRef]
- Colling, J.; Groenewald, J.-H.; Makunga, N.P. Genetic alterations for increased coumarin production lead to metabolic changes in the medicinally important Pelargonium sidoides DC (Geraniaceae). Metab. Eng. 2010, 12, 561–572. [Google Scholar] [CrossRef]
- Yousefian, Z.; Golkar, P.; Mirjalili, M.H. Production enhancement of medicinally active coumarin and phenolic compounds in hairy root cultures of Pelargonium sidoides: The effect of elicitation and sucrose. J. Plant Growth Regul. 2021, 40, 628–641. [Google Scholar] [CrossRef]
- Yousefian, Z.; Hamidoghli, Y.; Golkar, P.; Mirjalili, M.H. Growth patterns and biological activities of Pelargonium sidoides DC. hairy root cultures: A commercially-feasible industrial scale-up to improve yields. Ind. Crop Prod. 2023, 194, 116272. [Google Scholar] [CrossRef]
- Lee, K.-H.; Xiao, Z. Lignans in treatment of cancer and other diseases. Phytochem. Rev. 2003, 2, 341–362. [Google Scholar] [CrossRef]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally lignan-rich foods: A dietary tool for health promotion? Molecules 2019, 24, 917. [Google Scholar] [CrossRef] [PubMed]
- Berenshtein, L.; Okun, Z.; Shpigelman, A. Stability and Bioaccessibility of Lignans in Food Products. ACS Omega 2024, 9, 2022–2031. [Google Scholar] [CrossRef]
- Wawrosch, C.; Schwaiger, S.; Stuppner, H.; Kopp, B. Lignan formation in hairy root cultures of Edelweiss (Leontopodium nivale ssp. alpinum (Cass.) Greuter). Fitoterapia 2014, 97, 219–223. [Google Scholar] [CrossRef]
- Duwensee, K.; Schwaiger, S.; Tancevski, I.; Eller, K.; van Eck, M.; Markt, P.; Linder, T.; Stanzl, U.; Ritsch, A.; Patsch, J.R.; et al. Leoligin, the major lignan from Edelweiss, activates cholesteryl ester transfer protein. Atherosclerosis 2011, 219, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Scharinger, B.; Messner, B.; Türkcan, A.; Schuster, D.; Vuorinen, A.; Pitterl, F.; Heinz, K.; Arnhard, K.; Laufer, G.; Grimm, M.; et al. Leoligin, the major lignan from Edelweiss, inhibits 3-hydroxy-3-methyl-glutaryl-CoA reductase and reduces cholesterol levels in ApoE−/− mice. J. Mol. Cell. Cardiol. 2016, 99, 35–46. [Google Scholar] [CrossRef]
- Wang, L.; Ladurner, A.; Latkolik, S.; Schwaiger, S.; Linder, T.; Hošek, J.; Palme, V.; Schilcher, N.; Polanský, O.; Heiss, E.H.; et al. Leoligin, the major lignan from Edelweiss (Leontopodium nivale subsp. alpinum), promotes cholesterol efflux from THP-1 macrophages. J. Nat. Prod. 2016, 79, 1651–1657. [Google Scholar] [CrossRef]
- Malarz, J.; Stojakowska, A.; Szneler, E.; Kisiel, W. A new neolignan glucoside from hairy roots of Cichorium intybus. Phytochem. Lett. 2013, 6, 59–61. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Y.; Zheng, Z.; Zhao, S.; Zhao, J.; Lin, Q.; Li, C.; Zhu, Q.; Zhong, N. Antiviral activity of Isatis indigotica root-derived clemastanin B against human and avian influenza A and B viruses in vitro. Int. J. Mol. Med. 2013, 31, 867–873. [Google Scholar] [CrossRef]
- Xiao, Y.; Ji, Q.; Gao, S.; Tan, H.; Chen, R.; Li, Q.; Chen, J.; Yang, Y.; Zhang, L.; Wang, Z.; et al. Combined transcriptome and metabolite profiling reveals that IiPLR1 plays an important role in lariciresinol accumulation in Isatis indigotica. J. Exp. Bot. 2015, 66, 6259–6271. [Google Scholar] [CrossRef]
- Di, P.; Hu, Y.; Xuan, H.; Xiao, Y.; Chen, J.; Zhang, L.; Chen, W. Characterization and the expression profile of 4-coumarate: CoA ligase (Ii4CL) from hairy roots of Isatis indigotica. Afr. J. Pharm. Pharmacol. 2012, 6, 2166–2175. [Google Scholar]
- Chen, R.; Li, Q.; Tan, H.; Chen, J.; Xiao, Y.; Ma, R.; Gao, S.; Zerbe, P.; Chen, W.; Zhang, L. Gene-to-metabolite network for biosynthesis of lignans in MeJA-elicited Isatis indigotica hairy root cultures. Front. Plant Sci. 2015, 6, 952. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Liu, Q.-Z.; Xiao, Y.; Zhang, L.; Li, Q.; Yin, J.; Chen, W. The phenylalanine ammonia-lyase gene family in Isatis indigotica Fort.: Molecular cloning, characterization, and expression analysis. Chin. J. Nat. Med. 2016, 14, 0801–0812. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, J.; Zhou, X.; Chen, X.; Li, Q.; Tan, H.; Dong, X.; Xiao, Y.; Chen, L.; Chen, W. Dynamic metabolic and transcriptomic profiling of methyl jasmonate-treated hairy roots reveals synthetic characters and regulators of lignan biosynthesis in Isatis indigotica Fort. Plant Biotechnol. J. 2016, 14, 2217–2227. [Google Scholar] [CrossRef]
- Ma, R.; Xiao, Y.; Lv, Z.; Tan, H.; Chen, R.; Li, Q.; Chen, J.; Wang, Y.; Yin, J.; Zhang, L.; et al. AP2/ERF transcription factor, Ii049, positively regulates lignan biosynthesis in Isatis indigotica through activating salicylic acid signaling and lignan/lignin pathway genes. Front. Plant Sci. 2017, 8, 1361. [Google Scholar] [CrossRef]
- Tan, Y.; Yang, J.; Jiang, Y.; Wang, J.; Liu, Y.; Zhao, Y.; Jin, B.; Wang, X.; Chen, T.; Kang, L.; et al. Functional characterization of UDP-glycosyltransferases involved in anti-viral lignan glycosides biosynthesis in Isatis indigotica. Front. Plant Sci. 2022, 13, 921815. [Google Scholar] [CrossRef]
- Shah, Z.; Gohar, U.F.; Jamshed, I.; Mushtaq, A.; Mukhtar, H.; Zia-UI-Haq, M.; Toma, S.I.; Manea, R.; Moga, M.; Popovici, B. Podophyllotoxin: History, recent advances and future prospects. Biomolecules 2021, 11, 603. [Google Scholar] [CrossRef]
- Gao, Z.; Cao, Q.; Deng, Z. Unveiling the power of flax lignans: From plant biosynthesis to human health benefits. Nutrients 2024, 16, 3520. [Google Scholar] [CrossRef]
- Malik, S.; Bíba, O.; Grúz, J.; Arroo, R.R.J.; Strnad, M. Biotechnological approaches for producing aryltetralin lignans from Linum species. Phytochem. Rev. 2014, 13, 893–913. [Google Scholar] [CrossRef]
- Nedelcheva, R.; Zarev, Y.; Mihaylova, R.; Kozuharova, E.; Momekov, G.; Ionkova, I. Arylnaphthalene lignans with a focus Linum species: A review on phytochemical, biotechnological and pharmacological potential. Pharmacia 2024, 71, 1–10. [Google Scholar] [CrossRef]
- Oostdam, A.; Mol, J.N.M.; van der Plas, L.H.W. Establishment of hairy root cultures of Linum flavum producing the lignan 5-methoxypodophyllotoxin. Plant Cell Rep. 1993, 12, 474–477. [Google Scholar] [CrossRef] [PubMed]
- Vasilev, N.; Ionkova, I. Lignan accumulation in cell cultures of Linum strictum ssp. strictum L. Acta Pharm. 2004, 54, 347–351. [Google Scholar]
- Bayinir, Ü.; Alfermann, A.W.; Fuss, E. Hinokinin biosynthesis in Linum corymbulosum Raichenb. Plant J. 2008, 55, 810–820. [Google Scholar] [CrossRef]
- Ionkova, I. Effect of methyl jasmonate on production of ariltetralin lignans in hairy root cultures of Linum tauricum. Pharmacog. Res. 2009, 1, 102–105. [Google Scholar]
- Dougué Kentsop, R.A.; Consonni, R.; Alfieri, M.; Laura, M.; Ottolina, G.; Mascheretti, I.; Mattana, M. Linum lewisii adventitious and hairy-roots cultures as lignan plant factories. Antioxidants 2022, 11, 1526. [Google Scholar] [CrossRef]
- Mohagheghzadeh, A.; Schmidt, T.J.; Alfermann, A.W. Arylnaphthalene lignans from in vitro cultures of Linum austriacum. J. Nat. Prod. 2002, 65, 69–71. [Google Scholar] [CrossRef]
- Mohagheghzadeh, A.; Gholami, A.; Hemmati, S.; Dehshahri, S. Bag culture: A method for root-root co-culture. Z. Naturforsch. C 2008, 63, 157–160. [Google Scholar] [CrossRef]
- Mascheretti, I.; Alfieri, M.; Lauria, M.; Locatelli, F.; Consonni, R.; Cusano, E.; Dougué Kentsop, R.A.; Laura, M.; Ottolina, G.; Faoro, F.; et al. New insight into justicidin B pathway and production in Linum austriacum. Int. J. Mol. Sci. 2021, 22, 2507. [Google Scholar] [CrossRef] [PubMed]
- Vasilev, N.; Elfahmi; Bos, R.; Kayser, O.; Momekov, G.; Konstantinov, S.; Ionkova, I. Production of justicidin B, a cytotoxic arylnaphthalene lignan from genetically transformed root cultures of Linum leonii. J. Nat. Prod. 2006, 69, 1014–1017. [Google Scholar] [CrossRef] [PubMed]
- Momekov, G.; Yossifov, D.; Guenova, M.; Michova, A.; Stoyanov, N.; Konstantinov, S.; Ionkov, T.; Sacheva, P.; Ionkova, I. Apoptotic mechanisms of the biotechnologically produced arylnaphtalene lignan justicidin B in the acute myeloid leukemia-derived cell line HL-60. Pharmacol. Rep. 2014, 66, 1073–1076. [Google Scholar] [CrossRef] [PubMed]
- Zarev, Y.; Nedelcheva, R.; Todorova, T.; Boyadzhiev, K.; Dimitrov, M.; Ionkova, I. Discovery of novel compounds from Linum leonii hairy roots with anticarcinogenic and cytoprotective potential. Rev. Bras. Farmacogn. 2025, 35, 798–809. [Google Scholar] [CrossRef]
- Hemmati, S.; Schmidt, T.J.; Fuss, E. (+)-Pinoresinol/(−)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett. 2007, 581, 603–610. [Google Scholar] [CrossRef]
- Jullian-Pawlicki, N.; Lequart-Pillon, M.; Huynh-Cong, L.; Lesur, D.; Cailleu, D.; Mesnard, F.; Laberche, J.C.; Gontier, E.; Boitel-Conti, M. Arylnaphthalene and aryltetralin-type lignans in hairy root cultures of Linum perenne, and the stereochemistry of 6-methoxypodophyllotoxin and one diastereoisomer by HPLC-MS and NMR spectroscopy. Phytochem. Anal. 2015, 26, 310–319. [Google Scholar] [CrossRef]
- Samadi, A.; Carapetian, J.; Heidari, R.; Jafari, M.; Hassanzadeh Gorttapeh, A. Hairy root induction in Linum mucronatum ssp. mucronatum, an anti-tumor lignans producing plant. Not. Bot. Horti Agrobot. 2012, 40, 125–131. [Google Scholar] [CrossRef]
- Samadi, A.; Jafari, M.; Nejhad, N.M.; Hossenian, F. Podophyllotoxin and 6-methoxy podophyllotoxin production in hairy root cultures of Liunm mucronatum ssp. mucronatum. Phcog. Mag. 2014, 10, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Rajauria, G.; Sahai, V.; Bisaria, V.S. Culture filtrate of root endophytic fungus Piriformospora indica promotes the growth and lignan production of Linum album hairy root cultures. Process Biochem. 2012, 47, 901–907. [Google Scholar] [CrossRef]
- Tashackori, H.; Sharifi, M.; Chashmi, N.A.; Safaie, N.; Behmanesh, M. Induced-differential changes on lignan and phenolic acid compounds in Linum album hairy roots by fungal extract of Piriformospora indica. Plant Cell Tissue Organ Cult. 2016, 127, 187–194. [Google Scholar] [CrossRef]
- Tashackori, H.; Sharifi, M.; Chashmi, N.A.; Behmanesh, M.; Safaie, N. Piriformospora indica cell wall modulates gene expression and metabolite profile in Linum album hairy roots. Planta 2018, 248, 1289–1306. [Google Scholar] [CrossRef]
- Tashackori, H.; Sharifi, M.; Chashmi, N.A.; Fuss, E.; Behmanesh, M.; Safaie, N. RNAi-mediated silencing of pinoresinol lariciresinol reductase in Linum album hairy roots alters the phenolic accumulation in response to fungal elicitor. J. Plant Physiol. 2019, 232, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Tashackori, H.; Sharifi, M.; Chashmi, N.A.; Behmanesh, M.; Safaie, N.; Sagharyan, M. Physiological, biochemical, and molecular responses of Linum album to digested cell wall of Piriformospora indica. Physiol. Mol. Biol. Plants 2021, 27, 2695–2708. [Google Scholar] [CrossRef] [PubMed]
- Chashmi, N.A.; Sharifi, M.; Yousefzadi, M.; Behmanesh, M.; Rezadoost, H.; Cardillo, A.; Palazon, J. Analysis of 6-methoxy podophyllotoxin and podophyllotoxin in hairy root cultures of Linum album Kotschy ex Boiss. Med. Chem. Res. 2013, 22, 745–752. [Google Scholar] [CrossRef]
- Bahabadi, S.E.; Sharifi, M.; Chashmi, N.A.; Murata, J.; Satake, H. Significant enhancement of lignan accumulation in hairy root cultures of Linum album using biotic elicitors. Acta Physiol. Plant. 2014, 36, 3325–3331. [Google Scholar] [CrossRef]
- Cong, L.H.; Dauwe, R.; Lequart, M.; Vinchon, S.; Renouard, S.; Fliniaux, O.; Colas, C.; Corbin, C.; Doussot, J.; Hano, C.; et al. Kinetics of glucosylated and non-glucosylated aryltetralin lignans in Linum hairy root cultures. Phytochemistry 2015, 115, 70–78. [Google Scholar] [CrossRef]
- Chashmi, N.A.; Shari, M.; Behmanesh, M. Lignan enhancement in hairy root cultures of Linum album using coniferaldehyde and methylenedioxycinnamic acid. Prep. Biochem. Biotech. 2016, 46, 454–460. [Google Scholar] [CrossRef]
- Lalaleo, L.; Alcazar, R.; Palazon, J.; Moyano, E.; Cusido, R.M.; Bonfill, M. Comparing aryltetralin lignan accumulation patterns in four biotechnological systems of Linum album. J. Plant Physiol. 2018, 228, 197–207. [Google Scholar] [CrossRef]
- Fakhari, S.; Sharifi, M.; De Michele, R.; Ghanati, F.; Safaie, N.; Sadeghnezhad, E. Hydrogen sulfide directs metabolic flux towards the lignan biosynthesis in Linum album hairy roots. Plant Physiol. Biochem. 2019, 135, 359–371. [Google Scholar] [CrossRef]
- Samari, E.; Sharifi, M.; Ghanati, F.; Fuss, E.; Chashmi, N.A. Chitosan-induced phenolics production is mediated by nitrogenous regulatory molecules: NO and PAs in Linum album hairy roots. Plant Cell Tissue Organ Cult. 2020, 140, 563–576. [Google Scholar] [CrossRef]
- Soltani, M.; Samari, E.; Vazirifar, S.; Chashmi, N.A.; Sharifi, M.; Fotovat, R. Putrescine induces lignans biosynthesis through changing the oxidative status and reprogramming amino acids and carbohydrates levels in Linum album hairy roots. Plant Cell Tissue Organ Cult. 2023, 153, 387–402. [Google Scholar] [CrossRef]
- Renouard, S.; Corbin, C.; Drouet, S.; Medvedec, B.; Doussot, J.; Colas, C.; Maunit, B.; Bhambra, A.S.; Gontier, E.; Jullian, N.; et al. Investigation of Linum flavum (L.) hairy root cultures for the production of anticancer aryltetralin lignans. Int. J. Mol. Sci. 2018, 19, 990. [Google Scholar] [CrossRef] [PubMed]
- Gabr, A.M.M.; Mabrok, H.B.; Ghanem, K.Z.; Blaut, M.; Smetanska, I. Lignan accumulation in callus and Agrobacterium rhizogenes mediated hairy root cultures of flax (Linum usitatissimum). Plant Cell Tissue Organ Cult. 2016, 126, 255–267. [Google Scholar] [CrossRef]
- Gabr, A.M.M.; Mabrok, H.B.; Abdel-Rahim, E.A.; El-Bahr, M.K.; Smetanska, I. Determination of lignans, phenolic acids and antioxidant capacity in transformed hairy root culture of Linum usitatissimum. Nat. Prod. Res. 2018, 32, 1867–1871. [Google Scholar] [CrossRef] [PubMed]
- Markulin, L.; Corbin, C.; Renouard, S.; Drouet, S.; Durpoix, C.; Mathieu, C.; Lopez, T.; Auguin, D.; Hano, C.; Lainé, E. Characterization of LuWRKY36, a flax transcription factor promoting secoisolariciresinol biosynthesis in response to Fusarium oxysporum elicitors in Linum usitatissimum L. hairy roots. Planta 2019, 250, 347–366. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, Z.; Cao, W.; Liu, H.; Aioub, A.A.A.; Hu, Z.; Wu, W. Establishment of Agrobacterium rhizogenes-mediated RNAi of Phryma leptostachya accelerates the functional identification of key genes of the furofuran lignan biosynthetic pathway. Ind. Crop. Prod. 2023, 204, 117260. [Google Scholar] [CrossRef]
- Pei, Y.; Cao, W.; Kong, X.; Wang, S.; Sun, Z.; Zuo, Y.; Hu, Z. CRISPR/Cas9-mediated efficient PlCYP81Q38 mutagenesis in Phryma leptostachya. Planta 2025, 261, 73. [Google Scholar] [CrossRef]
- Suresh, S.; Elango, N.; Senthil, K. A comprehensive review on the in vitro culture techniques adopted for the genus Phyllanthus. Plant Cell Tissue Organ Cult. 2025, 160, 74. [Google Scholar] [CrossRef]
- Ishimaru, K.; Yoshimatsu, K.; Yamakawa, T.; Kamada, H.; Shimomura, K. Phenolic constituents in tissue cultures of Phyllanthus niruri. Phytochemistry 1992, 31, 2015–2018. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Bhattacharya, S. Development of a potent in vitro source of Phyllanthus amarus roots with pronounced activity against surface antigen of the hepatitis B virus. Vitr. Cell. Dev. Biol.—Plant 2004, 40, 504–508. [Google Scholar] [CrossRef]
- Abhyankar, G.; Suprasanna, P.; Pandey, B.N.; Mishra, K.P.; Rao, K.V.; Reddy, V.D. Hairy root extract of Phyllanthus amarus induces apoptotic cell death in human breast cancer cells. Innov. Food Sci. Emerg. Technol. 2010, 11, 526–532. [Google Scholar] [CrossRef]
- Benavides, K.; Sánchez-Kopper, A.; Jiménez-Quesada, K.; Perez, R.; Garro-Monge, G. Evaluation of salicylic acid and methyl jasmonate as elicitors in Phyllanthus acuminatus hairy roots by non-targeted analysis using high-resolution mass spectrometry. Molecules 2024, 29, 80. [Google Scholar] [CrossRef]
- Andargie, M.; Vinas, M.; Rathgeb, A.; Möller, E.; Karlovsky, P. Lignans of sesame (Sesamum indicum L.): A comprehensive review. Molecules 2021, 26, 883. [Google Scholar] [CrossRef]
- You, J.; Li, D.; Yang, L.; Dossou, S.S.K.; Zhou, R.; Zhang, Y.; Wang, L. CRISPR/Cas9-mediated efficient targeted mutagenesis in Sesame (Sesamum indicum L.). Front. Plant Sci. 2022, 13, 935825. [Google Scholar] [CrossRef]
- Dossou, S.S.K.; Song, S.; Liu, A.; Li, D.; Zhou, R.; Berhe, M.; Zhang, Y.; Sheng, C.; Wang, Z.; You, J.; et al. Resequencing of 410 sesame accessions identifies SINST1 as the major underlying gene for lignans variation. Int. J. Mol. Sci. 2023, 24, 1055. [Google Scholar] [CrossRef]
- Li, H.; Hu, F.; Zhou, J.; Yang, L.; Li, D.; Zhou, R.; Zhou, T.; Zhang, Y.; Wang, L.; You, J. Genome-wide characterization of the DIR gene family in sesame reveals the function of SiDIR21 in lignan biosynthesis. Plant Physiol. Biochem. 2024, 217, 109282. [Google Scholar] [CrossRef] [PubMed]
- Sykłowska-Baranek, K.; Łysik, K.; Jeziorek, M.; Wencel, A.; Gajcy, M.; Pietrosiuk, A. Lignan accumulation in two-phase cultures of Taxus x media hairy roots. Plant Cell Tissue Organ Cult. 2018, 133, 371–384. [Google Scholar] [CrossRef]
- Gupta, P.K.; Durzan, D.J. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus iambertiana). Plant Cell Rep. 1985, 4, 177–179. [Google Scholar] [CrossRef]
- Pinto, M.M.M.; Palmeira, A.; Fernandes, C.; Resende, D.I.S.P.; Sousa, E.; Cidade, H.; Tiritan, M.E.; Correia-da-Silva, M.; Cravo, S. From natural products to new synthetic small molecules: A journey through the world of xanthones. Molecules 2021, 26, 431. [Google Scholar] [CrossRef]
- Oriola, A.O.; Kar, P. Naturally cccurring xanthones and their biological implications. Molecules 2024, 29, 4241. [Google Scholar] [CrossRef] [PubMed]
- Veríssimo, A.C.S.; Pinto, D.C.G.A.; Silva, A.M.S. Marine-derived xanthone from 2010 to 2021: Isolation, bioactivities and total synthesis. Mar. Drugs 2022, 20, 347. [Google Scholar] [CrossRef] [PubMed]
- Saraswathy, S.U.P.; Lalitha, L.C.P.; Rahim, S.; Gopinath, C.; Haleema, S.; SarojiniAmma, S.; Aboul-Enein, H.Y. A Review on synthetic and pharmacological potential of compounds isolated from Garcinia mangostana Linn. Phytomed. Plus 2022, 2, 100253. [Google Scholar] [CrossRef]
- Dewi, I.P.; Dachriyanus; Aldi, Y.; Ismail, N.H.; Osman, C.P.; Putra, P.P.; Wahyuni, F.S. A new xanthone from Garcinia cowa Roxb. and its anti-inflammatory activity. J. Ethnopharmacol. 2025, 343, 119380. [Google Scholar] [CrossRef]
- Li, M.; Su, F.; Zhu, M.; Zhang, H.; Wei, Y.; Zhao, Y.; Li, J.; Lv, S. Research progress in the field of Gambogic acid and its derivatives as antineoplastic drugs. Molecules 2022, 27, 2937. [Google Scholar] [CrossRef]
- Choodej, S.; Koopklang, K.; Raksat, A.; Chuaypen, N.; Pudhom, K. Bioactive xanthones, benzophenones and biphenyls from mangosteen root with potential anti-migration against hepatocellular carcinoma cells. Sci. Rep. 2022, 12, 8605. [Google Scholar] [CrossRef]
- Gul, S.; Aslam, K.; Pirzada, Q.; Rauf, A.; Khalil, A.A.; Semwal, P.; Bawazeer, S.; Al-Awthan, Y.S.; Bahattab, O.S.; Al Duais, M.A.; et al. Xanthones: A class of heterocyclic compounds with anticancer potential. Curr. Top. Med. Chem. 2022, 22, 1930–1949. [Google Scholar] [CrossRef]
- Brito, L.C.; Marques, A.M.; Camillo, F.C.; Figueiredo, M.R. Garcinia spp: Products and by-products with potential pharmacological application in cancer. Food Biosci. 2022, 50, 102110. [Google Scholar] [CrossRef]
- Liu, X.; Shen, J.; Zhu, K. Antibacterial activities of plant-derived xanthones. RSC Med. Chem. 2022, 13, 107. [Google Scholar] [CrossRef]
- Ryu, H.W.; Cho, J.K.; Curtis-Long, M.J.; Yuk, H.J.; Kim, Y.S.; Jung, S.; Kim, Y.S.; Lee, B.W.; Park, K.H. a-Glucosidase inhibition and antihyperglycemic activity of prenylated xanthones from Garcinia mangostana. Phytochemistry 2011, 72, 2148–2154. [Google Scholar] [CrossRef] [PubMed]
- Saikia, R.; Pathak, K.; Pramanik, P.; Islam, M.A.; Karmakar, S.; Gogoi, S.; Pathak, M.P.; Das, D.; Sahariah, J.J.; Ahmad, M.Z.; et al. Exploring the therapeutic potential of xanthones in diabetes management: Current insights and future directions. Eur. J. Med. Chem. Rep. 2024, 12, 100189. [Google Scholar] [CrossRef]
- Jiang, D.-J.; Dai, Z.; Li, Y.-J. Pharmacological effects of xanthones as cardiovascular protective agents. Cardiovasc. Drug Rev. 2004, 22, 91–102. [Google Scholar] [CrossRef]
- Pang, L.W.; Hamzah, S.; Tan, S.L.J.; Mah, S.H.; Yow, H.Y. The effects and mechanisms of xanthones in Alzheimer’s disease: A systematic review. Neurochem. Res. 2023, 48, 3485–3511. [Google Scholar] [CrossRef]
- Dutta, T.; Das, T.; Gopalakrishnan, A.V.; Saha, S.C.; Ghorai, M.; Nandy, S.; Kumar, M.; Radha; Ghosh, A.; Mukerjee, N.; et al. Mangiferin: The miraculous xanthone with diverse pharmacological properties. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 396, 851–863. [Google Scholar] [CrossRef]
- Zivković, J.; Kumar, K.A.; Rushendran, R.; Ilango, K.; Fahmy, N.M.; El-Nashar, H.A.S.; El-Shazly, M.; Ezzat, S.M.; Lalanne, G.M.; Romero-Montero, A.; et al. Pharmacological properties of mangiferin: Bioavailability, mechanisms of action and clinical perspectives. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 763–781. [Google Scholar] [CrossRef]
- Ko, K.S.; Ebizuka, Y.; Noguchi, H.; Sankawa, U. Production of secondary metabolites by hairy roots and regenerated plants transformed with Ri plasmids. Chem. Pharm. Bull. 1988, 36, 4217–4220. [Google Scholar] [CrossRef]
- Ishimaru, K.; Sudo, H.; Satake, M.; Matsunaga, Y.; Hasegawa, Y.; Takemoto, S.; Shimomura, K. Amarogentin, amaroswerin and four xanthones from hairy root cultures of Swertia japonica. Phytochemistry 1990, 29, 1563–1565. [Google Scholar] [CrossRef]
- Mahendran, G.; Verma, N.; Singh, S.; Parveen, S.; Singh, M.; Luqman, S.; ur Rahman, L. Isolation and characterization of a novel xanthone from the hairy root cultures of Swertia chirayita (Roxb.) H. Karst. and its biological activity. Ind. Crops Prod. 2022, 176, 114369. [Google Scholar] [CrossRef]
- Mahendran, G.; Verma, N.; Singh, M.; Shanker, K.; Banerjee, S.; Kumar, B.; ur Rahman, L. Elicitation enhances swerchirin and 1,2,5,6-tetrahydroxyxanthone production in hairy root cultures of Swertia chirayita (Roxb.) H. Karst. Ind. Crops Prod. 2022, 177, 114488. [Google Scholar] [CrossRef]
- Janković, T.; Krstić, D.; Šavikin-Fodulović, K.; Menković, N.; Grubišić, D. Xanthones and secoiridoids from hairy root cultures of Centaurium erythraea and C. pulchellum. Planta Med. 2002, 68, 944–946. [Google Scholar] [CrossRef]
- Vinterhalter, B.; Krstić-Milošević, D.; Janković, T.; Pljevljakušić, D.; Ninković, S.; Smigocki, A.; Vinterhalter, D. Gentiana dinarica Beck hairy root cultures and evaluation of factors affecting growth and xanthone production. Plant Cell Tissue Organ Cult. 2015, 121, 667–679. [Google Scholar] [CrossRef]
- Krstić-Milošević, D.; Janković, T.; Uzelac, B.; Vinterhalter, D.; Vinterhalter, B. Effect of elicitors on xanthone accumulation and biomass production in hairy root cultures of Gentiana dinarica. Plant Cell Tissue Organ Cult. 2017, 130, 631–640. [Google Scholar] [CrossRef]
- Tovilovic-Kovacevic, G.; Krstic-Milosevic, D.; Vinterhalter, B.; Toljic, M.; Perovic, V.; Trajkovic, V.; Harhaji-Trajkovic, L.; Zogovic, N. Xanthone-rich extract from Gentiana dinarica transformed roots and its active component norswertianin induce autophagy and ROS-dependent differentiation of human glioblastoma cell line. Phytomedicine 2018, 47, 151–160. [Google Scholar] [CrossRef]
- Vinterhalter, B.; Banjac, N.; Vinterhalter, D.; Krstić-Milošević, D. Xanthones production in Gentiana dinarica Beck hairy root cultures grown in simple bioreactors. Plants 2021, 10, 1610. [Google Scholar] [CrossRef]
- Vinterhalter, B.; Savić, J.; Zdravković-Korać, S.; Banjac, N.; Vinterhalter, D.; Krstić-Milošević, D. Agrobacterium rhizogenes-mediated transformation of Gentiana utriculosa L. and xanthones decussatin-1-O-primeveroside and decussatin accumulation in hairy roots and somatic embryo-derived transgenic plants. Ind. Crops Prod. 2019, 130, 216–229. [Google Scholar] [CrossRef]
- Hou, W.; Shakya, P.; Franklin, G. A Perspective on Hypericum perforatum Genetic Transformation. Front. Plant Sci. 2016, 7, 879. [Google Scholar] [CrossRef]
- Shakya, P.; Marslin, G.; Siram, K.; Beerhues, L.; Franklin, G. Elicitation as a tool to improve the profiles of high-value secondary metabolites and pharmacological properties of Hypericum perforatum. J. Pharm. Pharmacol. 2019, 71, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Shasmita; Behera, S.; Mishra, P.; Samal, M.; Mohapatra, D.; Monalisa, K.; Naik, S.K. Recent advances in tissue culture and secondary metabolite production in Hypericum perforatum L. Plant Cell Tissue Organ Cult. 2023, 154, 13–28. [Google Scholar] [CrossRef]
- Di Guardo, A.; Cellarova, E.; Koperdakova, J.; Pistelli, L.; Ruffoni, B.; Allavena, A.; Giovannini, A. Hairy root induction and plant regeneration in Hypericum perforatum L. J. Genet. Breed 2003, 57, 269–278. [Google Scholar]
- Tusevski, O.; Petreska Stanoeva, J.; Stefova, M.; Kungulovski, D.; Atanasova Pancevska, N.; Sekulovski, N.; Gadzovska Simic, S. Hairy roots of Hypericum perforatum L.: A promising system for xanthone production. Cent. Eur. J. Biol. 2013, 8, 1010–1022. [Google Scholar] [CrossRef]
- Tusevski, O.; Vinterhalter, B.; Krstić Milošević, D.; Soković, M.; Ćirić, A.; Vinterhalter, D.; Gadzovska Simic, S. Production of phenolic compounds, antioxidant and antimicrobial activities in hairy root and shoot cultures of Hypericum perforatum L. Plant Cell Tissue Organ Cult. 2017, 128, 589–605. [Google Scholar] [CrossRef]
- Tusevski, O.; Petreska Stanoeva, J.; Stefova, M.; Gadzovska Simic, S. Phenolic profile of dark-grown and photoperiod-exposed Hypericum perforatum L. hairy root cultures. Sci. World J. 2013, 2013, 602752. [Google Scholar] [CrossRef] [PubMed]
- Tusevski, O.; Todorovska, M.; Todorovska, I.; Petreska Stanoeva, J.; Simic, S.G. Photoperiod modulates the production of biologically active compounds in Hypericum perforatum L. hairy roots: An in vitro and in silico approach. Plant Cell Tissue Organ Cult. 2024, 156, 96. [Google Scholar] [CrossRef]
- Tusevski, O.; Todorovska, M.; Petreska Stanoeva, J.; Stefova, M.; Gadzovska Simic, S. In vitro and in silico insights on the biological activities, phenolic compounds composition of Hypericum perforatum L. hairy root cultures. Phyton 2023, 92, 3. [Google Scholar] [CrossRef]
- Brasili, E.; Miccheli, A.; Marini, F.; Praticò, G.; Sciubba, F.; Di Cocco, M.E.; Cechinel, V.F.; Tocci, N.; Valletta, A.; Pasqua, G. Metabolic profile and root development of Hypericum perforatum L. In vitro roots under stress conditions due to chitosan treatment and culture time. Front. Plant Sci. 2016, 7, 507. [Google Scholar] [CrossRef] [PubMed]
- Gjureci, B.; Todorovska, M.; Petreska Stanoeva, J.; Tusevski, O.; Gadzovska Simic, S. Elicitation of Hypericum perforatum L. hairy root cultures with salicylic acid and jasmonic acid enhances the production of phenolic compounds and naphthodianthrones with biological activities. Plant Cell Tissue Organ Cult. 2025, 160, 61. [Google Scholar] [CrossRef]
- Zubrická, D.; Mišianiková, A.; Henzelyová, J.; Valletta, A.; De Angelis, G.; D’Auria, F.D.; Simonetti, G.; Pasqua, G.; Čellárová, E. Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans. Plant Cell Rep. 2015, 34, 1953–1962. [Google Scholar] [CrossRef]
- Veliky, I.A.; Martin, S.M. A fermenter for plant cell suspension cultures. Can. J. Microbiol. 1970, 16, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Immonen, S.; Anttila, H. Media composition and anther plating for production of androgenetic green plants from cultivated rye (Secale cereale L). J. Plant Physiol. 2000, 156, 204–210. [Google Scholar] [CrossRef]
- Ji, H.; Yang, B.; Jing, Y.; Luo, Y.; Li, B.; Yan, Y.; Zhang, G.; Zhao, F.; Wang, B.; Peng, L.; et al. Trehalose and brassinolide enhance the signature ingredient accumulation and anti-oxidant activity in the hairy root cultures of Polygala tenuifolia Willd. Ind. Crop Prod. 2023, 196, 116521. [Google Scholar] [CrossRef]
- Gupta, D.; Guliani, E.; Bajaj, K. Coumarin—Synthetic Methodologies, Pharmacology, and Application as Natural Fluorophore. Top. Curr. Chem. 2024, 382, 16. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Hu, X. Advances in the synthesis of lignan natural products. Molecules 2018, 23, 3385. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, S.; Paramewaran, S.; Nasir, N.M. Synthetic approaches to biologically active xanthones: An update. Chem. Pap. 2021, 75, 455–470. [Google Scholar] [CrossRef]
- Mendioroz, P.; Casoni, A.I.; Volpe, M.A.; Gerbino, D.C. Xanthone synthesis through catalysis: Exploring the green limits of homogeneous and heterogeneous methods. Eur. J. Org. Chem. 2025, 28, e202401027. [Google Scholar] [CrossRef]
- Costa, T.M.; Tavares, L.B.B.; de Oliveira, D. Fungi as a source of natural coumarins production. Appl. Microbiol. Biotechnol. 2016, 100, 6571–6584. [Google Scholar] [CrossRef]
- Häser, K.; Wenk, H.H.; Schwab, W. Biocatalytic production of dihydrocoumarin from coumarin by Saccharomyces cerevisiae. J. Agric. Food Chem. 2006, 54, 6236–6240. [Google Scholar] [CrossRef]
- Serra, S.; Marzorati, S.; Valentino, M. Two biotechnological approaches to the preparative synthesis of natural dihydrocoumarin. Catalysts 2022, 12, 28. [Google Scholar] [CrossRef]
- He, B.-T.; Liu, Z.-H.; Li, B.-Z.; Yuan, Y.-J. Advances in biosynthesis of scopoletin. Microb. Cell Fact. 2022, 21, 152. [Google Scholar] [CrossRef]
- Xie, C.; An, N.; Zhou, L.; Shen, X.; Wang, J.; Yan, Y.; Sun, X.; Yuan, Q. Establishing a coumarin production platform by protein and metabolic engineering. Metab. Eng. 2024, 86, 89–98. [Google Scholar] [CrossRef]
- Zhao, C.-H.; Zhang, R.-K.; Qiao, B.; Li, B.-Z.; Yuan, Y.-J. Engineering budding yeast for the production of coumarins from lignin. Biochem. Eng. J. 2020, 160, 107634. [Google Scholar] [CrossRef]
- Wang, P.; Fan, Z.; Wei, W.; Yang, C.; Wang, Y.; Shen, X.; Yan, X.; Zhou, Z. Biosynthesis of the plant coumarin osthole by engineered Saccharomyces cerevisiae. ACS Synth. Biol. 2023, 12, 2455–2462. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Huang, D.; Li, Y.; Jiang, S.; Chen, X.; Chen, J.; Xiao, Y.; Chen, W. Construction of lignan glycosides biosynthetic network in Escherichia coli using mutltienzyme modules. Microb. Cell Fact. 2024, 23, 193. [Google Scholar] [CrossRef]
- Chen, R.; Chen, X.; Chen, Y.; Yang, J.; Chen, W.; Zhou, Y.J.; Zhang, L. De novo biosynthesis of plant lignans by synthetic yeast consortia. Nat. Chem. Biol. 2025, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Koyama, T.; Murata, J.; Horikawa, M.; Satake, H. Production of beneficial lignans in heterologous host plants. Front. Plant Sci. 2022, 13, 1026664. [Google Scholar] [CrossRef] [PubMed]
- Toma, A.C.; Stegmüller, S.; Richling, E. Coumarin contents of tonka (Dipteryx odorata) products. Eur. Food Res. Technol. 2025, 251, 513–517. [Google Scholar] [CrossRef]
- Lončar, M.; Jakovljević, M.; Šubarić, D.; Pavlić, M.; Buzjak Služek, V.; Cindrić, I.; Molnar, M. Coumarins in food and methods of their determination. Foods 2020, 9, 645. [Google Scholar] [CrossRef]
- Lü, J.; Jiang, C.; Drabick, J.J.; Joshi, M.; Perimbeti, S. Angelica gigas Nakai (Korean Dang-gui) root alcoholic extracts in health promotion and disease therapy—Active phytochemicals and in vivo molecular targets. Pharm. Res. 2025, 42, 25–47. [Google Scholar] [CrossRef]
- Aghaali, Z.; Yang, J.-L.; Naghavi, M.R.; Zargar, M. Removing limitations surrounding terpenoid biosynthesis by biotechnological techniques in Ferula sp.: A review. Curr. Plant Biol. 2025, 41, 100455. [Google Scholar] [CrossRef]
- Gao, X.-Y.; Li, X.-Y.; Zhang, C.-Y.; Bai, C.-Y. Scopoletin: A review of its pharmacology, pharmacokinetics, and toxicity. Front. Pharmacol. 2024, 15, 1268464. [Google Scholar] [CrossRef]
- Holmbom, B.; Eckerman, C.; Eklund, P.; Hemming, J.; Nisula, L.; Reunanen, M.; Sjöholm, R.; Sundberg, A.; Sundberg, K.; Willför, S. Knots in trees—A new rich source of lignans. Phytochem. Rev. 2003, 2, 331–340. [Google Scholar] [CrossRef]
- Peterson, J.; Dwyer, J.; Adlercreutz, H.; Scalbert, A.; Jacques, P.; McCullough, M.L. Dietary lignans: Physiology and potential for cardiovascular disease risk reduction. Nutr. Rev. 2010, 68, 571–603. [Google Scholar] [CrossRef] [PubMed]
- Pandey, H.; Kumar, A.; Palni, L.M.S.; Nandi, S.K. Podophyllotoxin content in rhizome and root samples of Podophyllum hexandrum Royle populations from Indian Himalayan region. J. Med. Plants Res. 2015, 9, 320–325. [Google Scholar] [CrossRef]
- Yoswathana, N.; Eshtiaghi, M.N. Optimization of subcritical ethanol extraction for xanthone from mangosteen pericarp. Int. J. Chem. Eng. Appl. 2015, 6, 115–119. [Google Scholar] [CrossRef]
- Yuvanatemiya, V.; Srean, P.; Klangbud, W.K.; Venkatachalam, K.; Wongsa, J.; Parametthanuwat, T.; Charoenphun, N. A Review of the influence of various extraction techniques and the biological effects of the xanthones from mangosteen (Garcinia mangostana L.) pericarps. Molecules 2022, 27, 8775. [Google Scholar] [CrossRef]
- Mishiba, K.; Nishihara, M.; Abe, Y.; Nakatsuka, T.; Kawamura, H.; Kodama, K.; Takesawa, T.; Abe, J.; Yamamura, S. Production of dwarf potted gentian using wild-type Agrobacterium rhizogenes. Plant Biotechnol. 2006, 23, 33–38. [Google Scholar] [CrossRef]
- European Union. Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC Commission Declaration. Off. J. L 2001, 106, 1–39. [Google Scholar]
- Christensen, B.; Sriskandarajah, S.; Müller, R. Biomass distribution in Kalanchoe blossfeldiana transformed with rol-genes of Agrobacterium rhizogenes. Hortscience 2009, 44, 1233–1237. [Google Scholar] [CrossRef]
- Furner, I.J.; Huffman, G.A.; Amasino, R.M.; Garfinkel, D.J.; Gordon, M.P.; Nester, E.W. An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature 1986, 319, 422–427. [Google Scholar] [CrossRef]
Plant Species | Hairy Roots | Natural Product | Potential Application | Maximum Content in the Biomass | Literature |
---|---|---|---|---|---|
Ammi majus L. | Wild type | Umbelliferone | Fluorescent probe, sunscreen agent | 32 μg/g DW | [43] |
Angelica gigas Nakai | Expressing AgC4H | Decursinol angelate | Anti-inflammatory, neuroprotective, and antiproliferative agent | 0.41 mg/g DW | [41] |
Artemisia annua L. | Undefined R. rhizogenes strain | Drimartol A | MDR-reversing agent | 2 mg/g DW | [48] |
Cichorium intybus L. | Wild type elicited with Phytopthora parasitica var. nicotiana | Esculin Esculetin | Treatment of varicose veins | 100 μg/g FW 68 μg/g FW | [51] |
Ruta graveolens L. | Wild type | Isopimpinelin Bergapten | PUVA therapy | 1060 ± 340 μg/g DW 1010 ± 360 μg/g DW | [32] |
Sphaeralcea angustifolia (Cav) G. Don | ATCC 15834/pTDT | Scopoletin | Fluorescent probe, antifungal, anti-inflammatory, antiarthritic, and anticancer agent | 0.011 ± 0.002 mg/g DW | [59] |
Urena lobata L. | Wild type | Imperatorin | PUVA therapy, anti-inflammatory agent | 0.14 μg/g DW | [60] |
Pelargonium sidoides DC | Wild type elicited with 100 μM MJ | Umckalin | Treatment of respiratory diseases | 427.37 μg/g DW | [67] |
Plant Species | Hairy Roots | Natural Product | Potential Application | Maximum Content in the Biomass | Literature |
---|---|---|---|---|---|
Leontopodium nivale ssp. alpinum (Cass.) Greuter | Wild type 6% sucrose | Leoligin 5-Methoxy-leoligin | Antihypercholesterolemic agents | 0.068% DW 0.037% DW | [72] |
Isatis indigotica Fortune | Overexpressing IiPLR1 | Lariciresinol | Hypoglycemic, antiviral, allelopathic, and antifungal agent | 353.9 μg/g DW | [78] |
Isatis indigotica Fortune | Overexpressing IiC3H | Lariciresinol | Hypoglycemic, antiviral, allelopathic, and antifungal agent | 96.4 mg/g DW | [80] |
Linum flavum L. | Wild type | 6-MPTOX | Anticancer agent | 35 mg/g DW | [89] |
Linum tauricum Willd. | Wild type, elicited: 150 μM MJ | 4′-Demethyl-6-MPTOX 6-MPTOX | Anticancer agent | 31.9 mg/g DW 36.2 mg/g DW | [92] |
Linum lewisii Pursh | Wild type, elicited: 1 μM coronatin | Justicidin B | Anticancer agent | Over 40 mg/g DW | [93] |
Linum austriacum L. | Wild type Stirred tank bioreactor | Justicidin B | Anticancer agent | 21 mg/g DW | [96] |
Linum perenne Himmelszelt | Wild type | Justicidin B | Anticancer agent | 37 mg/g DW | [100] |
Linum mucronatum Bertol ssp. mucronatum | Wild type (mikomopine strain A13) | 6-MPTOX PTOX | Anticancer agent | 41.4 mg/g DW 5.6 mg/g DW | [103] |
Linum album Kotschy ex Boiss. | Wild type | 6-MPTOX | Anticancer agent | 48 mg/g DW | [109] |
Linum album Kotschy ex Boiss. | Wild type, elicited: chitosan 200 mg/L | 6-MPTOX | Anticancer agent | 39 mg/g DW | [115] |
Linum album Kotschy ex Boiss. | Wild type putrescine 0.25 mM | 6-MPTOX | Anticancer agent | 80 mg/g DW | [116] |
Linum flavum L. | Wild type 6% sucrose | 6-MPTOX free and glucosylated | Anticancer agent | 65 mg/g DW | [117] |
Plant Species | Hairy Roots | Natural Product | Potential Application | Maximum Content in the Biomass | Literature |
---|---|---|---|---|---|
Swertia chirayita (Roxb.) H. Karst. | Wild type, elicited: 100 μM MJ | 1,2,5,6-Tetrahydroxyxanthone Swerchirin | Swerchirin as a hypoglycemic agent | 5.50 mg/g DW 0.40 mg/g DW | [153] |
Centaurium pulchellum (Sw.) Druce | Wild type | Methylbellidifolin (Swerchirin) Demethyleustomin | Hypoglycemic agent Antimutagenic agent | 15.0 mg/g DW 32.6 mg/g DW | [154] |
Centaurium erythraea Rafn | Wild type | Eustomin Demethyleustomin | Antimutagenic agent | 12.1 mg/g DW 0.43 mg/g DW | [154] |
Gentiana dinarica Beck | Wild type 6% sucrose | Norswertianin 1-O-primeveroside Neoswertianin-1-O-glucoside | Aglycone as anti-glioma agent | 32.4 mg/g DW 6.00 mg/g DW | [155] |
Hypericum perforatum L. | Wild type | Trihydroxy-1-methoxy-C-prenyl xanthone Mangiferin | Mangiferin as an antioxidant, neuroprotective, hypoglycemic, and anti-inflammatory agent | 6.23–22.8 mg/g DW 0.03–8.40 mg/g DW | [165] |
Polygala tenuifolia Willd. | Wild type, elicited: 10 μM trehalose | Polygalaxanthone III | Anti-inflammatory and hypoglycemic agent | 13.38 mg/g DW | [174] |
Polygala tenuifolia Willd. | Wild type Brassinolide 1 × 10−8 M | Polygalaxanthone III | Anti-inflammatory and hypoglycemic agent | Over 14 mg/g DW | [174] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malarz, J.; Ryngwelska, I.; Stojakowska, A. Hairy Roots as Producers of Coumarins, Lignans, and Xanthones. Molecules 2025, 30, 3596. https://doi.org/10.3390/molecules30173596
Malarz J, Ryngwelska I, Stojakowska A. Hairy Roots as Producers of Coumarins, Lignans, and Xanthones. Molecules. 2025; 30(17):3596. https://doi.org/10.3390/molecules30173596
Chicago/Turabian StyleMalarz, Janusz, Iga Ryngwelska, and Anna Stojakowska. 2025. "Hairy Roots as Producers of Coumarins, Lignans, and Xanthones" Molecules 30, no. 17: 3596. https://doi.org/10.3390/molecules30173596
APA StyleMalarz, J., Ryngwelska, I., & Stojakowska, A. (2025). Hairy Roots as Producers of Coumarins, Lignans, and Xanthones. Molecules, 30(17), 3596. https://doi.org/10.3390/molecules30173596