Optimization of Ultrasound-Assisted Extraction Process for Silkworm (Antheraea pernyi) Pupae Protein and Its Impact on Functional and Structural Characteristics of Protein
Abstract
1. Introduction
2. Results and Discussion
2.1. Single-Factor Experiment
2.2. RSM Data Analysis
2.3. Analysis of Variance of the RSM Regression Model
2.4. Analysis and Optimization of RSM
2.5. Functional Characteristic Analysis
2.5.1. Solubility
2.5.2. WHC, OHC, EAI, and ESI
2.5.3. Adsorption Capacity of Flavor Compounds
2.6. Structural Characteristic Analysis
2.6.1. SDS-PAGE Analysis
2.6.2. Changes in Secondary Structure of SPP
2.6.3. Surface Hydrophobicity Analysis
2.6.4. SPP Gel Properties Analysis
2.6.5. Scanning Electron Microscopy of SPP
2.7. Correlation Analysis Between the Functional and Structure of SPP After Ultrasonic Treatment
3. Materials and Methods
3.1. Materials and Reagents
3.2. Defatted Silkworm Pupae Powder
3.3. Ultrasonic-Assisted Extraction of SPP
3.4. Determination of Protein Concentration
3.5. Single-Factor Experiment and RSM Optimization of Ultrasonic Extraction
3.5.1. Single-Factor Test
3.5.2. RSM Experiment
3.6. Determination of Functional Characteristics
3.6.1. Determination of Solubility
3.6.2. Determination of Water Holding Capacity and Oil Holding Capacity
3.6.3. Determination of Foaming Activity and Foam Stability
3.6.4. Determination of Emulsifiability and Emulsifying Stability
3.6.5. Determination of Water Retention of Gels
3.6.6. Determination of the Adsorption Capacity of Flavor Compounds
3.7. Determination of Structural Characteristics
3.7.1. Determination of Texture Characteristics
3.7.2. Scanning Electron Microscopy (SEM)
3.7.3. Determination of Surface Hydrophobicity
3.7.4. Secondary Structure Determination
3.7.5. SDS-PAGE
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, X.; He, K.; Velickovic, T.C.; Liu, Z. Nutritional, functional, and allergenic properties of silkworm pupae. Food Sci. Nutr. 2021, 9, 4655–4665. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; De, B.I.J.M.; Sword, G.A. Environmental Impact of the Production of Mealworms as a Protein Source for Humans—A Life Cycle Assessment. PLoS ONE 2012, 7, 51145. [Google Scholar] [CrossRef]
- Wim, K.D.; Dean, D.; Vriesekoop, F.; Aguiar, L.K.; Anderson, M.; Mongondry, P.; Oppong-Gyamfi, M.; Urbano, B.; Luciano, C.A.G.; Jiang, B.; et al. Drivers and Inhibitors in the Acceptance of Meat Alternatives: The Case of Plant and Insect-Based Proteins. Foods 2020, 9, 1292. [Google Scholar] [CrossRef]
- Torres, K.S.; Sampaio, R.F.; Ferreira, T.H.B.; Argondoña, E.J.S. Development of cookie enriched with silkworm pupae (Bombyx mori). J. Food Meas. Charact. 2022, 16, 1540–1548. [Google Scholar] [CrossRef]
- David-Birman, T.; Romano, A.; Aga, A.; Pascoviche, D.; Davidovich-Pinhas, M.; Lesmes, U. Impact of silkworm pupae (Bombyx mori) powder on cream foaming, ice cream properties and palatability. Innov. Food Sci. Emerg. Technol. 2021, 75, 102874. [Google Scholar] [CrossRef]
- Akande, A.O.; Jolayemi, O.S.; Adelugba, V.A.; Akande, S.T. Silkworm pupae (Bombyx mori) and locusts as alternative protein sources for high-energy biscuits. J. Asia-Pac. Entomol. 2020, 23, 234–241. [Google Scholar] [CrossRef]
- Kim, H.-W.; Setyabrata, D.; Lee, Y.J.; Jones, O.G.; Kim, Y.H.B. Pre-treated mealworm larvae and silkworm pupae as a novel protein ingredient in emulsion sausages. Innov. Food Sci. Emerg. Technol. 2016, 38, 116–123. [Google Scholar] [CrossRef]
- Cichoski, A.J.; Silva, M.S.; Leães, Y.S.V.; Brasil, C.C.B.; de Menezes, C.R.; Barin, J.S.; Wagner, R.; Campagnol, P.C.B. Ultrasound: A promising technology to improve the technological quality of meat emulsions. Meat Sci. 2019, 148, 150–155. [Google Scholar] [CrossRef]
- Ding, Y.; Ma, H.; Wang, K.; Azam, S.R.; Qu, W. Ultrasound frequency effect on soybean protein: Acoustic field simulation, extraction rate and structure. LWT-Food Sci. Technol. 2021, 145, 111320. [Google Scholar] [CrossRef]
- Cao, X.; Cao, J.; Xu, T.; Zheng, L.; Dai, J.; Zhang, X.; Tian, T.; Ren, K.; Tong, X.; Wang, H.; et al. Construction of nanodelivery system based on the interaction mechanism between ultrasound–treated soybean whey protein and quercetin: Structure, physicochemical stability and bioaccessibility. Ultrason. Sonochem. 2025, 112, 107195. [Google Scholar] [CrossRef]
- Paola, N.-V.; Dalmau, E.; Benedito, J.; Garcia-Perez, J.V. High-power ultrasound pretreatment for enhanced protein extraction from lupin flour: Impact on yield, anti-technological and anti-nutritional factors, and techno-functional properties. Ultrason. Sonochem. 2025, 114, 107251. [Google Scholar] [CrossRef]
- Ariana, O.-R.; Nava-Valdez, Y.; Serna-Saldívar, S.O.; Chuck-Hernández, C. Microwave and Ultrasound to Enhance Protein Extraction from Peanut Flour under Alkaline Conditions: Effects in Yield and Functional Properties of Protein Isolates. Food Bioprocess Technol. 2016, 10, 543–555. [Google Scholar] [CrossRef]
- Janina, K.; Therese, C.; Harjinder, S. Binding of flavor compounds and whey protein isolate as affected by heat and high pressure treatments. J. Agric. Food Chem. 2008, 56, 10218–10224. [Google Scholar] [CrossRef]
- Phuangjit, U.; Klinkesorn, U.; Tan, C.P.; Katekhong, W. Enhancing silkworm protein yield, extraction efficiency, structure, functionality, and antioxidant activity using ultrasound-, microwave-, and freeze-thaw-assisted methods. J. Sci. Food Agric. 2023, 104, 383–390. [Google Scholar] [CrossRef]
- Wang, K.; Arntfield, S.D. Probing the molecular forces involved in binding of selected volatile flavour compounds to salt-extracted pea proteins. Food Chem. 2016, 211, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Fan, C.; Qi, J.; Zhao, X.; Yang, H.; Ye, G.; Zhang, M.; Liu, D. Effect of ultrasound treatment on porcine myofibrillar protein binding furan flavor compounds at different salt concentrations. Food Chem. 2024, 443, 138427. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Jiang, X.; Zhang, X.; Sun, T.; Lv, Y.; Bai, Z.; Shi, W. Ultrasonic treatment enhanced the binding capacity of volatile aldehydes and pearl mussel (Hyriopsis cumingii) muscle: Investigation of underlying mechanisms. Food Chem. 2024, 444, 138630. [Google Scholar] [CrossRef]
- Tang, J.; Cases, L.; Alves, S.; Sun, D.-W.; Tiwari, B.K. Protein extraction from lupin (Lupinus angustifolius L.) using combined ultrasound and microwave techniques: Impact on protein recovery, structure, and functional properties. Ultrason. Sonochem. 2025, 115, 107232. [Google Scholar] [CrossRef]
- Hu, H.; Wu, J.; Li-Chan, E.C.Y.; Zhu, L.; Zhang, F.; Xu, X.; Fan, G.; Wang, L.; Huang, X.; Pan, S. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocoll. 2013, 30, 647–655. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, L.; Li, P.; Cai, P.; Zhang, M.; Sun, Z.; Sun, C.; Geng, Z.; Xu, W.; Xu, X.; et al. Effects of ultrasound assisted extraction on the physiochemical, structural and functional characteristics of duck liver protein isolate. Process Biochem. 2017, 52, 174–182. [Google Scholar] [CrossRef]
- Cui, Q.; Wang, L.; Wang, G.; Zhang, A.; Wang, X.; Jiang, L. Ultrasonication effects on physicochemical and emulsifying properties of Cyperus esculentus seed (tiger nut) proteins. LWT 2021, 142, 110979. [Google Scholar] [CrossRef]
- Zhu, C.-P.; Zhai, X.-C.; Li, L.-Q.; Wu, X.-X.; Li, B. Response surface optimization of ultrasound-assisted polysaccharides extraction from pomegranate peel. Food Chem. 2015, 177, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cheng, Y.; Zhang, Z.; Wang, Y.; Mintah, B.K.; Dabbour, M.; Jiang, H.; He, R.; Ma, H. Modification of rapeseed protein by ultrasound-assisted pH shift treatment: Ultrasonic mode and frequency screening, changes in protein solubility and structural characteristics. Ultrason. Sonochem. 2020, 69, 105240. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Wang, Y.; Ma, C.; Julian McClements, D.; Liu, F.; Liu, X. Pea protein isolate-inulin conjugates prepared by pH-shift treatment and ultrasonic-enhanced glycosylation: Structural and functional properties. Food Chem. 2022, 384, 132511. [Google Scholar] [CrossRef] [PubMed]
- Shan, H.; Lu, S.W.; Jiang, L.Z.; Wang, L.K.; Liao, H.; Zhang, R.Y.; Dai, C.J.; Yao, X.M.; Zhang, Y.L.; Su, P.; et al. Gelation Property of Alcohol-Extracted Soy Protein Isolate and Effects of Various Reagents on the Firmness of Heat-Induced Gels. Int. J. Food Prop. 2014, 18, 627–637. [Google Scholar] [CrossRef]
- Alzorqi, I.; Singh, A.; Manickam, S.; Al-Qrimli, H.F. Optimization of ultrasound assisted extraction (UAE) of β-d-glucan polysaccharides from Ganoderma lucidum for prospective scale-up. Resour.-Effic. Technol. 2017, 3, 46–54. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lamsal, B.P. Ultrasound-assisted extraction and modification of plant-based proteins: Impact on physicochemical, functional, and nutritional properties. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1457–1480. [Google Scholar] [CrossRef]
- Huda, M.S.; Wilson, P.; Sarker, N.C.; Monono, E. Optimizing Bleaching Process Parameters of Distillers Corn Oil for edible applications using a response surface methodology. LWT 2024, 212, 116991. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, C.; Su, J.; Liang, G.; Tan, S.; Bi, Y.; Kong, F.; Wang, Z. Extraction of Pithecellobium clypearia Benth polysaccharides by dual-frequency ultrasound-assisted extraction: Structural characterization, antioxidant, hypoglycemic and anti-hyperlipidemic activities. Ultrason. Sonochem. 2024, 107, 106918. [Google Scholar] [CrossRef]
- Kocer, S.; Utku Copur, O.; Ece Tamer, C.; Suna, S.; Kayahan, S.; Uysal, E.; Cavus, S.; Akman, O. Optimization and characterization of chestnut shell pigment extract obtained microwave assisted extraction by response surface methodology. Food Chem. 2024, 443, 138424. [Google Scholar] [CrossRef]
- Wang, T.; Zou, X.; Zhang, H.; Li, J.; Peng, X.; Ju, R.; Jia, Z.; Wen, Z.; Li, C. Ultrasound-Assisted Extraction of Polysaccharides from Mulberry Leaves Using Response Surface Methodology: Purification and Component Identification of Extract. Molecules 2025, 30, 1747. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, W.; Yi, J.; Liu, N.; Cao, Y.; Lu, J.; Decker, E.A.; McClements, D.J. Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Res. Int. 2018, 106, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Zhang, J.; Guo, X.; Lei, Y.; Yang, M. Effects of Ultrasonic Treatment on the Structure, Functional Properties of Chickpea Protein Isolate and Its Digestibility In Vitro. Foods 2022, 11, 880. [Google Scholar] [CrossRef] [PubMed]
- Ashokkumar, M.; Sunartio, D.; Kentish, S.; Mawson, R.; Simons, L.; Vilkhu, K.; Versteeg, C. Modification of food ingredients by ultrasound to improve functionality: A preliminary study on a model system. Innov. Food Sci. Emerg. Technol. 2008, 9, 155–160. [Google Scholar] [CrossRef]
- Ren, X.E.; Li, C.; Yang, F.; Huang, Y.; Huang, C.; Zhang, K.; Yan, L. Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality. J. Food Eng. 2020, 265, 109697. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Huang, H.; Xiong, M.; Yang, Y.; Lin, C.; Yang, F.; Xie, Y.; Yuan, Y. Improvement of the emulsifying properties of Zanthoxylum seed protein by ultrasonic modification. Ultrason. Sonochem. 2023, 100, 106638. [Google Scholar] [CrossRef]
- Kingwascharapong, P.; Chaijan, M.; Karnjanapratum, S. Ultrasound-assisted extraction of protein from Bombay locusts and its impact on functional and antioxidative properties. Sci. Rep. 2021, 11, 17320. [Google Scholar] [CrossRef]
- Han, Y.; Shen, H.; Zhao, M.; Sun, W. Flavour binding mechanism between a typical meat flavour compound (nonanal) and porcine myofibrillar proteins with consideration of conformational changes. Int. J. Food Sci. Technol. 2018, 53, 1954–1961. [Google Scholar] [CrossRef]
- Ni, J.-B.; Luo, S.-Y.; Bi, Y.-X.; Zielinska, S.; Ding, C.-J.; Tao, J.-L.; Ning, Z.; Tian, W.-L.; Peng, W.-J.; Fang, X.-M. The combined effects of ultrasound and plasma-activated water on silkworm pupae: Physicochemical properties, microbiological diversity and ultrastructure. Ultrason. Sonochem. 2024, 107, 106927. [Google Scholar] [CrossRef]
- Tan, Y.; Siebert, K.J. Modeling Bovine Serum Albumin Binding of Flavor Compounds (Alcohols, Aldehydes, Esters, and Ketones) as a Function of Molecular Properties. J. Food Sci. 2007, 73, 56–63. [Google Scholar] [CrossRef]
- Chen, L.; Chen, J.; Ren, J.; Zhao, M. Effects of Ultrasound Pretreatment on the Enzymatic Hydrolysis of Soy Protein Isolates and on the Emulsifying Properties of Hydrolysates. J. Agric. Food Chem. 2011, 59, 2600–2609. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, X.; Chen, X.; Pius Bassey, A.; Zhou, G.; Xu, X. Phenolic modification of myofibrillar protein enhanced by ultrasound: The structure of phenol matters. Food Chem. 2022, 386, 132662. [Google Scholar] [CrossRef] [PubMed]
- Arima, Y.; Iwata, H. Effects of surface functional groups on protein adsorption and subsequent cell adhesion using self-assembled monolayers. J. Mater. Chem. 2007, 17, 4079. [Google Scholar] [CrossRef]
- Wang, W.; Wang, N.; Zhou, Y.; Zhang, Y.; Xu, L.; Xu, J.; Feng, F.; He, G. Isolation of a novel peptide from silkworm pupae protein components and interaction characteristics to angiotensin I-converting enzyme. Eur. Food Res. Technol. 2010, 232, 29–38. [Google Scholar] [CrossRef]
- Xiong, W.; Wang, Y.; Zhang, C.; Wan, J.; Shah, B.R.; Pei, Y.; Zhou, B.; Li, J.; Li, B. High intensity ultrasound modified ovalbumin: Structure, interface and gelation properties. Ultrason. Sonochem. 2016, 31, 302–309. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, Q.; Zhang, Q.; Zhang, J.; Mao, X.; Zhang, C. Ultrasound and high-speed shear pretreatments of walnut meal protein: Structural and functional characterization and mechanistic investigation. LWT 2024, 210, 116820. [Google Scholar] [CrossRef]
- Ding, Q.; Tian, G.; Wang, X.; Deng, W.; Mao, K.; Sang, Y. Effect of ultrasonic treatment on the structure and functional properties of mantle proteins from scallops (Patinopecten yessoensis). Ultrason. Sonochem. 2021, 79, 105770. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, M.; Zeng, Y.; Guo, H.; Wu, X.; Meng, Z.; Yin, R. Structural and functional properties of protein hydrolysates from myofibrillar protein of crocodile (Crocodylus siamensis) meat. LWT 2024, 196, 115862. [Google Scholar] [CrossRef]
- Wu, Y.; Li, W.; Martin, G.J.O.; Ashokkumar, M. Mechanism of low-frequency and high-frequency ultrasound-induced inactivation of soy trypsin inhibitors. Food Chem. 2021, 360, 130057. [Google Scholar] [CrossRef]
- Shen, X.; Fang, T.; Gao, F.; Guo, M.J.F.H. Effects of ultrasound treatment on physicochemical and emulsifying properties of whey proteins pre- and post-thermal aggregation. Food Hydrocoll. 2016, 63, 668–676. [Google Scholar] [CrossRef]
- Ding, X.; Li, Y.; Ma, H. The aggregation, structures and emulsifying properties of soybean protein isolate induced by ultrasound and acid. Food Chem. 2019, 279, 114–119. [Google Scholar] [CrossRef]
- Golly, M.K.; Ma, H.; Yuqing, D.; Wu, P.; Farooq, M. Enzymolysis of walnut (Juglans regia L.) meal protein: Ultrasonication-assisted alkaline pretreatment impact on kinetics and thermodynamics. J. Food Biochem. 2019, 43, e12948. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, H.; Pan, J.; Mintah, B.K.; Dabbour, M.; He, R.; Ma, H. Improving the emulsification characteristics of rapeseed protein isolate by ultrasonication assisted pH shift treatment. Int. J. Biol. Macromol. 2024, 282, 137221. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.A.; Saini, C.S.J.F.H. Rheological and structural properties of protein isolates extracted from dephenolized sunflower meal: Effect of high intensity ultrasound. Food Hydrocoll. 2018, 81, 229–241. [Google Scholar] [CrossRef]
- Biswas, B.; Sit, N. Effect of ultrasonication on functional properties of tamarind seed protein isolates. J. Food Sci. Technol. 2020, 57, 2070–2078. [Google Scholar] [CrossRef]
- Ge, S.; Tong, X.; Gao, C.; Xu, H.; He, R.; Wu, Q.; Wang, J. Kinetics of silkworm pupae protein extraction at different ultrasonic frequency and temperature: Effects on physicochemical properties, functional properties and oxidation resistance. Process Biochem. 2022, 122, 36–52. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Chi, Y.; Ma, Z.; Geng, X.; Chi, Y. Effect of dry heating on egg white powder influencing water mobility and intermolecular interactions of its gels. J. Sci. Food Agric. 2020, 101, 433–440. [Google Scholar] [CrossRef]
- Malik, M.A.; Sharma, H.K.; Saini, C.S. High intensity ultrasound treatment of protein isolate extracted from dephenolized sunflower meal: Effect on physicochemical and functional properties. Ultrason. Sonochem. 2017, 39, 511–519. [Google Scholar] [CrossRef]
- Nahimana, P.; Bouaicha, I.; Chèné, C.; Karamoko, G.; Missbah El Idrissi, M.; Bakhy, K.; Abdelmoumen, H.; Blecker, C.; Karoui, R. Physico-chemical, functional, and structural properties of un-defatted, cold and hot defatted yellow lupin protein isolates. Food Chem. 2024, 437, 137871. [Google Scholar] [CrossRef]
- Mishyna, M.; Martinez, J.-J.I.; Chen, J.; Benjamin, O. Extraction, characterization and functional properties of soluble proteins from edible grasshopper (Schistocerca gregaria) and honey bee (Apis mellifera). Food Res. Int. 2019, 116, 697–706. [Google Scholar] [CrossRef]
- Hu, B.; Li, C.; Zhang, Z.; Zhao, Q.; Zhu, Y.; Su, Z.; Chen, Y. Microwave-assisted extraction of silkworm pupal oil and evaluation of its fatty acid composition, physicochemical properties and antioxidant activities. Food Chem. 2017, 231, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Sert, D.; Rohm, H.; Struck, S. Ultrasound-Assisted Extraction of Protein from Pumpkin Seed Press Cake: Impact on Protein Yield and Techno-Functionality. Foods 2022, 11, 4029. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.-Q.; Du, Q.-H.; Fu, Z. Ultrasonic treatment on physicochemical properties of water-soluble protein from Moringa oleifera seed. Ultrason. Sonochem. 2021, 71, 105357. [Google Scholar] [CrossRef] [PubMed]
- Rademacher, N.; Kern, R.; Fujiwara, T.; Mettler-Altmann, T.; Miyagishima, S.-Y.; Hagemann, M.; Eisenhut, M.; Weber, A.P.M. Photorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions. J. Exp. Bot. 2016, 67, 3165–3175. [Google Scholar] [CrossRef]
- Budetić, M.; Kopf, D.; Dandić, A.; Samardžić, M. Review of Characteristics and Analytical Methods for Determination of Thiabendazole. Molecules 2023, 28, 3926. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Bao, T.; Zheng, X.; Chen, W.; Wang, J. A recyclable protein resource derived from cauliflower by-products: Potential biological activities of protein hydrolysates. Food Chem. 2017, 221, 114–122. [Google Scholar] [CrossRef]
- Rawdkuen, S.; D’Amico, S.; Schoenlechner, R. Physicochemical, Functional, and In Vitro Digestibility of Protein Isolates from Thai and Peru Sacha Inchi (Plukenetia volubilis L.) Oil Press-Cakes. Foods 2022, 11, 1869. [Google Scholar] [CrossRef]
- Loushigam, G.; Shanmugam, A. Modifications to functional and biological properties of proteins of cowpea pulse crop by ultrasound-assisted extraction. Ultrason. Sonochem. 2023, 97, 106448. [Google Scholar] [CrossRef]
- Ma, S.; Zhu, P.; Wang, M. Effects of konjac glucomannan on pasting and rheological properties of corn starch. Food Hydrocoll. 2019, 89, 234–240. [Google Scholar] [CrossRef]
- Duppeti, H.; Manjabhatta, S.N.; Kempaiah, B.B.J.F.R.I. Physicochemical, structural, functional and flavor adsorption properties of white shrimp (Penaeus vannamei) proteins as affected by processing methods. Food Res. Int. 2023, 163, 112296. [Google Scholar] [CrossRef]
- Hegde, K.R.; Buvaneswaran, M.; Bhavana, M.R.; Sinija, V.R.; Rawson, A.; Hema, V. Effects of ultrasound and high-pressure assisted extraction of pearl millet protein isolate: Functional, digestibility, and structural properties. Int. J. Biol. Macromol. 2025, 289, 138877. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Li, S.; Oladejo, A.O.; Wang, Y.; Huang, S.; Zhou, C.; Ye, X.; Ma, H.; Duan, Y. Effects of ultrasound-assisted α-amylase degradation treatment with multiple modes on the extraction of rice protein. Ultrason. Sonochem. 2018, 40, 890–899. [Google Scholar] [CrossRef]
Serial Number | A | B | C | D | Extraction Yield% |
---|---|---|---|---|---|
1 | −1 | −1 | 0 | 0 | 60.39 ± 0.34 |
2 | 1 | −1 | 0 | 0 | 63.18 ± 0.33 |
3 | −1 | 1 | 0 | 0 | 64.67 ± 0.19 |
4 | 1 | 1 | 0 | 0 | 65.97 ± 0.01 |
5 | 0 | 0 | −1 | −1 | 64.12 ± 0.15 |
6 | 0 | 0 | 1 | −1 | 59.4 ± 0.23 |
7 | 0 | 0 | −1 | 1 | 63.14 ± 0.11 |
8 | 0 | 0 | 1 | 1 | 65.52 ± 0.46 |
9 | −1 | 0 | 0 | −1 | 58.73 ± 0.42 |
10 | 1 | 0 | 0 | −1 | 66.74 ± 0.26 |
11 | −1 | 0 | 0 | 1 | 64.96 ± 0.31 |
12 | 1 | 0 | 0 | 1 | 64.89 ± 0.45 |
13 | 0 | −1 | −1 | 0 | 64.85 ± 0.12 |
14 | 0 | 1 | −1 | 0 | 64.62 ± 0.31 |
15 | 0 | −1 | 1 | 0 | 59.45 ± 0.45 |
16 | 0 | 1 | 1 | 0 | 62.06 ± 0.11 |
17 | −1 | 0 | −1 | 0 | 64.58 ± 0.16 |
18 | 1 | 0 | −1 | 0 | 65.97 ± 0.1 |
19 | −1 | 0 | 1 | 0 | 61.55 ± 0.27 |
20 | 1 | 0 | 1 | 0 | 62.46 ± 0.16 |
21 | 0 | −1 | 0 | −1 | 55.78 ± 0.26 |
22 | 0 | 1 | 0 | −1 | 64.31 ± 0.5 |
23 | 0 | −1 | 0 | 1 | 66.57 ± 0.32 |
24 | 0 | 1 | 0 | 1 | 60.48 ± 0.32 |
25 | 0 | 0 | 0 | 0 | 68.81 ± 0.25 |
26 | 0 | 0 | 0 | 0 | 68.27 ± 0.04 |
27 | 0 | 0 | 0 | 0 | 68.03 ± 0.9 |
28 | 0 | 0 | 0 | 0 | 66.02 ± 0.22 |
29 | 0 | 0 | 0 | 0 | 67.14 ± 0.12 |
Variance Source | Sum of Squares | Degree of Freedom | Mean Square | p-Value | Significance |
---|---|---|---|---|---|
model | 255.73 | 14 | 18.27 | <0.0001 | ** |
A | 17.11 | 1 | 17.11 | 0.0035 | ** |
B | 11.78 | 1 | 11.78 | 0.0115 | * |
C | 23.63 | 1 | 23.63 | 0.0010 | ** |
D | 22.63 | 1 | 22.63 | 0.0012 | ** |
AB | 0.5550 | 1 | 0.5550 | 0.5382 | |
AC | 0.0576 | 1 | 0.0576 | 0.8418 | |
AD | 16.32 | 1 | 16.32 | 0.0041 | ** |
BC | 2.02 | 1 | 2.02 | 0.2490 | |
BD | 53.44 | 1 | 53.44 | <0.0001 | ** |
CD | 12.60 | 1 | 12.60 | 0.0094 | ** |
A2 | 12.99 | 1 | 12.99 | 0.0086 | ** |
B2 | 54.00 | 1 | 54.00 | <0.0001 | ** |
C2 | 31.73 | 1 | 31.73 | 0.0003 | ** |
D2 | 43.73 | 1 | 43.73 | <0.0001 | ** |
Residual error | 19.51 | 14 | 1.39 | ||
Misfit term | 14.72 | 10 | 1.47 | 0.4555 | |
Pure error | 4.79 | 4 | 1.20 | ||
synthesis | 275.24 | 28 |
SPP | Solubility/(g/L) | WHC/% | OHC/% | Foaming Capacity/% | Foam Stability/% | EAI/(m2/g) | ESI/% |
---|---|---|---|---|---|---|---|
Untreated | 52.02 ± 0.46 b | 2.03 ± 0.02 b | 1.65 ± 0.03 b | 57.98 ± 2.32 b | 65.70 ± 0.37 b | 2.55 ± 0.90 b | 28.05 ± 0.77 b |
Ultrasonic treatment | 65.15 ± 0.83 a | 2.21 ± 0.51 a | 1.93 ± 0.07 a | 113.33 ± 0.87 a | 78.41 ± 0.27 a | 4.70 ± 0.09 a | 50 ± 0.50 a |
Secondary Structure | Untreated (%) | Ultrasonic Treatment (%) |
---|---|---|
α-helix | 0.40 ± 0.88 b | 6.00 ± 1.22 a |
β-sheet | 77.10 ± 3.57 a | 63.60 ± 3.48 b |
β-turn | 0.2 ± 0.21 b | 8.80 ± 1.50 a |
Random coil | 22.30 ± 2.77 a | 21.60 ± 2.54 a |
Total | 100% | 100% |
SPP | Hardness/N | Elasticity/mm | WHC of the Gel/% |
---|---|---|---|
Untreated | 16.87 ± 0.73 b | 1.26 ± 0.16 b | 37.21 ± 1.14 b |
Ultrasonic treatment | 17.89 ± 1.45 a | 1.75 ± 0.32 a | 48.71 ± 1.20 a |
Level | Ultrasonic Time/min | Ultrasonic Power/W | Solution pH | Ultrasonic Temperature/°C |
---|---|---|---|---|
−1 | 60 | 90 | 10 | 50 |
0 | 90 | 108 | 11 | 60 |
1 | 120 | 126 | 12 | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Guo, H.; Li, Y.; Xu, Y.; Zhang, M.; Luo, C.; Zang, Y.; Luo, J. Optimization of Ultrasound-Assisted Extraction Process for Silkworm (Antheraea pernyi) Pupae Protein and Its Impact on Functional and Structural Characteristics of Protein. Molecules 2025, 30, 3580. https://doi.org/10.3390/molecules30173580
Zeng Y, Guo H, Li Y, Xu Y, Zhang M, Luo C, Zang Y, Luo J. Optimization of Ultrasound-Assisted Extraction Process for Silkworm (Antheraea pernyi) Pupae Protein and Its Impact on Functional and Structural Characteristics of Protein. Molecules. 2025; 30(17):3580. https://doi.org/10.3390/molecules30173580
Chicago/Turabian StyleZeng, Yuanyuan, Hanyu Guo, Yingying Li, Yinghao Xu, Mengli Zhang, Cancan Luo, Yanan Zang, and Ji Luo. 2025. "Optimization of Ultrasound-Assisted Extraction Process for Silkworm (Antheraea pernyi) Pupae Protein and Its Impact on Functional and Structural Characteristics of Protein" Molecules 30, no. 17: 3580. https://doi.org/10.3390/molecules30173580
APA StyleZeng, Y., Guo, H., Li, Y., Xu, Y., Zhang, M., Luo, C., Zang, Y., & Luo, J. (2025). Optimization of Ultrasound-Assisted Extraction Process for Silkworm (Antheraea pernyi) Pupae Protein and Its Impact on Functional and Structural Characteristics of Protein. Molecules, 30(17), 3580. https://doi.org/10.3390/molecules30173580