A New Route to Tune the Electrical Properties of Graphene Oxide: A Simultaneous, One-Step N-Doping and Reduction as a Tool for Its Structural Transformation
Abstract
1. Introduction
2. Results
- Considering electronic levels of pyridinic N are near the Fermi level, while the pyrrolic and graphitic N levels are deeply located in the valence band, the electron density is higher;
- The electrical energy band gap is lowered, making the material more electrically conductive;
- Doped GO and HOPG showed drastically lower sheet resistance;
- The sp2 region of all thermally treated samples was increased;
- Formation of C-N bonds improved the polarization loss.
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GO | Graphene oxide |
HOPG | Highly Ordered Pyrolytic Graphite |
EMWs | Electromagnetic Waves |
EMI | Electromagnetic Interference |
SEM | Scanning Electron Microscope |
TGA | Thermogravimetric analysis |
DFT | Density Functional Theory |
FTIR | Fourier Transform Infrared Spectroscopy |
XRD | X-Ray Diffraction |
VNA | Vector Network Analyzer |
References
- Bandara, P.; Carpenter, D.O. Planetary electromagnetic pollution: It is time to assess its impact. Lancet Planetary Health 2018, 2, e512–e514. [Google Scholar] [CrossRef]
- Vergallo, C.; Dini, L. Comparative Analysis of Biological Effects Induced on Different Cell Types by Magnetic Fields with Magnetic Flux Densities in the Range of 1–60 mT and Frequencies up to 50 Hz. Sustainability 2018, 10, 2776. [Google Scholar] [CrossRef]
- Saini, S.; Kumar, P.; Gupta, P.; Kant, R.; Khanna, M.; Jhajharia, P.; Kuanr, B.; Kumar, V. Shielding the Future: The Role of Innovative Materials in Electromagnetic Interference Mitigation. J. Alloy Compd. 2025, 1022, 179969. [Google Scholar] [CrossRef]
- Sultana, S.; Shaik, A.; Rahaman, A.; Rahaman, M.; Chandan, M.R. Recent advances in synthesis and processing of nanomaterial-based polymeric foams for EMI shielding applications. J. Mater. Sci. 2025, 60, 4519–4558. [Google Scholar] [CrossRef]
- Ardiansyah, A.; Heryanto, H.; Tahir, D. Textile Shields: Current Bibliometric Analysis of Fabric Integration for EMI Shielding and Prospects for Future Research. Rad. Phys. Chem. 2024, 225, 112112. [Google Scholar] [CrossRef]
- Wanasinghe, D.; Aslani, F. A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Compos. B Eng. 2019, 176, 107207. [Google Scholar] [CrossRef]
- Shao, R.; Wang, G.; Chai, J.; Lin, J.; Zhao, G.; Zeng, Z.; Wang, G. Multifunctional Janus-Structured Polytetrafluoroethylene-Carbon Nanotube-Fe3O4/MXene Membranes for Enhanced EMI Shielding and Thermal Management. Nano-Micro Lett. 2025, 17, 136. [Google Scholar] [CrossRef] [PubMed]
- Jahanger, M.I.; Soomro, S.A.; Khan, M.U.; Bao, Y.; Jiang, M.; Chu, L.; Feng, Q.; Hu, C. Microstructure, mechanical and electromagnetic interference shielding properties of free-standing Ti3C2Tx-PVA films. Appl. Surf. Sci. 2025, 692, 162705. [Google Scholar] [CrossRef]
- Tan, X.; He, Y.; Wang, C.; Zhang, Y.; Wang, W.; Li, H.; Yu, R. Hierarchical mxene/Fe3O4/cellulose nanofiber composites with layer-by-layer architecture for high-performance electromagnetic interference shielding. Compos. Sci. Technol. 2025, 265, 111136. [Google Scholar] [CrossRef]
- Milenkovic, M.; Saeed, W.; Yasir, M.; Milivojevic, D.; Azmy, A.; Nassar, K.E.S.; Syrgiannis, Z.; Spanopoulos, I.; Bajuk-Bogdanovic, D.; Maletić, S.; et al. Carbonized Apples and Quinces Stillage for Electromagnetic Shielding. Nanomaterials 2024, 14, 1882. [Google Scholar] [CrossRef]
- Marinković, D.; Dorontić, S.; Kepić, D.; Haddadi, K.; Yasir, M.; Nardin, B.; Jovanović, S. New Electromagnetic Interference Shielding Materials: Biochars, Scaffolds, Rare Earth, and Ferrite-Based Materials. Nanomaterials 2025, 15, 541. [Google Scholar] [CrossRef]
- Perumal, R.S.; Muralidharan, B. Activated biochar derived from Ricinus communis outer shell: Influence of KOH impregnation ratio on physicochemical properties and EMI shielding effectiveness. Results Eng. 2025, 25, 104362. [Google Scholar] [CrossRef]
- Savi, P.; Yasir, M.; Bartoli, M.; Giorcelli, M.; Longo, M. Electrical and Microwave Characterization of Thermal Annealed Sewage Sludge Derived Biochar Composites. Appl. Sci. 2020, 10, 1334. [Google Scholar] [CrossRef]
- Mbayachi, V.B.; Ndayiragije, E.; Sammani, T.; Taj, S.; Mbuta, E.R.; Khan, A.U. Graphene synthesis, characterization and its applications: A review. Results Chem. 2021, 3, 100163. [Google Scholar] [CrossRef]
- Janavika, K.M.; Prakash Thangaraj, R. Graphene and its application: A review. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, X.; Lu, D.; Liu, T.; Li, Y.; Wu, Z. Recent progress in graphene based materials for high-performance electromagnetic shielding. Carbon 2025, 236, 120093. [Google Scholar] [CrossRef]
- Cao, W.-Q.; Wang, X.-X.; Yuan, J.; Wang, W.-Z.; Cao, M.-S. Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 2015, 3, 10017–10022. [Google Scholar] [CrossRef]
- Gong, C.; Ding, J.; Wang, C.; Zhang, Y.; Guo, Y.; Song, K.; Shi, C.; He, F. Defect-induced dipole polarization engineering of electromagnetic wave absorbers: Insights and perspectives. Compos. B Eng. 2023, 252, 110479. [Google Scholar] [CrossRef]
- Tao, H.; Wang, S.; Yuan, B.; Chen, G.; Zhan, Y.; Wang, Y.; Zhou, J. Facile fabrication of porous fire-resistant graphene macro-assembly with outstanding electromagnetic interference shielding performance. Mater. Lett. 2021, 299, 130055. [Google Scholar] [CrossRef]
- Shahzad, F.; Kumar, P.; Kim, Y.-H.; Hong, S.M.; Koo, C.M. Biomass-Derived Thermally Annealed Interconnected Sulfur-Doped Graphene as a Shield against Electromagnetic Interference. ACS Appl. Mater. Interfaces 2016, 8, 9361–9369. [Google Scholar] [CrossRef]
- Qing, Y.; Li, Y.; Luo, F. Electromagnetic interference shielding properties of nitrogen-doped graphene/epoxy composites. J. Mater. Sci. Mater. Electron. 2021, 32, 25649–25655. [Google Scholar] [CrossRef]
- Gao, T.; Zhao, H.; Kong, J.; Zhuang, Q.; Liu, X.; Lv, Y.; Ou, Y.; Chen, L. Porous nitrogen-doped reduced graphene oxide composite films for efficient electromagnetic shielding. Compos. Part A Appl. Sci. Manuf. 2025, 195, 108942. [Google Scholar] [CrossRef]
- Sandoval, S.; Kumar, N.; Oro-Solé, J.; Sundaresan, A.; Rao, C.N.R.; Fuertes, A.; Tobias, G. Tuning the nature of nitrogen atoms in N-containing reduced graphene oxide. Carbon 2016, 96, 594–602. [Google Scholar] [CrossRef]
- Davies, T.E.; Li, H.; Bessette, S.; Gauvin, R.; Patience, G.S.; Dummer, N.F. Experimental methods in chemical engineering: Scanning electron microscopy and X-ray ultra-microscopy—SEM and XuM. Appl. Sci. 2022, 100, 3145–3159. [Google Scholar] [CrossRef]
- Ali, A.; Zhang, N.; Santos, R.M. Mineral Characterization Using Scanning Electron Microscopy (SEM): A Review of the Fundamentals, Advancements, and Research Directions. Appl. Sci. 2023, 13, 12600. [Google Scholar] [CrossRef]
- Martincic, M.; Sandoval, S.; Oró-Solé, J.; Tobías-Rossell, G. Thermal Stability and Purity of Graphene and Carbon Nanotubes: Key Parameters for Their Thermogravimetric Analysis (TGA). Nanomaterials 2024, 14, 1754. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Cancado, L.G.; Jorio, A.; Ferreira, E.H.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.; Lombardo, A.; Kulmala, T.S.; Ferrari, A.C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef]
- Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K.S.; Basko, D.M.; Ferrari, A.C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Dresselhaus, M.S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758. [Google Scholar] [CrossRef]
- Knight, D.S.; White, W.B. Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 1989, 4, 385–393. [Google Scholar] [CrossRef]
- Kumar, A.; Khandelwal, M. Amino acid mediated functionalization and reduction of graphene oxide—Synthesis and the formation mechanism of nitrogen-doped graphene. New J. Chem. 2014, 38, 3457–3467. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, K.; Yuan, F.; Xie, C. Gas sensing properties and in situ diffuse reflectance infrared Fourier transform spectroscopy study of trichloroethylene adsorption and reactions on SnO2 films. Appl. Surf. Sci. 2014, 300, 98–103. [Google Scholar] [CrossRef]
- Zhang, M.; Lei, D.; Du, Z.; Yin, X.; Chen, L.; Li, Q.; Wang, Y.; Wang, T. Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions. J. Mater. Chem. 2011, 21, 1673–1676. [Google Scholar] [CrossRef]
- Zafar, M.A.; Varghese, O.K.; Robles Hernandez, F.C.; Liu, Y.; Jacob, M.V. Single-Step Synthesis of Nitrogen-Doped Graphene Oxide from Aniline at Ambient Conditions. ACS Appl. Mater. Interfaces 2022, 14, 5797–5806. [Google Scholar] [CrossRef]
- Porwal, J.; Karanwal, N.; Kaul, S.; Jain, S.L. Carbocatalysis: N-doped reduced graphene oxide catalyzed esterification of fatty acids with long chain alcohols. New J. Chem. 2016, 40, 1547–1553. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Najjar, A.; Zakaria, Y.; Mansour, S.; Atieh, A.M. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 2019, 45, 14439–14448. [Google Scholar] [CrossRef]
- Stobinski, L.; Lesiak-Orłowska, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 2014, 195, 145–154. [Google Scholar] [CrossRef]
- Marković, Z.; Budimir, M.; Kepić, D.; Holclajtner-Antunović, I.; Marinović-Cincović, M.; Dramicanin, M.; Spasojević, V.; Perusko, D.; Spitalsky, Z.; Micusik, M.; et al. Semi-transparent, conductive thin films of electrochemical exfoliated graphene. RSC Adv. 2016, 6, 39275–39283. [Google Scholar] [CrossRef]
- Htwe, Y.Z.N.; Chow, W.S.; Suda, Y.; Thant, A.A.; Mariatti, M. Effect of electrolytes and sonication times on the formation of graphene using an electrochemical exfoliation process. Appl. Surf. Sci. 2019, 469, 951–961. [Google Scholar] [CrossRef]
- Aragaw, B.A. Reduced graphene oxide-intercalated graphene oxide nano-hybrid for enhanced photoelectrochemical water reduction. J. Nanostruct. Chem. 2020, 10, 9–18. [Google Scholar] [CrossRef]
- Bhandari, S.; Deepa, M.; Joshi, A.G.; Saxena, A.P.; Srivastava, A.K. Revelation of graphene-Au for direct write deposition and characterization. Nanoscale Res. Lett. 2011, 6, 424. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.S.; Chen, F.K.; Tsai, D.C.; Kuo, B.H.; Shieu, F.S. N-doped reduced graphene oxide for room-temperature NO gas sensors. Sci. Rep. 2021, 11, 20719. [Google Scholar] [CrossRef]
- Mangalam, J.; Kumar, M.; Sharma, M.; Joshi, M. High adsorptivity and visible light assisted photocatalytic activity of silver/reduced graphene oxide (Ag/rGO) nanocomposite for wastewater treatment. Nano-Struct. Nano-Objects 2019, 17, 58–66. [Google Scholar] [CrossRef]
- Velasco, M.; Perez, A.; Alvarez-Quintana, J.; Yu, C.; Nyborg, L.; Licea-Jiménez, L. Selective band gap manipulation of graphene oxide by its reduction with mild reagents. Carbon 2015, 93, 967–973. [Google Scholar] [CrossRef]
- Liang, Y.; Liao, H.; Gong, S.; Lan, L.; Hasan, M.; Zhou, X.; Gunasekaran, S. Green synthesis of reduced graphene oxide nanosheets: An efficient material for electrochemical sensor and photocatalytic agent. Microchem. J. 2025, 209, 112799. [Google Scholar] [CrossRef]
- Talia, T.; Marco, G.; Palacios Freddy, B.; Barrionuevo Tania Paulina, M.; Gomez Cristian, V.; Bellucci, S. Optical properties of graphene oxide. Front. Sci. 2023, 11, 1214072. [Google Scholar] [CrossRef]
- Parthipan, P.; Cheng, L.; Rajasekar, A.; Govarthanan, M.; Subramania, A. Biologically reduced graphene oxide as a green and easily available photocatalyst for degradation of organic dyes. Environ. Res. 2021, 196, 110983. [Google Scholar] [CrossRef]
- Baldovino, F.H.; Quitain, A.T.; Dugos, N.P.; Roces, S.A.; Koinuma, M.; Yuasa, M.; Kida, T. Synthesis and characterization of nitrogen-functionalized graphene oxide in high-temperature and high-pressure ammonia. RSC Adv. 2016, 6, 113924–113932. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, B.; Ren, Y.; Yu, M.; Qu, Y.; Xie, T.; Zhang, Y.; Wu, Y. Designed nitrogen doping of few-layer graphene functionalized by selective oxygenic groups. Nanoscale Res. Lett. 2014, 9, 646. [Google Scholar] [CrossRef] [PubMed]
- Mou, Z.; Chen, X.; Du, Y.; Wang, X.; Yang, P.; Wang, S. Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea. Appl. Surf. Sci. 2011, 258, 1704–1710. [Google Scholar] [CrossRef]
- Fuertes, A. Metal oxynitrides as emerging materials with photocatalytic and electronic properties. Mater. Horiz. 2015, 2, 453–461. [Google Scholar] [CrossRef]
- Yokwana, K.; Ntsendwana, B.; Nxumalo, E.N.; Mhlanga, S.D. Recent advances in nitrogen-doped graphene oxide nanomaterials: Synthesis and applications in energy storage, sensor electrochemical applications and water treatment. J. Mater. Res. 2023, 38, 3239–3263. [Google Scholar] [CrossRef]
- Yasir, M.; Savi, P. Frequency reconfigurable antenna based on commercial graphene nanoplatelets. Electron. Lett. 2020, 56, 421–424. [Google Scholar] [CrossRef]
- Savi, P.; Yasir, M.; Giorcelli, M.; Tagliaferro, A. The Effect of Carbon Nanotubes Concentration on Complex Permittivity of Nanocomposites. Prog. Electromagn. Res. M 2017, 55, 203–209. [Google Scholar] [CrossRef]
- McDowell, A.J.; Hubing, T.H. Analysis and comparison of plane wave shielding effectiveness decompositions. IEEE Trans. Electromagn. Compat. 2014, 56, 1711–1714. [Google Scholar] [CrossRef]
- Beatty, R.W. Insertion loss concepts. Proc. IEEE 1964, 52, 663–671. [Google Scholar] [CrossRef]
- Kleut, D.; Milenkovic, M.; Pantic, A.; von Kleist-Retzow, F.; Sebbache, M.; Haddadi, K.; Jovanovic, S. Microwave electromagnetic shielding with free-standing composites based on graphene oxide and silver nanowires. J. Micro-Bio Robot. 2024, 20, 13. [Google Scholar] [CrossRef]
- Savi, P.; Yasir, M. Waveguide measurements of biochar derived from sewage sludge. Electron. Lett. 2020, 56, 335–337. [Google Scholar] [CrossRef]
- Álvarez, M.; Baselga, J.; Pozuelo, J. Tuning the Electromagnetic Shielding Mechanism with Nitrogen-doped Graphene Aerogels. ChemNanoMat 2023, 9, e202200451. [Google Scholar] [CrossRef]
- Chen, J.; Yao, B.; Li, C.; Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225–229. [Google Scholar] [CrossRef]
- Shahrokhian, S.; Mohammadi, R.; Amini, M.K. In–situ electrochemical exfoliation of Highly Oriented Pyrolytic Graphite as a new substrate for electrodeposition of flower like nickel hydroxide: Application as a new high–performance supercapacitor. Electrochim. Acta 2016, 206, 317–327. [Google Scholar] [CrossRef]
- Maekawa, R.; Kajiwara, H.; Washiyama, Y.; Nishikawa, Y.; Kuwamura, N.; Okura, T.; Nishina, Y.; Hashimoto, H. Electrochemical exfoliation of graphite using aqueous ammonium hydrogen carbonate solution and the ability of the exfoliated product as a hydrogen production electrocatalyst support. Heliyon 2024, 10, e40751. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
Sample | C ± STD | H ± STD | N ± STD | S ± STD | O 1 |
---|---|---|---|---|---|
GO-500 | 81.04 ± 0.21 | 0.69 ± 0.03 | 11.25 ± 0.08 | 0.21 ± 0.01 | 6.81 |
GO-800 | 83.63 ± 0.19 | 0.68 ± 0.05 | 7.11 ± 0.06 | <0.1 | 8.58 |
HOPG-500 | 87.93 ± 0.08 | 0.34 ± 0.01 | 5.85 ± 0.03 | 0.19 ± 0.02 | 5.69 |
HOPG-800 | 90 ± 0.13 | 0.41 ± 0.01 | 3.46 ± 0.02 | <0.1 | 6.13 |
Sample | G Band (cm−1) | ID/IG | La |
---|---|---|---|
GO | 1596 | 1.11 | 4.35 |
GO-500 | 1603 | 1.15 | 3.82 |
GO-800 | 1602 | 1.20 | 3.70 |
HOPG-500 | 1587 | 1.25 | 3.55 |
HOPG-800 | 1589 | 1.33 | 3.34 |
Sample | Eg (eV) |
---|---|
GO | 4.88 |
GO-500 | 1.88 |
GO-800 | 1.85 |
HOPG | 1.95 |
HOPG-500 | 1.82 |
HOPG-800 | 1.83 |
Sample | Rs (Ω/□) | σ (S/m) |
---|---|---|
GO | ∞ | ~0 |
GO-500 | 196.0 ± 1 | 283.4 |
GO-800 | 224.0 ± 3 | 248.0 |
HOPG | 45.0 ± 2.7 | 1234.6 |
HOPG-500 | 7.4 ± 0.6 | 7507.5 |
HOPG-800 | 6.7 ± 0.4 | 8341.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanović, A.; Yasir, M.; Tobías-Rossell, G.; Rojano, S.S.; Sredojević, D.; Kepić, D.; Kleut, D.; Saeed, W.; Milović, M.; Bajuk-Bogdanović, D.; et al. A New Route to Tune the Electrical Properties of Graphene Oxide: A Simultaneous, One-Step N-Doping and Reduction as a Tool for Its Structural Transformation. Molecules 2025, 30, 3579. https://doi.org/10.3390/molecules30173579
Stefanović A, Yasir M, Tobías-Rossell G, Rojano SS, Sredojević D, Kepić D, Kleut D, Saeed W, Milović M, Bajuk-Bogdanović D, et al. A New Route to Tune the Electrical Properties of Graphene Oxide: A Simultaneous, One-Step N-Doping and Reduction as a Tool for Its Structural Transformation. Molecules. 2025; 30(17):3579. https://doi.org/10.3390/molecules30173579
Chicago/Turabian StyleStefanović, Andjela, Muhammad Yasir, Gerard Tobías-Rossell, Stefania Sandoval Rojano, Dušan Sredojević, Dejan Kepić, Duška Kleut, Warda Saeed, Miloš Milović, Danica Bajuk-Bogdanović, and et al. 2025. "A New Route to Tune the Electrical Properties of Graphene Oxide: A Simultaneous, One-Step N-Doping and Reduction as a Tool for Its Structural Transformation" Molecules 30, no. 17: 3579. https://doi.org/10.3390/molecules30173579
APA StyleStefanović, A., Yasir, M., Tobías-Rossell, G., Rojano, S. S., Sredojević, D., Kepić, D., Kleut, D., Saeed, W., Milović, M., Bajuk-Bogdanović, D., & Jovanović, S. (2025). A New Route to Tune the Electrical Properties of Graphene Oxide: A Simultaneous, One-Step N-Doping and Reduction as a Tool for Its Structural Transformation. Molecules, 30(17), 3579. https://doi.org/10.3390/molecules30173579