Comparative Analysis of Polyphenol-Rich Extracts from Hamamelis virginiana Leaves and Bark: ROS Scavenging and Anti-Inflammatory Effects on Skin Cells
Abstract
1. Introduction
2. Results
2.1. Phytochemical Investigations
2.1.1. UPLC-(ESI)MS-DAD Profiling
2.1.2. Quantitative Results
2.2. Biological Assays
2.2.1. Cytotoxicity Analysis
2.2.2. Intracellular ROS Levels in Skin Cells
2.2.3. Effect on Antioxidant Enzymes
2.2.4. Assessment of Anti-Inflammatory Activity
2.2.5. Assessment of Elastase, Hyaluronidase, and Collagenase Inhibitory Effect
3. Discussion
4. Materials and Methods
4.1. Extract Preparation and Phytochemical Characterization
4.2. Biological Assays
4.2.1. Cytotoxicity Analysis
Cell Culture
Alamar Blue
Neutral Red
4.2.2. Determination of Intracellular ROS Levels in Human Skin Cells
4.2.3. Antioxidant Enzymes Activity
4.2.4. Assessment of Anti-Inflammatory Activity
4.2.5. Assessment of Extracellular Matrix (ECM) Degrading Enzymes Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as Active Ingredients for Cosmetic Products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef]
- Michalak, M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef] [PubMed]
- Wójciak, M.; Pacuła, W.; Sowa, I.; Feldo, M.; Graczyk, F.; Załuski, D. Hamamelis virginiana L. in Skin Care: A Review of Its Pharmacological Properties and Cosmetological Applications. Molecules 2025, 30, 2744. [Google Scholar] [CrossRef] [PubMed]
- Andriote, J.-M. The Mysterious Past and Present of Witch Hazel; The Atlantic: Washington, DC, USA, 2012. [Google Scholar]
- Tsioutsiou, E.E.; Amountzias, V.; Vontzalidou, A.; Dina, E.; Stevanović, Z.D.; Cheilari, A.; Aligiannis, N. Medicinal Plants Used Traditionally for Skin Related Problems in the South Balkan and East Mediterranean Region—A Review. Front. Pharmacol. 2022, 13, 936047. [Google Scholar] [CrossRef]
- Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. 2025. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=celex%3A32009R1223 (accessed on 1 May 2025).
- Act on Cosmetic Products of 4 October 2018 [Dz.U.2018 Poz. 2227]. Available online: https://api.sejm.gov.pl/eli/acts/DU/2018/2227/text.pdf (accessed on 4 October 2018).
- Ozogul, Y.; Ucar, Y.; Tadesse, E.E.; Rathod, N.; Kulawik, P.; Trif, M.; Esatbeyoglu, T.; Ozogul, F. Tannins for Food Preservation and Human Health: A Review of Current Knowledge. Appl. Food Res. 2025, 5, 100738. [Google Scholar] [CrossRef]
- Cosme, F.; Aires, A.; Pinto, T.; Oliveira, I.; Vilela, A.; Gonçalves, B. A Comprehensive Review of Bioactive Tannins in Foods and Beverages: Functional Properties, Health Benefits, and Sensory Qualities. Molecules 2025, 30, 800. [Google Scholar] [CrossRef] [PubMed]
- Masaki, H.; Atsumi, T.; Sakurai, H. Protective Activity of Hamamelitannin on Cell Damage Induced by Superoxide Anion Radicals in Murine Dermal Fibroblasts. Biol. Pharm. Bull. 1995, 18, 59–63. [Google Scholar] [CrossRef]
- Masaki, H.; Atsumi, T.; Sakurai, H. Protective Activity of Hamamelitannin on Cell Damage of Murine Skin Fibroblasts Induced by UVB Irradiation. J. Dermatol. Sci. 1995, 10, 25–34. [Google Scholar] [CrossRef]
- Janarthanam, V.A.; Gupta, R.; Alhegaili, A.S.; Guru, A.; Issac, P.K. Evaluating the Antioxidant-Mediated Neuroprotection of Hamamelitannin against H2O2-Induced Oxidative Damage. 3 Biotech 2025, 15, 224. [Google Scholar] [CrossRef]
- Bassyouni, R.; Dwedar, R.; Farahat, M.; Kamel, Z.; Elwekel, M. Protective Effect of Hamamelitannin against Biofilm Production by Methicillin-Resistant Staphylococci Isolated from Blood of Patients at Intensive Care Units. Br. Microbiol. Res. J. 2015, 10, 1–8. [Google Scholar] [CrossRef]
- Piazza, S.; Martinelli, G.; Vrhovsek, U.; Masuero, D.; Fumagalli, M.; Magnavacca, A.; Pozzoli, C.; Canilli, L.; Terno, M.; Angarano, M.; et al. Anti-Inflammatory and Anti-Acne Effects of Hamamelis virginiana Bark in Human Keratinocytes. Antioxidants 2022, 11, 1119. [Google Scholar] [CrossRef]
- Liu, X.; Hage, T.; Chen, L.; Wang, E.H.C.; Liao, I.; Goldberg, J.; Gosto, S.; Cziryak, P.; Senna, M.; Chen, Y.; et al. Revealing the Therapeutic Potential: Investigating the Impact of a Novel Witch Hazel Formula on Anti-Inflammation and Antioxidation. J. Cosmet. Dermatol. 2025, 24, e16662. [Google Scholar] [CrossRef]
- Burico, M.; Fodaroni, G.; Flamini, E.; Ascani, N.; Proietti, G.; Tamimi, S.; Quintiero, C.M.; Massa, L.; Gianni, M.; Mattoli, L. Metabolomic Fingerprint of Hamamelis virginiana L. Gallotannins by Suspect Screening Analysis with UHPLC-qToF and Their Semiquantitative Evaluation. J. Mass Spectrom. 2022, 57, e4878. [Google Scholar] [CrossRef]
- Duckstein, S.M.; Stintzing, F.C. Investigation on the Phenolic Constituents in Hamamelis virginiana Leaves by HPLC-DAD and LC-MS/MS. Anal. Bioanal. Chem. 2011, 401, 677–688. [Google Scholar] [CrossRef]
- Taniguchi, M.; LaRocca, C.A.; Bernat, J.D.; Lindsey, J.S. Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations. J. Nat. Prod. 2023, 86, 1087–1119. [Google Scholar] [CrossRef]
- Kaeswurm, J.A.H.; Scharinger, A.; Teipel, J.; Buchweitz, M. Absorption Coefficients of Phenolic Structures in Different Solvents Routinely Used for Experiments. Molecules 2021, 26, 4656. [Google Scholar] [CrossRef] [PubMed]
- Boulet, J.-C.; Ducasse, M.-A.; Cheynier, V. Ultraviolet Spectroscopy Study of Phenolic Substances and Other Major Compounds in Red Wines: Relationship between Astringency and the Concentration of Phenolic Substances: UV Spectroscopy of Red Wine Components. Aust. J. Grape Wine Res. 2017, 23, 193–199. [Google Scholar] [CrossRef]
- Rampersad, S.N. Multiple Applications of Alamar Blue as an Indicator of Metabolic Function and Cellular Health in Cell Viability Bioassays. Sensors 2012, 12, 12347–12360. [Google Scholar] [CrossRef]
- Abedelmaksoud, T.G.; Younis, M.I.; Altemimi, A.B.; Tlay, R.H.; Ali Hassan, N. Bioactive Compounds of Plant-Based Food: Extraction, Isolation, Identification, Characteristics, and Emerging Applications. Food Sci. Nutr. 2025, 13, e70351. [Google Scholar] [CrossRef] [PubMed]
- Mihelčič, A.; Lisjak, K.; Vanzo, A. Accelerated Solvent Extraction of Phenols from Lyophilised Ground Grape Skins and Seeds. Beverages 2023, 9, 4. [Google Scholar] [CrossRef]
- Wójciak, M.; Mazurek, B.; Wójciak, W.; Kostrzewa, D.; Żuk, M.; Chmiel, M.; Kubrak, T.; Sowa, I. Optimizing the Extraction of the Polyphenolic Fraction from Defatted Strawberry Seeds for Tiliroside Isolation Using Accelerated Solvent Extraction Combined with a Box–Behnken Design. Molecules 2024, 29, 3051. [Google Scholar] [CrossRef]
- Repajić, M.; Cegledi, E.; Zorić, Z.; Pedisić, S.; Elez Garofulić, I.; Radman, S.; Palčić, I.; Dragović-Uzelac, V. Bioactive Compounds in Wild Nettle (Urtica dioica L.) Leaves and Stalks: Polyphenols and Pigments upon Seasonal and Habitat Variations. Foods 2021, 10, 190. [Google Scholar] [CrossRef]
- Bitwell, C.; Indra, S.S.; Luke, C.; Kakoma, M.K. A Review of Modern and Conventional Extraction Techniques and Their Applications for Extracting Phytochemicals from Plants. Sci. Afr. 2023, 19, e01585. [Google Scholar] [CrossRef]
- Caunii, A.; Pribac, G.; Grozea, I.; Gaitin, D.; Samfira, I. Design of Optimal Solvent for Extraction of Bio–Active Ingredients from Six Varieties of Medicago Sativa. Chem. Cent. J. 2012, 6, 123. [Google Scholar] [CrossRef]
- Plaskova, A.; Mlcek, J. New Insights of the Application of Water or Ethanol-Water Plant Extract Rich in Active Compounds in Food. Front. Nutr. 2023, 10, 1118761. [Google Scholar] [CrossRef] [PubMed]
- Martins, V.F.R.; Ribeiro, T.B.; Lopes, A.I.; Pintado, M.E.; Morais, R.M.S.C.; Morais, A.M.M.B. Comparison among Different Green Extraction Methods of Polyphenolic Compounds from Exhausted Olive Oil Pomace and the Bioactivity of the Extracts. Molecules 2024, 29, 1935. [Google Scholar] [CrossRef] [PubMed]
- Chiriac, E.; Chiţescu, C.; Geană, E.-I.; Gird, C.; Socoteanu, R.; Boscencu, R. Advanced Analytical Approaches for the Analysis of Polyphenols in Plants Matrices—A Review. Separations 2021, 8, 65. [Google Scholar] [CrossRef]
- Palos-Hernández, A.; González-Paramás, A.M.; Santos-Buelga, C. Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules 2024, 30, 55. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Safta, D.A.; Ielciu, I.; Șuștic, R.; Hanganu, D.; Niculae, M.; Cenariu, M.; Pall, E.; Moldovan, M.L.; Achim, M.; Bogdan, C.; et al. Chemical Profile and Biological Effects of an Herbal Mixture for the Development of an Oil-in-Water Cream. Plants 2023, 12, 248. [Google Scholar] [CrossRef]
- Wang, H.; Provan, G.J.; Helliwell, K. Determination of Hamamelitannin, Catechins and Gallic Acid in Witch Hazel Bark, Twig and Leaf by HPLC. J. Pharm. Biomed. Anal. 2003, 33, 539–544. [Google Scholar] [CrossRef]
- Suzuki, T.; Ohishi, T.; Tanabe, H.; Miyoshi, N.; Nakamura, Y. Anti-Inflammatory Effects of Dietary Polyphenols through Inhibitory Activity against Metalloproteinases. Molecules 2023, 28, 5426. [Google Scholar] [CrossRef]
- Dini, I.; Grumetto, L. Recent Advances in Natural Polyphenol Research. Molecules 2022, 27, 8777. [Google Scholar] [CrossRef]
- Hoang, H.T.; Moon, J.-Y.; Lee, Y.-C. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
- Lv, Q.; Long, J.; Gong, Z.; Nong, K.; Liang, X.; Qin, T.; Huang, W.; Yang, L. Current State of Knowledge on the Antioxidant Effects and Mechanisms of Action of Polyphenolic Compounds. Nat. Prod. Commun. 2021, 16, 1934578X211027745. [Google Scholar] [CrossRef]
- Alia, S.; Di Paolo, A.; Membrino, V.; Di Crescenzo, T.; Vignini, A. Beneficial Effects on Oxidative Stress and Human Health by Dietary Polyphenols. Antioxidants 2024, 13, 1314. [Google Scholar] [CrossRef]
- Shaw, P.; Kumar, N.; Sahun, M.; Smits, E.; Bogaerts, A.; Privat-Maldonado, A. Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal? Biomedicines 2022, 10, 823. [Google Scholar] [CrossRef]
- Parcheta, M.; Świsłocka, R.; Orzechowska, S.; Akimowicz, M.; Choińska, R.; Lewandowski, W. Recent Developments in Effective Antioxidants: The Structure and Antioxidant Properties. Materials 2021, 14, 1984. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, Y.; Zhang, G.; Yang, Z.; Xu, W.; Chen, Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants 2023, 12, 1675. [Google Scholar] [CrossRef]
- Rosa, A.C.; Corsi, D.; Cavi, N.; Bruni, N.; Dosio, F. Superoxide Dismutase Administration: A Review of Proposed Human Uses. Molecules 2021, 26, 1844. [Google Scholar] [CrossRef]
- Silva, A.P.D.; Rocha, R.; Silva, C.M.L.; Mira, L.; Duarte, M.F.; Florȇncio, M.H. Antioxidants in Medicinal Plant Extracts. A Research Study of the Antioxidant Capacity of Crataegus, Hamamelis and Hydrastis. Phytother. Res. 2000, 14, 612–616. [Google Scholar] [CrossRef]
- Kozlov, A.V.; Javadov, S.; Sommer, N. Cellular ROS and Antioxidants: Physiological and Pathological Role. Antioxidants 2024, 13, 602. [Google Scholar] [CrossRef]
- Xiao, W.; Loscalzo, J. Metabolic Responses to Reductive Stress. Antioxid. Redox Signal. 2020, 32, 1330–1347. [Google Scholar] [CrossRef]
- Piazza, S.; Martinelli, G.; Magnavacca, A.; Fumagalli, M.; Pozzoli, C.; Terno, M.; Canilli, L.; Angarano, M.; Maranta, N.; Dell’Agli, M.; et al. Unveiling the Ability of Witch Hazel (Hamamelis virginiana L.) Bark Extract to Impair Keratinocyte Inflammatory Cascade Typical of Atopic Eczema. Int. J. Mol. Sci. 2022, 23, 9279. [Google Scholar] [CrossRef]
- Amêndola, I.; Viegas, D.D.J.; Freitas, E.T.; Oliveira, J.R.D.; Santos, J.G.D.; Oliveira, F.E.D.; Lagareiro Netto, A.A.; Marcucci, M.C.; Oliveira, L.D.D.; Back-Brito, G.N. Hamamelis virginiana L. Extract Presents Antimicrobial and Antibiofilm Effects, Absence of Cytotoxicity, Anti-Inflammatory Action, and Potential to Fight Infections through the Nitric Oxide Production by Macrophages. An. Acad. Bras. Ciênc. 2024, 96, e20200031. [Google Scholar] [CrossRef]
- Martin, K.R. Polyphenols as Dietary Supplements: A Double-Edged Sword. Nutr. Diet. Suppl. 2009, 1, 1–12. [Google Scholar] [CrossRef]
- Leri, M.; Scuto, M.; Ontario, M.L.; Calabrese, V.; Calabrese, E.J.; Bucciantini, M.; Stefani, M. Healthy Effects of Plant Polyphenols: Molecular Mechanisms. Int. J. Mol. Sci. 2020, 21, 1250. [Google Scholar] [CrossRef]
- Vinardell, M.P.; Maddaleno, A.S.; Mitjans, M. Harmonizing In Vitro Techniques for Anti-Aging Cosmetic Ingredient Assessment: A Comprehensive Review. Cosmetics 2024, 11, 170. [Google Scholar] [CrossRef]
- Tomas, M.; Günal-Köroğlu, D.; Kamiloglu, S.; Ozdal, T.; Capanoglu, E. The State of the Art in Anti-Aging: Plant-Based Phytochemicals for Skin Care. Immun. Ageing 2025, 22, 5. [Google Scholar] [CrossRef]
- Thring, T.S.; Hili, P.; Naughton, D.P. Anti-Collagenase, Anti-Elastase and Anti-Oxidant Activities of Extracts from 21 Plants. BMC Complement. Altern. Med. 2009, 9, 27. [Google Scholar] [CrossRef]
- Jackson, J.K.; Zhao, J.; Wong, W.; Burt, H.M. The Inhibition of Collagenase Induced Degradation of Collagen by the Galloyl-Containing Polyphenols Tannic Acid, Epigallocatechin Gallate and Epicatechin Gallate. J. Mater. Sci. Mater. Med. 2010, 21, 1435–1443. [Google Scholar] [CrossRef] [PubMed]
- Kicinska, A.; Jarmuszkiewicz, W. Flavonoids and Mitochondria: Activation of Cytoprotective Pathways? Molecules 2020, 25, 3060. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Valko, R.; Liska, J.; Nepovimova, E.; Kuca, K.; Valko, M. Flavonoids and Their Role in Oxidative Stress, Inflammation, and Human Diseases. Chem. Biol. Interact. 2025, 413, 111489. [Google Scholar] [CrossRef] [PubMed]
- Page, B.; Page, M.; Noel, C. A New Fluorometric Assay for Cytotoxicity Measurements In-Vitro. Int. J. Oncol. 1993, 3, 473–476. [Google Scholar] [CrossRef] [PubMed]
RT (min.) | Mass Data (m/z-H) | Formula | Δ ppm | Component | B | L | Ref. |
---|---|---|---|---|---|---|---|
3.25 | 331.06739 | C13H16O10 | 0.96 | Galloyl-hexose | + | + | [16] |
3.87 | 331.06758 | C13H16O10 | 1.53 | Galloyl-hexose | + | + | [16] |
4.68 | 169.01498 | C7H6O5 | 4.31 | Gallic acid | + | + | [16], str |
4.61 | 331.06791 | C13H16O10 | 2.53 | Galloyl-hexose | + | + | [16] |
5.83 | 331.06761 | C13H16O10 | 1.63 | Galloyl-hexose | + | + | [16] |
5.93 | 343.06634 | C14H16O10 | −2.12 | Galloylquinic acid | + | + | tv |
6.93 | 343.06621 | C14H16O10 | −2.50 | Galloylquinic acid | + | + | tv |
7.13 | 331.06771 | C13H16O10 | 1.93 | Galloyl-hexose | + | + | [16] |
8.48 | 243.05069 | C10H12O7 | −1.38 | Galloylglycerol | + | + | tv |
8.68 | 153.01921 | C7H6O4 | −0.79 | Protocatechuic acid | + | + | str |
8.73 | 483.07857 | C20H20O14 | 1.12 | Digalloyl hexose | + | + | [16] |
9.03 | 315.07335 | C13H16O9 | 3.78 | Hydroxybenzoic acid hexoside | + | - | tv |
9.37 | 305.06764 | C15H14O7 | 3.15 | Gallocatechin | + | + | [16] |
10.77 | 483.07875 | C20H20O14 | 1.49 | Digalloyl hexose | + | + | [16] |
11.16 | 353.08892 | C16H18O9 | 3.15 | Neochlorogenic acid | + | + | [17], str |
11.55 | 483.07894 | C20H20O14 | 1.88 | Digalloyl hexose | + | + | [16] |
13.08 | 483.07899 | C20H20O14 | 1.99 | Digalloyl hexose | + | - | [16] |
13.50 | 183.02983 | C8H8O5 | −0.36 | Methyl gallate | + | + | tv |
13.53 | 337.09377 | C16H18O8 | 2.60 | 3-p-Coumaroylquinic acid | - | + | [17] |
13.79 | 321.02382 | C14H10O9 | −4.30 | Digallic acid | - | + | [16] |
14.24 | 337.09359 | C16H18O8 | 2.07 | 3-p-Coumaroylquinic acid | - | + | [17] |
14.50 | 577.13258 | C30H26O12 | −4.45 | Procyanidin B2 | + | - | [16] |
14.87 | 495.07649 | C21H20O14 | −3.10 | di-O-galloylquinic acid | + | - | tv |
15.53 | 289.07221 | C15H14O6 | 1.55 | Catechin | + | + | [16,17], str |
15.71 | 635.08891 | C27H24O18 | −0.12 | Tri-O-galloyl-hexose | + | - | [16] |
16.23 | 483.07905 | C20H20O14 | 2.11 | Hamamelitannin | + | + | [16,17], str |
16.26 | 353.08847 | C16H18O9 | 1.88 | Chlorogenic acid | - | + | [17], str |
17.13 | 321.02400 | C14H10O9 | −3.74 | Digallic acid | - | + | [16] |
17.68 | 635.08904 | C27H24O18 | 0.08 | Tri-O-galloyl-hexose | - | + | [16] |
19.49 | 289.07246 | C15H14O6 | 2.41 | Epicatechin | + | + | str |
19.76 | 337.09381 | C16H18O8 | 2.72 | 4-p-Coumaroylquinic acid | - | + | [17] |
20.36 | 337.09367 | C16H18O8 | 2.30 | 5-p-Coumaroylquinic acid | - | + | [17] |
21.55 | 335.07880 | C16H16O8 | 4.64 | Caffeoylshikimic acid | - | + | [17] |
21.66 | 635.08862 | C27H24O18 | −0.58 | Tri-O-galloyl-hexose | + | + | [16] |
22.73 | 337.09359 | C16H18O8 | 2.07 | 5-p-Coumaroylquinic acid | - | + | [17] |
23.59 | 483.07869 | C20H20O14 | 1.37 | Di-O-galloyl-hexose | + | + | [16] |
24.74 | 635.08924 | C27H24O18 | 0.40 | Tri-O-galloyl-hexose | + | + | [16] |
24.96 | 335.04099 | C15H12O9 | 0.40 | Galloyl gallic acid methyl ester | + | + | tv |
25.41 | 441.08263 | C22H18O10 | −0.20 | Catechin gallate | + | + | tv |
26.03 | 787.09787 | C34H28O22 | −2.63 | Tetra-O-galloylhexose | - | + | [16] |
29.49 | 615.10137 | C28H24O16 | 3.59 | Quercetin-galloyl hexoside | - | + | [17] |
29.75 | 609.14527 | C27H30O16 | −1.37 | Quercetin rhamnoside-hexoside | - | + | tv |
30.18 | 787.09789 | C34H28O22 | −2.61 | Tetra-O-galloylhexose | + | + | [16] |
30.53 | 300.99853 | C14H6O8 | −1.53 | Ellagic acid | + | + | [17], str |
30.59 | 441.08274 | C22H18O10 | 0.04 | Epicatechin gallate | + | + | tv |
30.89 | 609.14503 | C27H30O16 | −1.77 | Quercetin rhamnoside-hexoside | - | + | tv |
31.80 | 787.09845 | C34H28O22 | −1.90 | Tetra-O-galloyl-hexose | + | + | [16] |
32.09 | 609.14487 | C27H30O16 | −2.03 | Quercetin 3-O-rutinoside | - | + | [17], str |
32.54 | 463.08837 | C21H20O12 | 0.37 | Quercetin 3-O-galactoside | - | + | str |
33.49 | 477.06739 | C21H18O13 | −0.16 | Quercetin-3-O-glucuronide | - | + | str |
33.71 | 463.08891 | C21H20O12 | 1.53 | Quercetin 3-O-glucoside | - | + | str |
33.41 | 787.09874 | C34H28O22 | −1.53 | Tetra-O-galloyl-hexose | + | + | [17] |
34.34 | 335.04090 | C15H12O9 | 0.13 | galloyl gallic acid methyl ester | - | + | tv |
34.72 | 593.15175 | C27H30O15 | 0.94 | Kaempferol rhamnoside-hexoside | - | + | tv |
35.05 | 593.15207 | C27H30O15 | 1.47 | Kaempferol rhamnoside-hexoside | - | + | tv |
37.28 | 447.09349 | C21H20O11 | 0.46 | Kaempferol 3-O-galactoside | - | + | [17], str |
38.11 | 593.15169 | C27H30O15 | 0.84 | Kaempferol 3-O-rutinoside | - | + | [17], str |
38.29 | 599.10502 | C28H24O15 | 1.29 | Kaempferol galloyl-hexose | - | + | [17] |
39.39 | 447.09361 | C21H20O11 | 0.73 | Kaempferol 3-O-glucoside | - | + | [17], str |
39.60 | 447.09361 | C21H20O11 | 0.73 | Quercetin 3-O-rhamnoside | - | + | str |
39.26 | 939.10949 | C41H32O26 | −1.50 | Penta-O-galloyl-hexose | + | + | [17] |
44.26 | 1091.12159 | C48H36O30 | −0.25 | Hexa-O-galloyl-hexose | + | + | [16,17] |
45.06 | 1091.12191 | C48H36O30 | 0.04 | Hexa-O-galloyl-hexose | + | + | [16,17] |
45.91 | 1091.12241 | C48H36O30 | 0.50 | Hexa-O-galloyl-hexose | + | + | [16,17] |
48.98 | 1243.13238 | C55H40O34 | −0.36 | Hepta-O-galloyl-hexose | - | + | [16,17] |
51.39 | 301.03585 | C15H10O7 | 1.57 | Quercetin | - | + | [16,17], str |
52.62 | 1395.14456 | C62H44O38 | 0.56 | Octa-O-galloyl-hexose | - | + | [16,17] |
55.34 | 593.13084 | C30H26O13 | 1.31 | Tiliroside | - | + | str |
59.13 | 1547.15599 | C69H48O42 | 0.81 | Nona-O-galloyl-hexose | - | + | [16,17] |
59.61 | 285.04152 | C15H10O6 | 3.70 | Kaempferol | - | + | [16,17], str |
Compound | HRE | UAE | ASE |
---|---|---|---|
Tannins | |||
Galloyl hexoses ** | 121.8 ± 27.3 a | 115.2 ± 10.6 a | 129.1 ± 11.7 a |
Galloylquinic acids * | 449.1 ± 30.8 a | 271.0 ± 19.2 c | 366.2 ± 16.3 b |
Hamamelitannin | 298.9 ± 17.0 a | 240.2 ± 9.8 b | 275.1 ± 13.2 a |
Digallic acid ** | 258.7 ± 17.0 b | 228.4 ± 14.8 b | 434.8 ± 23.8 a |
Digalloyl hexoses ** | 83.3 ± 4.8 a | 57.2 ± 3.7 c | 71.2 ± 5.2 b |
Tri-O-galloylhexoses ** | 312.8 ± 17.3 a | 278.3 ± 18.7 b | 177.6 ± 7.8 c |
Galloyl gallic acid methyl esters | 401.9 ± 28.8 a | 255.4 ± 13.9 b | 374.2 ± 29.6 a |
Tetra-O-galloylhexoses ** | 1282.7 ± 78.4 a | 1061.9 ± 61.0 b | 1030.9 ± 60.6 b |
Penta-O-galloylhexoses ** | 5596.4 ± 351.0 a | 4294.9 ± 291.6 b | 5321.2 ± 420.7 a |
Hexa-O-galloylhexoses ** | 7347.3 ± 565.9 a | 5178.7 ± 219.6 b | 6983.7 ± 448.3 a |
Hepta-O-galloylhexoses ** | 5990.9 ± 256.7 a | 4405.0 ± 293.7 b | 6301.9 ± 508.0 a |
Octa-O-galloylhexoses ** | 6351.8 ± 276.2 a | 5562.5 ± 371.7 b | 6685.2 ± 361.0 a |
Nona-O-galloylhexoses ** | 905.1 ± 36.9 a | 282.0 ± 13.7 c | 399.3 ± 20.5 b |
Total (mg/g) | 29.40 ± 2.10 a | 22.23 ± 2.03 b | 28.55 ± 2.24 a |
Phenolic acids | |||
Gallic acid | 1219.4 ± 75.5 b | 1061.3 ± 53.6 c | 1375.4 ± 63.7 a |
Protocatechuic acid | 286.8 ± 18.4 a | 244.8 ± 14.3 b | 263.9 ± 17.5 a,b |
Chlorogenic acids | 344.4 ± 21.3 a | 340.3 ± 21.4 a | 360.6 ± 16.4 a |
Methyl gallate * | 1590.6 ± 120.4 b | 1115.5 ± 72.1 c | 1969.1 ± 86.4 a |
p-Coumaroylquinic acids *** | 489.7 ± 38.5 b | 484.1 ± 37.6 b | 563.0 ± 41.4 a |
Ellagic acid | 3137.8 ± 230.0 b | 2659.8 ± 120.1 c | 4796.1 ± 214.9 a |
Total (mg/g) | 7.07 ± 0.54 b | 5.91 ± 0.39 c | 9.33 ± 0.61 a |
Flavonols | |||
Quercetin 3-O-rutinoside | 167.8 ± 11.9 b | 165.3 ± 8.7 b | 199.3 ± 10.3 a |
Quercetin 3-O-galactoside | 109.2 ± 8.2 b | 106.0 ± 5.8 b | 133.2 ± 6.0 a |
Quercetin 3-O-glucuronide | 224.3 ± 17.8 b | 206.6 ± 13.0 b | 292.5 ± 15.4 a |
Quercetin 3-O-glucoside | 186.7 ± 13.4 b | 180.4 ± 10.4 b | 227.2 ± 12.9 a |
Quercetin 3-O-rhamnoside | 123.9 ± 9.6 b | 123.0 ± 6.2 b | 241.2 ± 10.6 a |
Kaempferol 3-O-galactoside | 300.3 ± 17.6 b | 276.9 ± 22.0 b | 359.0 ± 15.3 a |
Kaempferol rhamnoside-hexosides | 309.6 ± 10.1 a | 207.6 ± 6.3 b | 340.1 ± 11.3 a |
Kaempferol 3-O-rutinoside | 204.3 ± 14.6 b | 184.4 ± 8.1 b | 243.5 ± 16.5 a |
Kaempferol 3-O-glucoside | 449.5 ± 20.1 b | 468.2 ± 22.6 b | 534.0 ± 33.5 a |
Tiliroside | 97.5 ± 4.4 b | 87.1 ± 4.0 c | 131.2 ± 6.6 a |
Kaempferol | 73.8 ± 3.4 b | 58.4 ± 3.9 c | 96.0 ± 5.9 a |
Total (mg/g) | 2.25 ± 0.19 b | 2.06 ± 0.16 b | 2.80 ± 0.18 a |
Compound | HRE | UAE | ASE |
---|---|---|---|
Tannins | |||
Galloyl hexoses ** | 6465.8 ± 366.5 a | 6537.2 ± 268.6 a | 6602.4 ± 308.9 a |
Galloylquinic acids * | 3442.4 ± 137.7 a,b | 3291.8 ± 186.6 b | 3667.1 ± 101.1 a |
Di-O-galloylhexoses ** | 893.7 ± 42.4 a,b | 831.3 ± 59.9 b | 940.8 ± 43.7 a |
Tri-O-galloylhexoses ** | 3701.1 ± 206.8 c | 3835.6 ± 201.5 b | 4516.0 ± 204.7 a |
Tetra-O-galloylhexoses ** | 722.1 ± 44.4 b | 610.4 ± 41.3 c | 1299.1 ± 95.3 a |
Penta-O-galloylhexoses ** | 1108.1 ± 62.9 b | 1140.6 ± 85.6 b | 2261.8 ± 72.1 a |
Hexa-O-galloylhexoses ** | 199.5 ± 13.4 b | 131.2 ± 9.9 c | 367.7 ± 25.7 a |
di-O-galloylquinic acid ** | 348.3 ± 26.2 b | 330.7 ± 13.7 b | 552.7 ± 38.7 a |
Hamamelitannin | 48,230.7 ± 2107.4 b | 49,139.8 ± 2355.0 b | 62,749.6 ± 2461.5 a |
Total (mg/g) | 65.11 ± 4.47 b | 65.85 ± 5.05 b | 82.96 ± 6.85 a |
Phenolic acids | |||
Gallic acid | 619.7 ± 42.6 b | 590.8 ± 39.5 b | 787.0 ± 49.1 a |
Protocatechuic acid | 106.3 ± 5.5 a,b | 110.6 ± 6.9 a | 97.2 ± 3.5 b |
Methyl gallate * | 456.4 ± 24.6 b | 334.2 ± 26.3 c | 543.4 ± 24.6 a |
Ellagic acid | 547.9 ± 26.4 c | 622.4 ± 27.0 b | 1071.2 ± 75.2 a |
Total (mg/g) | 0.17 ± 0.02 b | 0.17 ± 0.02 b | 0.25 ± 0.02 a |
Flavan-3-ols | |||
Catechin | 2910.0 ± 133.5 b | 2755.7 ± 125.7 c | 3345.4 ± 152.0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójciak, M.; Pacuła, W.; Tyszczuk-Rotko, K.; Ziemlewska, A.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z.; Patryn, R.; Pacian, A.; Sowa, I. Comparative Analysis of Polyphenol-Rich Extracts from Hamamelis virginiana Leaves and Bark: ROS Scavenging and Anti-Inflammatory Effects on Skin Cells. Molecules 2025, 30, 3572. https://doi.org/10.3390/molecules30173572
Wójciak M, Pacuła W, Tyszczuk-Rotko K, Ziemlewska A, Zagórska-Dziok M, Nizioł-Łukaszewska Z, Patryn R, Pacian A, Sowa I. Comparative Analysis of Polyphenol-Rich Extracts from Hamamelis virginiana Leaves and Bark: ROS Scavenging and Anti-Inflammatory Effects on Skin Cells. Molecules. 2025; 30(17):3572. https://doi.org/10.3390/molecules30173572
Chicago/Turabian StyleWójciak, Magdalena, Wiktoria Pacuła, Katarzyna Tyszczuk-Rotko, Aleksandra Ziemlewska, Martyna Zagórska-Dziok, Zofia Nizioł-Łukaszewska, Rafał Patryn, Anna Pacian, and Ireneusz Sowa. 2025. "Comparative Analysis of Polyphenol-Rich Extracts from Hamamelis virginiana Leaves and Bark: ROS Scavenging and Anti-Inflammatory Effects on Skin Cells" Molecules 30, no. 17: 3572. https://doi.org/10.3390/molecules30173572
APA StyleWójciak, M., Pacuła, W., Tyszczuk-Rotko, K., Ziemlewska, A., Zagórska-Dziok, M., Nizioł-Łukaszewska, Z., Patryn, R., Pacian, A., & Sowa, I. (2025). Comparative Analysis of Polyphenol-Rich Extracts from Hamamelis virginiana Leaves and Bark: ROS Scavenging and Anti-Inflammatory Effects on Skin Cells. Molecules, 30(17), 3572. https://doi.org/10.3390/molecules30173572