Nutritional, Thermal, and Energetic Characterization of Two Morphotypes of Andean Mashua (Tropaeolum tuberosum Ruiz & Pavón) Flours from Peru
Abstract
1. Introduction
2. Results and Discussion
2.1. Approximate Organic Composition of Flours
Parameter | Black Mashua | Yellow Mashua | Literature Range | References |
---|---|---|---|---|
Elemental composition (% m/m) | ||||
Carbon (C) | 41.06 ± 0.04 | 40.96 ± 0.02 | — | — |
Hydrogen (H) | 6.01 ± 0.04 | 6.11 ± 0.04 | — | — |
Nitrogen (N) | 2.81 ± 0.18 | 2.36 ± 0.16 | — | — |
Sulfur (S) | 0.56 ± 0.08 | 0.55 ± 0.02 | 4.9–54.2 * | [25] |
Estimated Oxygen + others (%) | 49.58 ± 0.02 | 50.03 ± 0.22 | — | — |
Empirical formula | CH1.74O0.91N0.06S0.005 | CH1.78O0.92N0.05S0.005 | — | — |
Proximate composition (% m/m) | ||||
Moisture | 5.36 ± 0.02 | 6.35 ± 0.04 | 4.4–18.9 | [5,26,27] |
Crude protein (N × 6.25) | 17.6 ± 1.1 a | 14.8 ± 1.1 b | 6.9–15.7 | [4,15,28] |
Crude fat | 8.0 ± 0.5 a | 6.7 ± 0.5 b | 0.6–6.2 | [4,5,6] |
Ash (TGA) | 5.6 | 5.1 | 3.6–7.9 | [4,15,27] |
Ash (Calorimetry residue) | 4.3 | 3.6 | — | — |
2.2. Content of Macro- and Microlements
Element | Black Mashua | Yellow Mashua | Literature Range | References |
---|---|---|---|---|
Calcium (Ca) | 457 | 710 | 347.8–900 | [4,31,32] |
Potassium (K) | 24,869 | 24,425 | 17,234–32,500 | [4,31,32] |
Magnesium (Mg) | 1474 | 1365 | 1100–1640 | [30,32] |
Sodium (Na) | 60 | 99 | 160-440 | [27,31,32] |
Phosphorus (P) | 4317 | 4132 | 1145.6–3200 | [29,31,32] |
Iron (Fe) | 236 | 127 | 28–86 | [31,32] |
Manganese (Mn) | 11 | 10 | 7–15.5 | [4,31,33] |
Zinc (Zn) | 29 | 23 | 20.6–119.9 | [27,31,32] |
Copper (Cu) | 3.1 | 2.4 | 9–19.6 | [27,31] |
2.3. Morphological Characterization
2.4. Thermal and Energetic Characterization
Parameter | Black Mashua | Yellow Mashua | Literature Range | References |
---|---|---|---|---|
Onset temperature (Ti, °C) | 65.5 ± 1.0 a | 61.2 ± 1.2 b | 51.85–69.86 | [3,5,6,26,43] |
Peak temperature (Tmax, °C) | 72.0 ± 1.6 a | 67.8 ± 2.2 b | 54.9–73.81 | [3,5,6,26,43] |
Conclusion temperature (Tf, °C) | 79.7 ± 3.4 a | 75.0 ± 4.1 b | 60.7–78.29 | [3,5,6,26,43] |
Gelatinization enthalpy (ΔHgel, J/g) | 2.2 ± 0.2 | 2.0 ± 0.2 | 1.2–14.3 | [3,5,6,26,43] |
3. Materials and Methods
3.1. Collection of Plant Species
3.2. Obtention of Mashua Flour
3.3. Elemental Analysis
3.4. Determination of Macro- and Microelements
3.5. Morphological Characterization by Scanning Electron Microscopy (SEM)
3.6. Thermal and Energetic Characterization
3.6.1. Differential Scanning Calorimetry (DSC)
3.6.2. Thermogravimetric Analysis (TGA)
3.6.3. Combustion Calorimetry
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tropaeolum tuberosum Ruiz & Pav. | Plants of the World Online | Kew Science. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:310353-2 (accessed on 5 July 2025).
- Cabrera, M.V.G.; Andrade, G.I.M.; Sampedro, S.E.L. Nutritional and Functional Importance of Mashua Flour (Tropaeolum tuberosum). Concienc. Digit. 2020, 3, 199–214. [Google Scholar] [CrossRef]
- Pacheco, M.T.; Moreno, F.J.; Moreno, R.; Villamiel, M.; Hernandez-Hernandez, O. Morphological, Technological and Nutritional Properties of Flours and Starches from Mashua (Tropaeolum tuberosum) and Melloco (Ullucus tuberosus) Cultivated in Ecuador. Food Chem. 2019, 301, 125268. [Google Scholar] [CrossRef]
- Coloma, A.; Flores-Mamani, E.; Quille-Calizaya, G.; Zaira-Churata, A.; Apaza-Ticona, J.; Calsina-Ponce, W.C.; Huata-Panca, P.; Inquilla-Mamani, J.; Huanca-Rojas, F. Characterization of Nutritional and Bioactive Compound in Three Genotypes of Mashua (Tropaeolum tuberosum Ruiz and Pavón) from Different Agroecological Areas in Puno. Int. J. Food Sci. 2022, 2022, 7550987. [Google Scholar] [CrossRef]
- Salazar, D.; Arancibia, M.; Ocaña, I.; Rodríguez-Maecker, R.; Bedón, M.; López-Caballero, M.E.; Montero, M.P. Characterization and Technological Potential of Underutilized Ancestral Andean Crop Flours from Ecuador. Agronomy 2021, 11, 1693. [Google Scholar] [CrossRef]
- Valcárcel-Yamani, B.; Rondán-Sanabria, G.G.; Finardi-Filho, F. The Physical, Chemical and Functional Characterization of Starches from Andean Tubers: Oca (Oxalis tuberosa Molina), Olluco (Ullucus tuberosus Caldas) and Mashua (Tropaeolum tuberosum Ruiz & Pavón). Braz. J. Pharm. Sci. 2013, 49, 453–464. [Google Scholar] [CrossRef]
- Chirinos, R.; Campos, D.; Betalleluz, I.; Giusti, M.M.; Schwartz, S.J.; Tian, Q.; Pedreschi, R.; Larondelle, Y. High-Performance Liquid Chromatography with Photodiode Array Detection (HPLC-DAD)/HPLC-Mass Spectrometry (MS) Profiling of Anthocyanins from Andean Mashua Tubers (Tropaeolum tuberosum Ruíz and Pavón) and Their Contribution to the Overall Antioxidant Activity. J. Agric. Food Chem. 2006, 54, 7089–7097. [Google Scholar] [CrossRef] [PubMed]
- Apaza Ticona, L.N.; Tena Pérez, V.; Bermejo Benito, P. Local/Traditional Uses, Secondary Metabolites and Biological Activities of Mashua (Tropaeolum tuberosum Ruíz & Pavón). J. Ethnopharmacol. 2020, 247, 112152. [Google Scholar] [CrossRef] [PubMed]
- Jacobo-Velázquez, D.A.; Peña-Rojas, G.; Paredes-Avila, L.E.; Andía-Ayme, V.; Torres-Contreras, A.M.; Herrera-Calderon, O. Phytochemical Characterization of Twenty-Seven Peruvian Mashua (Tropaeolum tuberosum Ruíz & Pavón) Morphotypes and the Effect of Postharvest Methyl Jasmonate Application on the Accumulation of Antioxidants. Horticulturae 2022, 8, 471. [Google Scholar] [CrossRef]
- Chirinos, R.; Campos, D.; Warnier, M.; Pedreschi, R.; Rees, J.F.; Larondelle, Y. Antioxidant Properties of Mashua (Tropaeolum tuberosum) Phenolic Extracts against Oxidative Damage Using Biological in Vitro Assays. Food Chem. 2008, 111, 98–105. [Google Scholar] [CrossRef]
- Acurio, L.; Salazar, D.; García-Segovia, P.; Martínez-Monzó, J.; Igual, M. Third-Generation Snacks Manufactured from Andean Tubers and Tuberous Root Flours: Microwave Expansion Kinetics and Characterization. Foods 2023, 12, 2168. [Google Scholar] [CrossRef]
- Acurio, L.; Salazar, D.; Castillo, B.; Santiana, C.; Martínez-Monzó, J.; Igual, M. Characterization of Second-Generation Snacks Manufactured from Andean Tubers and Tuberous Root Flours. Foods 2024, 13, 51. [Google Scholar] [CrossRef]
- Busch, J.M.; Sangketkit, C.; Savage, G.P.; Martin, R.J.; Halloy, S.; Deo, B. Nutritional Analysis and Sensory Evaluation of Ulluco (Ullucus tuberosus Loz) Grown in New Zealand. J. Sci. Food Agric. 2000, 80, 2232–2240. [Google Scholar] [CrossRef]
- Dávalos, J.Z.; Tirado, A.; Romero, V.; Cisneros, G.; Gamarra, F. Structural, Thermal and Energetic Properties of Andean-Pseudocereal Flours with High Nutritional Values. J. Therm. Anal. Calorim. 2023, 148, 7207–7215. [Google Scholar] [CrossRef]
- Castañeta, G.; Miranda-Flores, D.; Bascopé, M.; Peñarrieta, J.M. Characterization of Carotenoids, Proximal Analysis, Phenolic Compounds, Anthocyanidins and Antioxidant Capacity of an Underutilized Tuber (Tropaeolum tuberosum) from Bolivia. Discov. Food 2024, 4, 1–12. [Google Scholar] [CrossRef]
- Vinutha, T.; Kumar, D.; Bansal, N.; Krishnan, V.; Goswami, S.; Kumar, R.R.; Kundu, A.; Poondia, V.; Rudra, S.G.; Muthusamy, V.; et al. Thermal Treatments Reduce Rancidity and Modulate Structural and Digestive Properties of Starch in Pearl Millet Flour. Int. J. Biol. Macromol. 2022, 195, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Ekeledo, E.; Abass, A.; Müller, J. Effect of Packaging and Storage Conditions on the Pasting and Functional Properties of Pretreated Yellow-Fleshed Cassava Flour. Appl. Food Res. 2024, 4, 100467. [Google Scholar] [CrossRef]
- Desalegn Melese, A.; Olika Keyata, E. Impacts of Pretreatment Techniques on the Quality of Tuber Flours. Sci. World J. 2022, 2022, 9323694. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.C.; Higuera, B.L. Glucosinolate Composition of Colombian Accessions of Mashua (Tropaeolum tuberosum Ruíz & Pavón), Structural Elucidation of the Predominant Glucosinolate and Assessment of Its Antifungal Activity. J. Sci. Food Agric. 2016, 96, 4702–4712. [Google Scholar] [CrossRef]
- Medina-Marroquín, L.A.; Yucra-Condori, H.R.; Gárate, J.; Mendoza, C.; Deflorio, E.; Medina-Marroquín, L.A.; Yucra-Condori, H.R.; Gárate, J.; Mendoza, C.; Deflorio, E. Effect of Heat Processing on Bioactive Compounds of Dehydrated (Lyophilized) Purple Mashua (Tropaeolum tuberosum). Sci. Agropecu. 2023, 14, 321–333. [Google Scholar] [CrossRef]
- Oyeyinka, S.A.; Bassey, I.A.V. Composition, Functionality, and Baking Quality of Flour from Four Brands of Wheat Flour. J. Culin. Sci. Technol. 2025, 23, 87–107. [Google Scholar] [CrossRef]
- Jan, N.; Naik, H.R.; Gani, G.; Bashir, O.; Amin, T.; Wani, S.M.; Sofi, S.A. Influence of Replacement of Wheat Flour by Rice Flour on Rheo-Structural Changes, in Vitro Starch Digestibility and Consumer Acceptability of Low-Gluten Pretzels. Food Prod. Process. Nutr. 2022, 4, 1–12. [Google Scholar] [CrossRef]
- Njukwe, E.; Yaye, A.D.; Oluwadiran, O.O.; Sobukola, O.P.; Henshaw, F.O.; Akinloye, W.; Afolabi, O. Effect of Processing Methods on Quality Characteristics of Maize Flour. Proceedings 2025, 118, 3. [Google Scholar] [CrossRef]
- Ali, S.M.; Siddique, Y.; Mehnaz, S.; Sadiq, M.B. Extraction and Characterization of Starch from Low-Grade Potatoes and Formulation of Gluten-Free Cookies Containing Modified Potato Starch. Heliyon 2023, 9, e19581. [Google Scholar] [CrossRef] [PubMed]
- Campos, D.; Aguilar-Galvez, A.; García-Ríos, D.; Chirinos, R.; Limaymanta, E.; Pedreschi, R. Postharvest Storage and Cooking Techniques Affect the Stability of Glucosinolates and Myrosinase Activity of Andean Mashua Tubers (Tropaeolum tuberosum). Int. J. Food Sci. Technol. 2019, 54, 2387–2395. [Google Scholar] [CrossRef]
- Velásquez-Barreto, F.F.; Bello-Pérez, L.A.; Nuñez-Santiago, C.; Yee-Madeira, H.; Velezmoro Sánchez, C.E. Relationships among Molecular, Physicochemical and Digestibility Characteristics of Andean Tuber Starches. Int. J. Biol. Macromol. 2021, 182, 472–481. [Google Scholar] [CrossRef]
- Alfaro, G.; Illanes, W.; Vera, B.; Torres, E.; Lorondelle, I. Raíces y Tubérculos Andinos, Avances de Investigación; International Potato Center (CIP): Lima, Peru, 1999; pp. 223–241. [Google Scholar]
- Guevara-Freire, D.; Valle-Velástegui, L.; Barros-Rodríguez, M.; Vásquez, C.; Zurita-Vásquez, H.; Dobronski-Arcos, J.; Pomboza-Tamaquiza, P. NUTRITIONAL COMPOSITION AND BIOACTIVE COMPONENTS OF MASHUA (Tropaeolum tuberosum Ruiz and Pavón). Trop. Subtrop. Agroecosystems 2018, 21, 53–68. [Google Scholar] [CrossRef]
- Acurio, L.; Salazar, D.; García, M.E.; García-Segovia, P.; Martínez-Monzó, J.; Igual, M. Characterization, Mathematical Modeling of Moisture Sorption Isotherms and Bioactive Compounds of Andean Root Flours. Curr. Res. Food Sci. 2024, 8, 100752. [Google Scholar] [CrossRef]
- Pacheco, M.T.; Hernández-Hernández, O.; Moreno, F.J.; Villamiel, M. Andean Tubers Grown in Ecuador: New Sources of Functional Ingredients. Food Biosci. 2020, 35, 100601. [Google Scholar] [CrossRef]
- Barrera, V.H.; Espinosa, A.P.; Tapia, B.C.; Monteros, A.; Valverde, F. Caracterización de las raíces y los tubérculos andinos en la ecoregión andina del Ecuador. In Raíces y Tubérculos Andinos: Alternativas para la Conservación y uso Sostenible en el Ecuador; Barrera, V.H., Tapia, C., Monteros, A., Eds.; INIAP/CIP/COSUDE: Quito, Ecuador, 2004; pp. 3–30. [Google Scholar]
- Espín, S.; Villacrés, E.; Brito Grandes, B. Caracterización físico–química, nutricional y funcional de raíces y tubérculos andinos. In Raíces y Tubérculos Andinos: Alternativas para la Conservación y uso Sostenible en el Ecuador; Barrera, V.H., Tapia, C., Monteros, A., Eds.; INIAP/CIP/COSUDE: Quito, Ecuador, 2004; pp. 91–116. [Google Scholar]
- Council, N.R. Lost Crops of the Incas: Little-Known Plants of the Andes with Promise for Worldwide Cultivation; National Academy Press: Washington, DC, USA, 1999. [Google Scholar] [CrossRef]
- Akonor, P.T.; Osei Tutu, C.; Arthur, W.; Adjebeng-Danquah, J.; Affrifah, N.S.; Budu, A.S.; Saalia, F.K. Granular Structure, Physicochemical and Rheological Characteristics of Starch from Yellow Cassava (Manihot esculenta) Genotypes. Int. J. Food Prop. 2023, 26, 259–273. [Google Scholar] [CrossRef]
- Manek, R.V.; Kunle, O.O.; Emeje, M.O.; Builders, P.; Rao, G.V.R.; Lopez, G.P.; Kolling, W.M. Physical, Thermal and Sorption Profile of Starch Obtained from Tacca Ieontopetaloides. Starch 2005, 57, 55–61. [Google Scholar] [CrossRef]
- Gómez-Aldapa, C.A.; Velazquez, G.; Gutierrez, M.C.; Castro-Rosas, J.; Jiménez-Regalado, E.J.; Aguirre-Loredo, R.Y. Characterization of Functional Properties of Biodegradable Films Based on Starches from Different Botanical Sources. Starch 2020, 72, 1900282. [Google Scholar] [CrossRef]
- Casarrubias-Castillo, M.G.; Méndez-Montealvo, G.; Rodríguez-Ambriz, S.L.; Sánchez-Rivera, M.M.; Bello-Pérez, L.A. Diferencias estructurales y reológicas entre almidones de frutas y cereales. Agrociencia 2012, 46, 455–466. [Google Scholar]
- Culetu, A.; Susman, I.E.; Duta, D.E.; Belc, N. Nutritional and Functional Properties of Gluten-Free Flours. Appl. Sci. 2021, 11, 6283. [Google Scholar] [CrossRef]
- Schirmer, M.; Jekle, M.; Becker, T. Starch Gelatinization and Its Complexity for Analysis. Starch 2015, 67, 30–41. [Google Scholar] [CrossRef]
- Zeng, L.; Zhang, L.; Li, K.; He, J.; Xin, H.; Wang, Q. Effect of Gelatinization Processing on the Antioxidant, Digestion, and Physicochemical Properties of Wheat Starch Enhanced with Tannic Acid. LWT 2020, 125, 109228. [Google Scholar] [CrossRef]
- Van Ngo, T.; Kusumawardani, S.; Kunyanee, K.; Luangsakul, N. Polyphenol-Modified Starches and Their Applications in the Food Industry: Recent Updates and Future Directions. Foods 2022, 11, 3384. [Google Scholar] [CrossRef]
- Zheng, F.; Ren, F.; Zhu, X.; Han, Z.; Jia, Y.; Liu, X.; Chen, B.; Liu, H. The Interaction between Starch and Phenolic Acids: Effects on Starch Physicochemical Properties, Digestibility and Phenolic Acids Stability. Food Funct. 2025, 16, 4202–4225. [Google Scholar] [CrossRef]
- Daza, L.D.; Umaña, M.; Simal, S.; Váquiro, H.A.; Eim, V.S. Non-Conventional Starch from Cubio Tuber (Tropaeolum tuberosum): Physicochemical, Structural, Morphological, Thermal Characterization and the Evaluation of Its Potential as a Packaging Material. Int. J. Biol. Macromol. 2022, 221, 954–964. [Google Scholar] [CrossRef]
- Antón-Herrero, R.; García-Delgado, C.; Mayans, B.; Camacho-Arévalo, R.; Eymar, E. Impact of New Micro Carbon Technology Based Fertilizers on Growth, Nutrient Efficiency and Root Cell Morphology of Capsicum annuum L. Agronomy 2020, 10, 1165. Agronomy 2020, 10, 1165. [Google Scholar] [CrossRef]
- Bicsak, R.C.; Boles, R.; Cathey, R.; Collins, V.; Hannasious, K.; Haselhorst, J.; Henderson, L.; Jann, L.; Meschi, L.; Molloy, R.; et al. Comparison of Kjeldahl Method for Determination of Crude Protein in Cereal Grains and Oilseeds with Generic Combustion Method: Collaborative Study. J. AOAC Int. 1993, 76, 780–786. [Google Scholar] [CrossRef]
- Senila, M. Recent Advances in the Determination of Major and Trace Elements in Plants Using Inductively Coupled Plasma Optical Emission Spectrometry. Molecules 2024, 29, 3169. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Freire, D.; Coello-Fiallos, D.; Guevara-Freire, D.; Coello-Fiallos, D. Morphometric Analysis of Flour, Starch and Protein of Tropaeolum tuberosum Ruiz and Pavón. Rev. Mex. Cienc. Agric. 2021, 12, 547–554. [Google Scholar] [CrossRef]
- Wang, J.; Sun, X.; Xu, X.; Sun, Q.; Li, M.; Wang, Y.; Xie, F. Wheat Flour-Based Edible Films: Effect of Gluten on the Rheological Properties, Structure, and Film Characteristics. Int. J. Mol. Sci. 2022, 23, 11668. [Google Scholar] [CrossRef]
- Dávalos, J.Z.; Roux, M.V.; Jiménez, P. Evaluation of Poultry Litter as a Feasible Fuel. Thermochim. Acta 2002, 394, 261–266. [Google Scholar] [CrossRef]
- Hubbard, W.N.; Scott, D.W.; Waddington, G. Measurement of Heats of Reaction. In Experimental Thermochemistry; Rossini, F.D., Ed.; Interscience: New York, NY, USA, 1956. [Google Scholar]
Parameter | Black Mashua | Yellow Mashua | Units |
---|---|---|---|
Flour mass (m) | 0.5071 | 0.5021 | g |
Benzoic acid mass (m′) | 0.2812 | 0.2910 | g |
Cotton mass (m″) | 0.0040 | 0.0032 | g |
Inorganic residue (m‴) | 0.0213 | 0.0173 | g |
Corrected temperature rise (Tad) | 1.1187 | 1.1151 | °C |
Net calorific value (qNCV) | 4157 ± 22 a | 4022 ± 19 b | Kcal/kg |
qNCV (100 g basis) | 415.7 ± 2.2 | 402.2 ± 1.9 | Kcal/100 g |
Standard combustion energy (−Δcu°) | 17.39 ± 0.09 | 16.83 ± 0.08 | kJ/g |
Ash residue | 4.3 | 3.6 | % |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña-Rojas, G.; Andía-Ayme, V.; Fernández-Torres, A.; Dávalos-Prado, J.Z.; Herrera-Calderon, O. Nutritional, Thermal, and Energetic Characterization of Two Morphotypes of Andean Mashua (Tropaeolum tuberosum Ruiz & Pavón) Flours from Peru. Molecules 2025, 30, 3560. https://doi.org/10.3390/molecules30173560
Peña-Rojas G, Andía-Ayme V, Fernández-Torres A, Dávalos-Prado JZ, Herrera-Calderon O. Nutritional, Thermal, and Energetic Characterization of Two Morphotypes of Andean Mashua (Tropaeolum tuberosum Ruiz & Pavón) Flours from Peru. Molecules. 2025; 30(17):3560. https://doi.org/10.3390/molecules30173560
Chicago/Turabian StylePeña-Rojas, Gilmar, Vidalina Andía-Ayme, Alberto Fernández-Torres, Juan Z. Dávalos-Prado, and Oscar Herrera-Calderon. 2025. "Nutritional, Thermal, and Energetic Characterization of Two Morphotypes of Andean Mashua (Tropaeolum tuberosum Ruiz & Pavón) Flours from Peru" Molecules 30, no. 17: 3560. https://doi.org/10.3390/molecules30173560
APA StylePeña-Rojas, G., Andía-Ayme, V., Fernández-Torres, A., Dávalos-Prado, J. Z., & Herrera-Calderon, O. (2025). Nutritional, Thermal, and Energetic Characterization of Two Morphotypes of Andean Mashua (Tropaeolum tuberosum Ruiz & Pavón) Flours from Peru. Molecules, 30(17), 3560. https://doi.org/10.3390/molecules30173560