Electric Field-Driven Modulation of Nanomechanical Interactions Between Tyrosine Kinase Inhibitors and Human Serum Albumin: Insights from AFM-Based Force Spectroscopy
Abstract
1. Introduction
2. Results and Discussion
2.1. Morphological Changes of HSA Induced by Electric Fields
2.2. Adhesion Force Characterization Under Electric Fields
2.3. Specific and Non-Specific Force Analysis via Poisson Modeling
2.4. Nanotribological Properties Under Electric Field Exposure
2.5. Constant-Load Friction Force and Its Dependence on Electric Field Strength
3. Materials and Methods
3.1. Materials
3.2. Pretreatment of the Substrates
3.3. Preparation of the Protein Molecular Layer
3.4. Electric Field Stimulation of Varying Intensities
3.5. AFM Measurement of Protein Layer Morphology
3.6. AFM Measurement of Protein Mechanical Properties
3.7. Data Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: From bench to bedside. Mol. Asp. Med. 2012, 33, 209–290. [Google Scholar] [CrossRef]
- Pottier, C.; Fresnais, M.; Gilon, M.; Jérusalem, G.; Longuespée, R.; Sounni, N.E. Tyrosine kinase inhibitors in cancer: Breakthrough and challenges of targeted therapy. Cancers 2020, 12, 731. [Google Scholar] [CrossRef]
- Gambacorti-Passerini, C.; Aroldi, A.; Cordani, N.; Piazza, R. Chronic myeloid leukemia: Second-line drugs of choice. Am. J. Hematol. 2015, 91, 67–75. [Google Scholar] [CrossRef]
- Jiang, H.; Zhou, S.; Li, G. Novel biomarkers used for early diagnosis and tyrosine kinase inhibitors as targeted therapies in colorectal cancer. Front. Pharmacol. 2023, 14, 1189799. [Google Scholar] [CrossRef]
- Pushpam, D.; Bakhshi, S. Pharmacology of tyrosine kinase inhibitors in chronic myeloid leukemia; a clinician’s perspective. DARU J. Pharm. Sci. 2020, 28, 371–385. [Google Scholar] [CrossRef]
- Naik, R.; Jaldappagari, S. Spectral and computational attributes: Binding of a potent anticancer agent, dasatinib to a transport protein. J. Mol. Liq. 2019, 293, 111492. [Google Scholar] [CrossRef]
- Hegde, A.H.; Punith, R.; Seetharamappa, J. Optical, structural and thermodynamic studies of the association of an anti-leucamic drug imatinib mesylate with transport protein. J. Fluoresc. 2011, 22, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Temperini, M.E.; Polito, R.; Venanzi, T.; Baldassarre, L.; Hu, H.; Ciracì, C.; Pea, M.; Notargiacomo, A.; Mattioli, F.; Ortolani, M.; et al. An infrared nanospectroscopy technique for the study of electric-field-induced molecular dynamics. Nano Lett. 2024, 24, 9808–9815. [Google Scholar] [CrossRef]
- Hou, M.; Zheng, K.; Chu, F.; Jiang, Y.; Yang, C.; Jiang, C.; Xue, L. Molecular study on conformational changes in trypsin inhibitors in multidirectional electrostatic fields. Appl. Sci. 2024, 14, 1213. [Google Scholar] [CrossRef]
- Kang, K. The effect of fatty acids, ionic strength, and electric fields on the microscopic dynamics of BSA aggregates. Front. Phys. 2023, 11, 1282099. [Google Scholar] [CrossRef]
- Pfreundschuh, M.; Alsteens, D.; Wieneke, R.; Zhang, C.; Coughlin, S.R.; Tampé, R.; Kobilka, B.K.; Müller, D.J. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM. Nat. Commun. 2015, 6, 8857. [Google Scholar] [CrossRef]
- Rabe, M.; Verdes, D.; Seeger, S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 2011, 162, 87–106. [Google Scholar] [CrossRef]
- Alvarez-Paggi, D.; Martín, D.F.; DeBiase, P.M.; Hildebrandt, P.; Martí, M.A.; Murgida, D.H. Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes. J. Am. Chem. Soc. 2010, 132, 5769–5778. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Shao, D.; Xu, P.; Jiang, Z. Effects of an electric field on the conformational transition of the protein: Pulsed and oscillating electric fields with different frequencies. Polymers 2021, 14, 123. [Google Scholar] [CrossRef]
- Sen, S.; Chakraborty, M.; Goley, S.; Dasgupta, S.; DasGupta, S. Fibrillar disruption by AC electric field induced oscillation: A case study with human serum albumin. Biophys. Chem. 2017, 226, 23–33. [Google Scholar] [CrossRef]
- Beyer, C.; Christen, P.; Jelesarov, I.; Fröhlich, J. Real-time assessment of possible electromagnetic-field-induced changes in protein conformation and thermal stability. Bioelectromagnetics 2014, 35, 470–478. [Google Scholar] [CrossRef]
- Shukla, S.; Chufan, E.E.; Singh, S.; Skoumbourdis, A.P.; Kapoor, K.; Boxer, M.B.; Duveau, D.Y.; Thomas, C.J.; Talele, T.T.; Ambudkar, S.V. Elucidation of the structural basis of interaction of the BCR-ABL kinase inhibitor, nilotinib (Tasigna) with the human ABC drug transporter P-glycoprotein. Leukemia 2014, 28, 961–964. [Google Scholar] [CrossRef]
- Ramana, P.V.; Krishna, Y.R.; Bobbili, P.; Prasad, K.V.; Mouli, K.C. Investigation of the anti-cancer drugs imatinib and thalidomide using analytical spectroscopy (FT-IR, UV-Vis) and molecular docking simulations. Results Chem. 2025, 16, 133051. [Google Scholar] [CrossRef]
- Tayyab, S.; Sam, S.E.; Kabir, M.Z.; Ridzwan, N.F.W.; Mohamad, S.B. Molecular interaction study of an anticancer drug, ponatinib with human serum albumin using spectroscopic and molecular docking methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 214, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Jakova, E.; Lee, J.S. Behavior of α-synuclein–drug complexes during nanopore analysis with a superimposed AC field. Electrophoresis 2016, 38, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Alsteens, D.; Newton, R.; Schubert, R.; Martinez-Martin, D.; Delguste, M.; Roska, B.; Müller, D.J. Nanomechanical mapping of first binding steps of a virus to animal cells. Nat. Nanotechnol. 2017, 12, 177–183. [Google Scholar] [CrossRef]
- Yang, P.-K. Modified Poisson equation for the electric field and electric field gradient. J. Mol. Liq. 2016, 223, 1213–1225. [Google Scholar] [CrossRef]
- Neuman, K.C.; Nagy, A. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 2008, 5, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Chakraborty, S.; Sreepada, A.; Banerji, D.; Goyal, S.; Khurana, Y.; Haldar, S. Cutting-edge single-molecule technologies unveil new mechanics in cellular biochemistry. Annu. Rev. Biophys. 2021, 50, 419–445. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.E.P.; Vranic, J.; Composto, R.J.; Streu, C.; Billings, P.C.; Bennett, J.S.; Weisel, J.W.; Litvinov, R.I. Bimolecular integrin–ligand interactions quantified using peptide-functionalized dextran-coated microparticles. Integr. Biol. 2012, 4, 84–92. [Google Scholar] [CrossRef]
- Ma, X.; Gosai, A.; Balasubramanian, G.; Shrotriya, P. Aptamer based electrostatic-stimuli responsive surfaces for on-demand binding/unbinding of a specific ligand. J. Mater. Chem. B 2017, 5, 3675–3685. [Google Scholar] [CrossRef]
- Kuo, S.-M.; Yang, P.-K. Factors altering the affinity of protein–ligand binding in an external electrostatic field. Bioelectrochemistry 2015, 104, 17–25. [Google Scholar] [CrossRef]
- Černocká, H.; Ostatná, V.; Paleček, E. Protein structural transition at negatively charged electrode surfaces. Effects of temperature and current density. Electrochim. Acta 2015, 174, 356–360. [Google Scholar] [CrossRef]
- Boström, M.; Williams, D.R.M.; Ninham, B.W. Specific ion effects: Why DLVO theory fails for biology and colloid systems. Phys. Rev. Lett. 2001, 87, 168103. [Google Scholar] [CrossRef]
- Lugli, F.; Toschi, F.; Biscarini, F.; Zerbetto, F. Electric field effects on short fibrils of Aβ amyloid peptides. J. Chem. Theory Comput. 2010, 6, 3516–3526. [Google Scholar] [CrossRef]
- Liamas, E.; Kubiak-Ossowska, K.; Black, R.A.; Thomas, O.R.T.; Zhang, Z.J.; Mulheran, P.A. Adsorption of fibronectin fragment on surfaces using fully atomistic molecular dynamics simulations. Int. J. Mol. Sci. 2018, 19, 3321. [Google Scholar] [CrossRef]
- Shahidi, F.; Dissanayaka, C.S. Phenolic-protein interactions: Insight from in-silico analyses—A review. Food Prod. Process. Nutr. 2023, 5, 2. [Google Scholar] [CrossRef]
- Liu, X.; Feng, D.; Zheng, M.; Cui, Y.; Zhong, D. Characterization of covalent binding of tyrosine kinase inhibitors to plasma proteins. Drug Metab. Pharmacokinet. 2020, 35, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wu, D.; Sun, P.; Ma, X.; Wang, L.; Li, S.; Xu, K.; Li, H. Binding mechanism of the tyrosine-kinase inhibitor nilotinib to human serum albumin determined by 1 H STD NMR, 19 F NMR, and molecular modeling. J. Pharm. Biomed. Anal. 2016, 124, 1–9. [Google Scholar] [CrossRef]
- Rodrigues-Lima, F.; Tse, A.; Verkhivker, G.M. Molecular determinants underlying binding specificities of the ABL kinase inhibitors: Combining alanine scanning of binding hot spots with network analysis of residue interactions and coevolution. PLoS ONE 2015, 10, e0130203. [Google Scholar] [CrossRef]
- Luo, Y.-J.; Wang, B.-L.; Kou, S.-B.; Lin, Z.-Y.; Zhou, K.-L.; Lou, Y.-Y.; Shi, J.-H. Assessment on the binding characteristics of dasatinib, a tyrosine kinase inhibitor to calf thymus DNA: Insights from multi-spectroscopic methodologies and molecular docking as well as DFT calculation. J. Biomol. Struct. Dyn. 2019, 38, 4210–4220. [Google Scholar] [CrossRef]
- Chen, C.; Hao, H.-T.; Li, M.-Q.; Ma, Y.-Q.; Ding, H.-M. Dissociation of nicotine from acetylcholine-binding protein under terahertz waves radiation. J. Phys. Chem. B 2024, 128, 9669–9679. [Google Scholar] [CrossRef]
- Azimi, S.; Docoslis, A. LESS is more: Achieving sensitive protein detection by combining electric field effects and surface-enhanced Raman scattering. Sens. Actuators B Chem. 2023, 393, 134250. [Google Scholar] [CrossRef]
- Behl, G.; Kumar, P.; Sikka, M.; Fitzhenry, L.; Chhikara, A. PEG-coumarin nanoaggregates as π–π stacking derived small molecule lipophile containing self-assemblies for anti-tumour drug delivery. J. Biomater. Sci. Polym. Ed. 2017, 29, 360–375. [Google Scholar] [CrossRef]
- Shi, R.; Li, J.; Cao, X.; Zhu, X.; Lu, X. Exploration of the binding of proton pump inhibitors to human P450 2C9 based on docking and molecular dynamics simulation. J. Mol. Model. 2010, 17, 1941–1951. [Google Scholar] [CrossRef] [PubMed]
- Soltani, I.; Bahia, W.; Radhouani, A.; Mahdhi, A.; Ferchichi, S.; Almawi, W.Y. Comprehensive in-silico analysis of damage associated SNPs in hOCT1 affecting Imatinib response in chronic myeloid leukemia. Genomics 2021, 113, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Śliwińska-Hill, U. Interaction of imatinib mesylate with human serum transferrin: The comparative spectroscopic studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 468–475. [Google Scholar] [CrossRef]
- Martin, D.R.; Ozkan, S.B.; Matyushov, D.V. Dissipative electro-elastic network model of protein electrostatics. Phys. Biol. 2012, 9, 036004. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Zhang, X.; Li, Q.; Zhang, C.; Qian, J.-Y. Mechanisms of the structures and antioxidant activity of broad bean protein affected by AC electric field: Changes in conformation and molecular interaction. Int. J. Food Sci. Technol. 2024, 59, 7159–7168. [Google Scholar] [CrossRef]
- Smarzewska, S.; Ignaczak, A.; Koszelska, K. Electrochemical and theoretical studies of the interaction between anticancer drug ponatinib and dsDNA. Sci. Rep. 2024, 14, 2278. [Google Scholar] [CrossRef]
- Strelcov, E.; Kumar, R.; Bocharova, V.; Sumpter, B.G.; Tselev, A.; Kalinin, S.V. Nanoscale Lubrication of Ionic Surfaces Controlled via a Strong Electric Field. Sci. Rep. 2015, 5, 8049. [Google Scholar] [CrossRef]
- He, F.; Yang, X.; Bian, Z.; Xie, G.; Guo, D.; Luo, J. In-plane potential gradient induces low frictional energy dissipation during the stick-slip sliding on the surfaces of 2D materials. Small 2019, 15, e1904613. [Google Scholar] [CrossRef]
- Lee, T.S.; Potts, S.J.; Kantarjian, H.; Cortes, J.; Giles, F.; Albitar, M. Molecular basis explanation for imatinib resistance of BCR-ABL due to T315I and P-loop mutations from molecular dynamics simulations. Cancer 2008, 112, 1744–1753. [Google Scholar] [CrossRef]
- Matyushov, D.V. Dipolar response of hydrated proteins. J. Chem. Phys. 2012, 13685102. [Google Scholar] [CrossRef]
- Rodrigues, R.M.; Avelar, Z.; Vicente, A.A.; Petersen, S.B.; Pereira, R.N. Influence of moderate electric fields in β-lactoglobulin thermal unfolding and interactions. Food Chem. 2020, 304, 125442. [Google Scholar] [CrossRef]
- Xie, Y.; Liao, C.Y.; Zhou, J. Effects of external electric fields on lysozyme adsorption by molecular dynamics simulations. Biophys. Chem. 2013, 179, 26–34. [Google Scholar] [CrossRef]
- Lee, G.U.; Kidwell, D.A.; Colton, R.J. Sensing discrete streptavidin biotin interactions with Atomic-Force Microscopy. Langmuir 1994, 10, 354–357. [Google Scholar] [CrossRef]
- Evans, E. Probing the relation between force—Lifetime—and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 105–128. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, J.; Chen, G.; Deng, L. Imaging and determining friction forces of specific interactions between human IgG and rat anti-human IgG. J. Biol. Phys. 2011, 37, 417–427. [Google Scholar] [CrossRef]
- Wang, H.; Wang, N.; Chen, X.; Wu, Z.; Zhong, W.; Yu, D.; Zhang, H. Effects of moderate electric field on the structural properties and aggregation characteristics of soybean protein isolate. Food Hydrocoll. 2022, 133, 107911. [Google Scholar] [CrossRef]
- Zhou, W.; Guo, Y.; Zhang, Z.; Guo, W.; Qiu, H. Field-induced hydration shell reorganization enables electro-osmotic flow in nanochannels. Phys. Rev. Lett. 2023, 130, 084001. [Google Scholar] [CrossRef]
- Dufrêne, Y.F. Direct characterization of the physicochemical properties of fungal spores using functionalized AFM probes. Biophys. J. 2000, 78, 3286–3291. [Google Scholar] [CrossRef]
- Fritz, J.; Baller, M.K.; Lang, H.P.; Rothuizen, H.; Vettiger, P.; Meyer, E.; Güntherodt, H.-J.; Gerber, C.; Gimzewski, J.K. Translating biomolecular recognition into nanomechanics. Science 2000, 288, 316–318. [Google Scholar] [CrossRef]
Sample | Fi/F0 (pN) | 0 (mV/mm) | 20 (mV/mm) | 40 (mV/mm) | 60 (mV/mm) | 80 (mV/mm) | 100 (mV/mm) |
---|---|---|---|---|---|---|---|
Imatinib | Fi | 35.1 ± 0.5 | 33.4 ± 0.4 | 31.6 ± 0.2 | 28.9 ± 0.3 | 27.2 ± 0.5 | 25.2 ± 0.3 |
F0 | 101 ± 2 | 90 ± 2 | 80 ± 1 | 71 ± 2 | 62 ± 2 | 52 ± 1 | |
Bosutinib | Fi | 29.1 ± 0.4 | 27.0 ± 0.4 | 25.8 ± 0.6 | 24.7 ± 0.2 | 23.2 ± 0.3 | 21.3 ± 0.7 |
F0 | 114 ± 1 | 103.7 ± 0.9 | 93 ± 2 | 81 ± 1 | 72 ± 2 | 64 ± 1 | |
Dasatinib | Fi | 37.3 ± 0.8 | 35.6 ± 0.7 | 32.7 ± 0.7 | 30.3 ± 0.5 | 27.5 ± 0.4 | 26.0 ± 0.8 |
F0 | 112 ± 1 | 103 ± 1 | 95 ± 2 | 85 ± 1 | 75 ± 2 | 67 ± 2 | |
Nilotinib | Fi | 34.1 ± 0.6 | 32.0 ± 0.7 | 30.1 ± 0.5 | 28.2 ± 0.3 | 26.8 ± 0.4 | 24.5 ± 0.5 |
F0 | 103 ± 1 | 91.4 ± 0.9 | 81 ± 2 | 70 ± 2 | 59 ± 1 | 49 ± 1 | |
Ponatinib | Fi | 40.4 ± 0.7 | 36.9 ± 0.5 | 34.4 ± 0.6 | 31.5 ± 0.9 | 28.9 ± 0.5 | 25.4 ± 0.6 |
F0 | 108 ± 1 | 100 ± 1 | 92.6 ± 0.9 | 84 ± 2 | 76 ± 3 | 67 ± 1 | |
Radotinib | Fi | 42.1 ± 0.6 | 37.7 ± 0.5 | 34.6 ± 0.4 | 31.2 ± 0.7 | 27.4 ± 0.7 | 23.6 ± 0.4 |
F0 | 116 ± 2 | 103 ± 1 | 93 ± 1 | 81 ± 2 | 68 ± 2 | 57 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Wang, J.; Gu, D.; Zhang, L. Electric Field-Driven Modulation of Nanomechanical Interactions Between Tyrosine Kinase Inhibitors and Human Serum Albumin: Insights from AFM-Based Force Spectroscopy. Molecules 2025, 30, 3558. https://doi.org/10.3390/molecules30173558
Fu Y, Wang J, Gu D, Zhang L. Electric Field-Driven Modulation of Nanomechanical Interactions Between Tyrosine Kinase Inhibitors and Human Serum Albumin: Insights from AFM-Based Force Spectroscopy. Molecules. 2025; 30(17):3558. https://doi.org/10.3390/molecules30173558
Chicago/Turabian StyleFu, Yuna, Jianhua Wang, Di Gu, and Letian Zhang. 2025. "Electric Field-Driven Modulation of Nanomechanical Interactions Between Tyrosine Kinase Inhibitors and Human Serum Albumin: Insights from AFM-Based Force Spectroscopy" Molecules 30, no. 17: 3558. https://doi.org/10.3390/molecules30173558
APA StyleFu, Y., Wang, J., Gu, D., & Zhang, L. (2025). Electric Field-Driven Modulation of Nanomechanical Interactions Between Tyrosine Kinase Inhibitors and Human Serum Albumin: Insights from AFM-Based Force Spectroscopy. Molecules, 30(17), 3558. https://doi.org/10.3390/molecules30173558