Thermal Post-Cross-Linking of Siloxane/Silsesquioxane Hybrids with Polycyclic Aromatic Units for Tailored Softening Behavior in High-Temperature Applications
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthetic Procedures
2.2. Characterization of the Post-Cross-Linked Systems
2.2.1. Differential Scanning Calorimetry
2.2.2. Dynamic Mechanical Analysis (DMA)
2.2.3. Nuclear Magnetic Resonance (NMR) Spectroscopy
2.2.4. Fourier Transform Infrared (FTIR) Spectroscopy
2.2.5. Powder X-Ray Diffraction (PXRD)
2.2.6. Ultraviolet-Visible (UV-Vis) Spectroscopy
2.2.7. Thermogravimetric Analysis
3. Experimental Section
3.1. Materials
3.2. Instrumentation and Characterization Methods
3.3. Synthesis
3.3.1. Synthesis of NaphMG and NaphMG_5Ph_d
3.3.2. Synthesis of NaphMG_2Me2, NaphMG_2Ph2, NaphMG_4Ph and NaphMG_Sn
3.3.3. Consolidation of the Siloxanes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Fu, Z.; Huang, H.; Chen, Z.; Zeng, X. A Facile Route to Prepare Homogeneous Silicone Resin Doped with Titanium. J. Appl. Polym. Sci. 2019, 136, 47834. [Google Scholar] [CrossRef]
- Fan, X.; Cao, X.; Shang, X.; Zhang, X.; Huang, C.; Zhang, J.; Zheng, K.; Ma, Y. A Transparent Cyclo-Linear Polyphenylsiloxane Elastomer Integrating High Refractive Index, Thermal Stability and Flexibility. Polym. Chem. 2021, 12, 5149–5158. [Google Scholar] [CrossRef]
- Koh, K.; Sohn, H. Fast Curable Polysiloxane-Silphenylene Hybrimer with High Transparency and Refractive Index for Optical Applications. Polymers 2021, 13, 515. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Zhu, S.; Zhu, L.; Kang, Y.; Huang, B. Synthesis of High Refractive Index Epoxy Modified Methyl Phenyl Silicone Resin and Amine Phenyl Silicone Resin for LEDs Packaging. Silicon 2020, 12, 1379–1389. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, W.; Jiang, L.; Xu, J.; Zhang, Y.; Cui, Y. Carbazole-Grafted Silicone Hydrogel with a High Refractive Index for Intraocular Lens. RSC Adv. 2015, 5, 72736–72744. [Google Scholar] [CrossRef]
- Nordin, N.H.; Ramli, M.R.; Othman, N.; Ahmad, Z. Synthesis of Carbazole-Substituted Poly(Dimethylsiloxane) and Its Improved Refractive Index. J. Appl. Polym. Sci. 2015, 132, 41654. [Google Scholar] [CrossRef]
- Chen, X.; Fang, L.; Wang, J.; He, F.; Chen, X.; Wang, Y.; Zhou, J.; Tao, Y.; Sun, J.; Fang, Q. Intrinsic High Refractive Index Siloxane-Sulfide Polymer Networks Having High Thermostability and Transmittance via Thiol-Ene Cross-Linking Reaction. Macromolecules 2018, 51, 7567–7573. [Google Scholar] [CrossRef]
- Shang, X.X.; Duan, S.; Zhang, M.; Cao, X.Y.; Zheng, K.; Zhang, J.N.; Ma, Y.M.; Zhang, R.B. UV-Curable Ladder-like Diphenylsiloxane-Bridged Methacryl-Phenyl-Siloxane for High Power LED Encapsulation. RSC Adv. 2018, 8, 9049–9056. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, Y.; Sun, X.; Han, Y.; Liu, D.; Tan, X. Preparation of ZrO2/Silicone Hybrid Materials for LED Encapsulation via in Situ Sol-Gel Reaction. Polym. Adv. Technol. 2019, 30, 1818–1824. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, Z.; Fan, X.; Cao, X.; Hai, M.; Yang, Z.; Zheng, K.; Lu, J.; Zhang, J.; Ma, Y.; et al. Zirconia/Phenylsiloxane Nano-Composite for LED Encapsulation with High and Stable Light Extraction Efficiency. RSC Adv. 2021, 11, 18326–18332. [Google Scholar] [CrossRef]
- Meier, D.; Huch, V.; Kickelbick, G. Aryl-Group Substituted Polysiloxanes with High-Optical Transmission, Thermal Stability, and Refractive Index. J. Polym. Sci. 2021, 59, 2265–2283. [Google Scholar] [CrossRef]
- Briesenick, M.; Gallei, M.; Kickelbick, G. High-Refractive-Index Polysiloxanes Containing Naphthyl and Phenanthrenyl Groups and Their Thermally Cross-Linked Resins. Macromolecules 2022, 55, 4675–4691. [Google Scholar] [CrossRef]
- Rubinsztajn, S.; Chojnowski, J.; Cypryk, M.; Mizerska, U.; Uznański, P.; Walkiewicz-Pietrzykowska, A. Reactions of Titanium Alkoxide with SiH Containing Polymers as a Route to Titanium/Siloxane Hybrid Materials with Enhanced Refractive Index. Appl. Organometal. Chem. 2020, 34, e5571. [Google Scholar] [CrossRef]
- Zolper, T.J.; Jungk, M.; Marks, T.J.; Chung, Y.-W.; Wang, Q. Modeling Polysiloxane Volume and Viscosity Variations with Molecular Structure and Thermodynamic State. J. Tribol. 2014, 136, 011801. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Li, C. Highly Transparent and Scratch Resistant Polysiloxane Coatings Containing Silica Nanoparticles. J. Colloid. Interface Sci. 2020, 559, 273–281. [Google Scholar] [CrossRef]
- Köhler, T.; Gutacker, A.; Mejía, E. Industrial Synthesis of Reactive Silicones: Reaction Mechanisms and Processes. Org. Chem. Front. 2020, 7, 4108–4120. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Wu, Y.; Qi, Z.; Yang, R. Preparation and Characterization of Organic-Inorganic Hybrid Macrocyclic Compounds: Cyclic Ladder-like Polyphenylsilsesquioxanes. Inorg. Chem. 2018, 57, 3883–3892. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Gunji, T. Oligo- and Polysiloxanes. Prog. Polym. Sci. 2004, 29, 149–182. [Google Scholar] [CrossRef]
- Lee, A.S.; Choi, S.-S.; Baek, K.-Y.; Hwang, S.S. Hydrolysis Kinetics of a Sol-Gel Equilibrium Yielding Ladder-like Polysilsesquioxanes. Inorg. Chem. Commun. 2016, 73, 7–11. [Google Scholar] [CrossRef]
- Handke, M.; Sitarz, M.; Długoń, E. Amorphous SiCxOy Coatings from Ladder-like Polysilsesquioxanes. J. Mol. Struct. 2011, 993, 193–197. [Google Scholar] [CrossRef]
- Tong, L.; Feng, Y.; Sun, X.; Han, Y.; Jiao, D.; Tan, X. High Refractive Index Adamantane-Based Silicone Resins for the Encapsulation of Light-Emitting Diodes. Polym. Adv. Technol. 2018, 29, 2245–2252. [Google Scholar] [CrossRef]
- Kim, J.-S.; Yang, S.; Bae, B.-S. Thermally Stable Transparent Sol-Gel Based Siloxane Hybrid Material with High Refractive Index for Light Emitting Diode (LED) Encapsulation. Chem. Mater. 2010, 22, 3549–3555. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lim, Y.-W.; Lee, D.; Kim, Y.H.; Bae, B.-S. A Highly Adhesive Siloxane LED Encapsulant Optimized for High Thermal Stability and Optical Efficiency. J. Mater. Chem. C 2016, 4, 10791–10796. [Google Scholar] [CrossRef]
- Steinbrück, N.; Pohl, S.; Kickelbick, G. Platinum Free Thermally Curable Siloxanes for Optoelectronic Application-Synthesis and Properties. RSC Adv. 2019, 9, 2205–2216. [Google Scholar] [CrossRef] [PubMed]
- Pohl, S.; Janka, O.; Füglein, E.; Kickelbick, G. Thermoplastic Silsesquioxane Hybrid Polymers with a Local Ladder-Type Structure. Macromolecules 2021, 54, 3873–3885. [Google Scholar] [CrossRef]
- Klein, L.C.; Jitianu, A. Organic-Inorganic Hybrid Melting Gels. J. Sol-Gel Sci. Technol. 2010, 55, 86–93, Erratum in J. Sol-Gel Sci. Technol. 2011, 59, 424–431. [Google Scholar] [CrossRef]
- Jitianu, A.; Doyle, J.; Amatucci, G.; Klein, L.C. Methyl Modified Siloxane Melting Gels for Hydrophobic Films. J. Sol-Gel Sci. Technol. 2010, 53, 272–279. [Google Scholar] [CrossRef]
- Jitianu, A.; Amatucci, G.; Klein, L.C. Phenyl-Substituted Siloxane Hybrid Gels That Soften below 140 °C. J. Am. Ceram. Soc. 2009, 92, 36–40. [Google Scholar] [CrossRef]
- Khandekar, S.; Sahu, G.; Muralidhar, K.; Gatapova, E.Y.; Kabov, O.A.; Hu, R.; Luo, X.; Zhao, L. Cooling of High-Power LEDs by Liquid Sprays: Challenges and Prospects. Appl. Therm. Eng. 2021, 184, 115640. [Google Scholar] [CrossRef]
- Tomer, N.S.; Delor-Jestin, F.; Frezet, L.; Lacoste, J. Oxidation, Chain Scission and Cross-Linking Studies of Polysiloxanes upon Ageings. Open J. Org. Polym. Mater. 2012, 2, 13–22. [Google Scholar] [CrossRef]
- Hanada, S.; Miyamoto, M.; Hirai, N.; Yang, L.; Ohki, Y. Experimental Investigation of the Degradation Mechanism of Silicone Rubber Exposed to Heat and Gamma Rays. High Volt. 2017, 2, 92–101. [Google Scholar] [CrossRef]
- George, K.; Panda, B.P.; Mohanty, S.; Nayak, S.K. Recent Developments in Elastomeric Heat Shielding Materials for Solid Rocket Motor Casing Application for Future Perspective. Polym. Adv. Technol. 2018, 29, 8–21. [Google Scholar] [CrossRef]
- Jitianu, M.; Jitianu, A.; Stamper, M.; Aboagye, D.; Klein, L.C. Melting Gel Films for Low Temperature Seals. MRS Online Proc. Libr. 2013, 1547, 81–86. [Google Scholar] [CrossRef]
- Cervantes, J.; Zárraga, R.; Salazar-Hernández, C. Organotin Catalysts in Organosilicon Chemistry. Appl. Organometal. Chem. 2012, 26, 157–163. [Google Scholar] [CrossRef]
- van Der Weij, F.W. The Action of Tin Compounds in Condensation-type RTV Silicone Rubbers. Macromol. Chem. Phys. 1980, 181, 2541–2548. [Google Scholar] [CrossRef]
- Werlang, M.M.; Yoshida, I.V.P.; de Araújo, M.A. Silphenylene and Silphenylene-Siloxane Oligomers: Structure-Property Relationships. J. Inorg. Organomet. Polym. 1995, 5, 75–85. [Google Scholar] [CrossRef]
- Brook, M.A. New Control Over Silicone Synthesis Using SiH Chemistry: The Piers-Rubinsztajn Reaction. Chem. Eur. J. 2018, 24, 8458–8469. [Google Scholar] [CrossRef]
- Matsumoto, K.; Shimada, S.; Sato, K. Sequence-Controlled Catalytic One-Pot Synthesis of Siloxane Oligomers. Chem. Eur. J. 2019, 25, 920–928. [Google Scholar] [CrossRef]
- Matsumoto, K.; Sajna, K.V.; Satoh, Y.; Sato, K.; Shimada, S. By-Product-Free Siloxane-Bond Formation and Programmed One-Pot Oligosiloxane Synthesis. Angew. Chem. Int. Ed. 2017, 56, 3168–3171. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.D.; Kantor, S.W.; MacKnight, W.J. Thermally Stable Silphenylene Vinyl Siloxane Elastomers and Their Blends. Macromolecules 1998, 31, 850–856. [Google Scholar] [CrossRef]
- Dvornic, P.R.; Lenz, R.W. Exactly Alternating Silarylene-Siloxane Polymers. 9. Relationships between Polymer Structure and Glass Transition Temperature. Macromolecules 1992, 25, 3769–3778. [Google Scholar] [CrossRef]
- Klein, L.C.; Al-Marzoki, K.; Jitianu, A.; Rodriguez, G. Effect of Tetraethoxysilane (TEOS) on Melting Gel Behavior. J. Am. Ceram. Soc. 2020, 103, 4140–4149. [Google Scholar] [CrossRef]
- Song, J.; Chen, G.; Wu, G.; Cai, C.; Liu, P.; Li, Q. Thermal and Dynamic Mechanical Properties of Epoxy Resin/Poly(Urethane-Imide)/Polyhedral Oligomeric Silsesquioxane Nanocomposites. Polym. Adv. Technol. 2011, 22, 2069–2074. [Google Scholar] [CrossRef]
- Al-Hartomy, O.A.; Ibrahim, M.A.; Al-Ghamdi, A.; Dishovsky, N.; Ivanov, M.; Mihaylov, M.; El-Tantawy, F. Dynamic Mechanical Thermal Analysis and Dielectric Thermal Analysis of Siloxane Rubber-Based Composites Filled with Carbon Black. J. Compos. Mater. 2012, 46, 1765–1770. [Google Scholar] [CrossRef]
- Ioan, S.; Grigorescu, G.; Stanciu, A. Dynamic-Mechanical and Differential Scanning Calorimetry Measurements on Crosslinked Poly(Ester-Siloxane)-Urethanes. Polymer 2001, 42, 3633–3639. [Google Scholar] [CrossRef]
- Chiu, Y.-C.; Huang, C.-C.; Tsai, H.-C. Synthesis, Characterization, and Thermo Mechanical Properties of Siloxane-Modified Epoxy-Based Nano Composite. J. Appl. Polym. Sci. 2014, 131, 40984. [Google Scholar] [CrossRef]
- Lee, K.S.; Chang, Y.-W. Thermal and Mechanical Properties of Poly(ε-Caprolactone)/Polyhedral Oligomeric Silsesquioxane Nanocomposites. Polym. Int. 2013, 62, 64–70. [Google Scholar] [CrossRef]
- Džunuzović, J.V.; Pergal, M.V.; Porȩba, R.; Vodnik, V.V.; Simonović, B.R.; Špírková, M.; Jovanović, S. Analysis of Dynamic Mechanical, Thermal and Surface Properties of Poly(Urethane-Ester-Siloxane) Networks Based on Hyperbranched Polyester. J. Non-Cryst. Solids 2012, 358, 3161–3169. [Google Scholar] [CrossRef]
- Ni, Y.; Zheng, S.; Nie, K. Morphology and Thermal Properties of Inorganic-Organic Hybrids Involving Epoxy Resin and Polyhedral Oligomeric Silsesquioxanes. Polymer 2004, 45, 5557–5568. [Google Scholar] [CrossRef]
- Chambers, R.C.; Jones, W.E., Jr.; Haruvy, Y.; Webber, S.E.; Fox, M.A. Influence of Steric Effects on the Kinetics of Ethyltrimethoxysilane Hydrolysis in a Fast Sol-Gel System. Chem. Mater. 1993, 5, 1481–1486. [Google Scholar] [CrossRef]
- Leyden, D.E.; Atwater, J.B. Hydrolysis and Condensation of Alkoxysilanes Investigated by Internal Reflection FTIR Spectroscopy. J. Adhes. Sci. Technol. 1991, 5, 815–829. [Google Scholar] [CrossRef]
- Tan, B.; Rankin, S.E. Study of the Effects of Progressive Changes in Alkoxysilane Structure on Sol-Gel Reactivity. J. Phys. Chem. B 2006, 110, 22353–22364. [Google Scholar] [CrossRef]
- Chen, X.; Eldred, D.; Liu, J.; Chiang, H.; Wang, X.; Rickard, M.A.; Tu, S.; Cui, L.; LaBeaume, P.; Skinner, K. Simultaneous In Situ Monitoring of Trimethoxysilane Hydrolysis Reactions Using Raman, Infrared, and Nuclear Magnetic Resonance (NMR) Spectroscopy Aided by Chemometrics and Ab Initio Calculations. Appl. Spectrosc. 2018, 72, 1404–1415. [Google Scholar] [CrossRef]
- Jitianu, A.; Gonzalez, G.; Klein, L.C. Hybrid Sol-Gel Glasses with Glass-Transition Temperatures below Room Temperature. J. Am. Ceram. Soc. 2015, 98, 3673–3679. [Google Scholar] [CrossRef]
- Hu, N.; Rao, Y.; Sun, S.; Hou, L.; Wu, P.; Fan, S.; Ye, B. Structural Evolution of Silica Gel and Silsesquioxane Upon Thermal Curing. Appl. Spectrosc. 2016, 70, 1328–1338. [Google Scholar] [CrossRef]
- Schmidt, H.; Scholze, H.; Kaiser, A. Principles of Hydrolysis and Condensation Reaction of Alkoxysilanes. J. Non-Cryst. Solids 1984, 63, 1–11. [Google Scholar] [CrossRef]
- Sato, Y.; Hayami, R.; Gunji, T. Characterization of NMR, IR, and Raman Spectra for Siloxanes and Silsesquioxanes: A Mini Review. J. Sol-Gel Sci. Technol. 2022, 104, 36–52. [Google Scholar] [CrossRef]
- Liu, F.; Zeng, X.; Lai, X.; Li, H. Synthesis and Characterization of Polyphenylsilsesquioxane Terminated with Methyl and Vinyl Groups Low-Melting Glass. J. Adhes. Sci. Technol. 2017, 31, 2399–2409. [Google Scholar] [CrossRef]
- Choi, S.-S.; Lee, A.S.; Hwang, S.S.; Baek, K.-Y. Structural Control of Fully Condensed Polysilsesquioxanes: Ladderlike vs Cage Structured Polyphenylsilsesquioxanes. Macromolecules 2015, 48, 6063–6070. [Google Scholar] [CrossRef]
- Masai, H.; Takahashi, M.; Tokuda, Y.; Yoko, T. Gel-Melting Method for Preparation of Organically Modified Siloxane Low-Melting Glasses. J. Mater. Res. 2005, 20, 1234–1241. [Google Scholar] [CrossRef]
- Antosik, A.K.; Bednarczyk, P.; Czech, Z. Aging of Silicone Pressure-Sensitive Adhesives. Polym. Bull. 2018, 75, 1141–1147. [Google Scholar] [CrossRef]
- Chang, L.-B.; Pan, K.-W.; Yen, C.-Y.; Jeng, M.-J.; Wu, C.-T.; Hu, S.-C.; Kuo, Y.-K. Comparison of Silicone and Spin-on Glass Packaging Materials for Light-Emitting Diode Encapsulation. Thin Solid Film. 2014, 570, 496–499. [Google Scholar] [CrossRef]
- Schneider, A.F.; Lu, E.K.; Lu, G.; Brook, M.A. Facile Synthesis of Phenyl-Rich Functional Siloxanes from Simple Silanes. J. Polym. Sci. 2020, 58, 3095–3106. [Google Scholar] [CrossRef]
- Yi, M.; Chen, X.; Wu, S.; Ge, J.; Zhou, X.; Yin, G. Fabrication of Reactive Poly(Phenyl-Substituted Siloxanes/Silsesquioxanes) with Si-H and Alkoxy Functional Groups via the Piers-Rubinsztajn Reaction. Polymers 2018, 10, 1006. [Google Scholar] [CrossRef]
- Zielecka, M.; Rabajczyk, A. Silicone Nanocomposites with Enhanced Thermal Resistance: A Short Review. Materials 2024, 17, 2016. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Guo, X.; Lu, J. Thermal Degradation Behaviors of Some Branched and Linear Polysiloxanes. Polym. Degrad. Stab. 2006, 91, 1471–1475. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Bian, C.; Zhong, Y.; Jing, X. Effect of Chemical Structure and Cross-Link Density on the Heat Resistance of Phenolic Resin. Polym. Degrad. Stab. 2015, 111, 239–246. [Google Scholar] [CrossRef]
- Chou, C.; Yang, M.-H. Structural Effects on the Thermal Properties of PDPS/PDMS Copolymers. J. Therm. Anal. 1993, 40, 657–667. [Google Scholar] [CrossRef]
- Englert, M.; Minister, F.; Moussaoui, A.; Pisula, W. Mechanical Properties of Thermo-Oxidative Aged Silicone Rubber Thermally Stabilized by Titanium Oxide Based Fillers. Polym. Test. 2022, 115, 107726. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.; Qiu, X.; Bai, L.; Zheng, J. Effect of Acid-Treated Multi-Walled Carbon Nanotubes on Thermo-Oxidative Stability and Degradation Behavior of Silicone Rubber. J. Therm. Anal. Calorim. 2018, 133, 1353–1364. [Google Scholar] [CrossRef]
- Li, R.; Zhang, B.; Sun, Y.; Liu, B.; Wang, G. Synthesis of Vinylphenyl Oligomeric Silsesquioxane Based on MQ Silicone Resin. Asian J. Chem. 2013, 25, 2541–2546. [Google Scholar] [CrossRef]
- Arkles, B.; Larson, G. Dvornic, Petar R, High Temperature Stability of Polysiloxanes. In Silicon Compounds: Silanes and Silicones; Gelest Inc.: Morrisville, PA, USA, 2008; pp. 419–431. [Google Scholar]
- Metz, G.; Ziliox, M.; Smith, S.O. Towards Quantitative CP-MAS NMR. Solid State Nucl. Magn. Reson. 1996, 7, 155–160. [Google Scholar] [CrossRef]
- Fyfe, C.A.; Gobbi, G.C.; Kennedy, G.J. Quantitatively Reliable Silicon-29 Magic-Angle Spinning Nuclear Magnetic Resonance Spectra of Surfaces and Surface-Immobilized Species at High Field Using a Conventional High-Resolution Spectrometer. J. Phys. Chem. 1985, 89, 277–281. [Google Scholar] [CrossRef]
- Zhao, X.S.; Lu, G.Q.; Whittaker, A.K.; Millar, G.J.; Zhu, H.Y. Comprehensive Study of Surface Chemistry of MCM-41 Using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA. J. Phys. Chem. B. 1997, 101, 6525–6531. [Google Scholar] [CrossRef]
- Hook, R.J. A 29Si NMR Study of the Sol-Gel Polymerisation Rates of Substituted Ethoxysilanes. J. Non-Cryst. Solids 1996, 195, 1–15. [Google Scholar] [CrossRef]
- Cella, J.A.; Cargioli, J.D.; Williams, E.A. 29Si NMR of Five- and Six-Coordinate Organosilicon Complexes. J. Organomet. Chem. 1980, 186, 13–17. [Google Scholar] [CrossRef]
- Fyfe, C.A.; Aroca, P.P. Quantitative Kinetic Analysis by High-Resolution 29Si NMR Spectroscopy of the Initial Stages in the Sol-Gel Formation of Silica Gel from Tetraethoxysilane. Chem. Mater. 1995, 7, 1800–1806. [Google Scholar] [CrossRef]
- Li, Y.-S.; Wang, Y.; Ceesay, S. Vibrational Spectra of Phenyltriethoxysilane, Phenyltrimethoxysilane and Their Sol-Gels. Spectrochim. Acta-A Mol. Biomol. Spectrosc. 2009, 71, 1819–1824. [Google Scholar] [CrossRef]
Siloxane | Tg, average (°C) |
---|---|
NaphMG_2Me2 | −34.3 |
NaphMG_2Ph2 | 67.8 |
NaphMG_4Ph | 33.1 |
NaphMG_5Ph_d | 66.7 |
NaphMG | 5.3 |
NaphMG_Sn | 19.3 |
29Si SP-MAS DOC /% | 29Si CP-MAS DOC /% | 29Si Liquid NMR DOC /% | |
---|---|---|---|
NaphMG_cond. | - | - | 88.8 |
NaphMG_cons. | - | - | 93.7 |
NaphMG_2Me2 | - | - | 93.4 |
NaphMG_2Ph2 | 94.8 | 91.0 | - |
NaphMG_4Ph | 92.0 | 92.1 | - |
NaphMG_5Ph_d | 87.6 | 88.6 | - |
NaphMG_Sn | - | - | - |
T95 (°C) | Residual Mass (%) | Decomposition 1 (°C) | Mass Loss 1 (%) | Decomposition 2 (°C) | Mass Loss 2 (%) | |
---|---|---|---|---|---|---|
NaphMG_2Ph2 | 419 | 42 | 440 | 15 | 540 | 42 |
NaphMG_2Me2 | 376 | 35 | 450 | 41 | 560 | 23 |
NaphMG_4Ph | 390 | 31 | 460 | 36 | 540 | 32 |
NaphMG_5Ph_d | 453 | 45 | 410 | 9 | 560 | 45 |
NaphMG | 374 | 14 | 440 | 74 | 570 | 11 |
NaphMG_Sn | 361 | 35 | 310–500 | 13/23 | 560 | 28 |
Sample | 1-NaphPhSi (OMe)2 | DMDMS | PTMS | MeOH | HCl (pH 1) |
---|---|---|---|---|---|
NaphMG | 1 eq | 2 eq | 1 eq | (a) | 9 eq (b) |
NaphMG_5Ph_d | 1 eq | 2 eq | 5 eq | (a) | 21 eq (b) |
Sample | Monomer | MeOH | HCl (pH 1) | DBTDA |
---|---|---|---|---|
NaphMG_2Me2 | DMDMS (2 eq) | (a) | 2 (b) | -- |
NaphMG_2Ph2 | DPDMS (2 eq) | (a) | 2 (b) | -- |
NaphMG_4Ph | PTMS (4 eq) | (a) | 6 (b) | -- |
NaphMG_Sn | -- | (a) | -- | 2 wt% (c) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Briesenick, M.; Kickelbick, G. Thermal Post-Cross-Linking of Siloxane/Silsesquioxane Hybrids with Polycyclic Aromatic Units for Tailored Softening Behavior in High-Temperature Applications. Molecules 2025, 30, 3532. https://doi.org/10.3390/molecules30173532
Briesenick M, Kickelbick G. Thermal Post-Cross-Linking of Siloxane/Silsesquioxane Hybrids with Polycyclic Aromatic Units for Tailored Softening Behavior in High-Temperature Applications. Molecules. 2025; 30(17):3532. https://doi.org/10.3390/molecules30173532
Chicago/Turabian StyleBriesenick, Max, and Guido Kickelbick. 2025. "Thermal Post-Cross-Linking of Siloxane/Silsesquioxane Hybrids with Polycyclic Aromatic Units for Tailored Softening Behavior in High-Temperature Applications" Molecules 30, no. 17: 3532. https://doi.org/10.3390/molecules30173532
APA StyleBriesenick, M., & Kickelbick, G. (2025). Thermal Post-Cross-Linking of Siloxane/Silsesquioxane Hybrids with Polycyclic Aromatic Units for Tailored Softening Behavior in High-Temperature Applications. Molecules, 30(17), 3532. https://doi.org/10.3390/molecules30173532