Scandium(III) Solvation and Association and Water Structure in the Gigapascal Pressure Range Investigated by Neutron Scattering
Abstract
1. Introduction
2. Results
2.1. Interference Functions and Pair Distribution Functions
2.2. Sc(III) Solvation
2.3. Sc(III) Association with Cl−
2.4. Chloride Ion Solvation
2.5. Solvent Water
3. Discussion and Conclusions
4. Materials and Methods
4.1. Sample Preparation
4.2. Neutron Scattering Measurements
4.3. Neutron Data Treatment
4.4. EPSR Calculations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geier, V.G. Kinetische Untersuchungen der Komplexbilung von Murexid mit Co2+, Ni2+, In3+, Sc3+, Y3+, La3+ und den Lanthaniden mittels der Temperaturesprung-Relaxatinsmethode. Berichte Bunsenges. Phys. Chem. 1965, 69, 617–625. [Google Scholar] [CrossRef]
- Onghena, B.; Binnemans, K. Recovery of scandium(III) from aqueous solutions by solvent extraction with the functionalized ionic liquid betainium bis(trifluoromethylsulfonyl)imide. Ind. Eng. Chem. Res. 2015, 54, 1887–1898. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, H.; Xu, H.; Zue, Q.; Huang, X.; Feng, Z.; Long, Z. Preparation and electrical characterization of ultra-fine powder scandia-stabilized zirconia. J. Rare Earths 2016, 34, 181–186. [Google Scholar] [CrossRef]
- Ahmad, Z. The properties and application of scandium-reinforced aluminum. J. Magn. 2003, 55, 35. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Persson, I. Hydration and Solvation of Metal Ions. In Metal Ions and Complexes in Solution, 1st ed.; Yamaguchi, T., Persson, I., Eds.; The Royal Society of Chemistry: London, UK, 2024; pp. 120–139. [Google Scholar]
- Fratiello, A.; Lee, R.E.; Schuster, R.E. A Proton Magnetic Resonance Hydration Study of Scandium, Yttrium, and Thorium Perchlorates in Water-Acetone Mixtures. Inorg. Chem. 1980, 9, 391–392. [Google Scholar] [CrossRef]
- Kanno, H.; Yoshimura, Y. Coordination of NO3− ions to Sc3+ and lanthanoid ions in aqueous solution. J. Alloys Compd. 1995, 225, 253–256. [Google Scholar] [CrossRef]
- Kanno, H.; Yamaguchi, T.; Ohtaki, H. A Raman Investigation of the Hydration Number of Scandium(III) ions. J. Phys. Chem. 1989, 93, 1695–1697. [Google Scholar] [CrossRef]
- Rudolph, W.W.; Pye, C.C. Raman Spectroscopic Measurements of Scandium(III) Hydration in Aqueous Perchlorate Solution and ab Initio Molecular Orbital Studies of Scandium(III) Water Clusters; Does Sc(III) Occur as a Hexaaqua Complex? J. Phys. Chem. A 2000, 104, 1627–1639. [Google Scholar] [CrossRef]
- Rudolph, W.W.; Pye, C.C. Aqueous Solution Chemistry of Scandium(III) Studied by Raman Spectroscopy and ab initio Molecular Orbital Calculations. J. Solut. Chem. 2000, 29, 955–986. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Niihara, M.; Takamuku, T.; Wakita, H. Scandium(III) hydration in aqueous solution from X-ray diffraction and X-ray absorption fine structure measurements. Chem. Phys. Lett. 1997, 274, 485–490. [Google Scholar] [CrossRef]
- Smirnov, P.; Wakita, H.; Yamaguchi, T. X-ray Diffraction Study on Aqueous Scandium(III) Perchlorate and Chloride Solutions over the Temperature Range −45 to 95 °C. J. Phys. Chem. B 1998, 102, 4802. [Google Scholar] [CrossRef]
- Lindqvist-Reis, P.; Persson, I.; Sandström, M. The hydration of the scandium(III) ion in aqueous solution and crystalline hydrates studied by XAFS spectroscopy, large-angle X-ray scattering, and crystallography. Dalton Trans. 2006, 32, 3868–3878. [Google Scholar] [CrossRef] [PubMed]
- Migliorati, V.; D’Angelo, P. Unraveling the Sc3+ Hydration Geometry: The Strange Case of the Far-Coordinated Water Molecule. Inorg. Chem. 2016, 55, 6703–6711. [Google Scholar] [CrossRef]
- Vchirawongkwin, V.; Kritayakornuoong, C.; Tongraar, A.; Rode, B.M. Characterization of structure and dynamics of aqueous scandium(III) ion by an extended ab initio QM/MM molecular dynamics simulation. Dalton Trans. 2012, 41, 11889–11897. [Google Scholar] [CrossRef]
- Prasetyo, N. The effect of electron correlation in unraveling the hydration properties of Sc3+ in aqueous solution: A rigid body quantum mechanics/molecular mechanics simulation study. J. Mol. Liq. 2021, 331, 115735. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Higa, S.; Yoshida, K.; Sumitani, K.; Kurisaki, T. Structure of Aqueous Scandium(III) Nitrate Solution by Large-Angle X-ray Scattering Combined with Empirical Potential Structure Refinement Modeling, X-ray Absorption Fine Structure, and Discrete Variational Xα Calculations. Bull. Chem. Soc. Jpn. 2022, 95, 673–679. [Google Scholar] [CrossRef]
- Cotton, S.A. The Scandium Aqua Ion Revisited. Comments Inorg. Chem. 2018, 38, 110–125. [Google Scholar] [CrossRef]
- Lim, K.C.; Skelton, B.W.; White, A.H. Crystal Structures of the (‘Maximally’) Hydrated Scandium Halides, ScX3.nH2O (X. = Cl, Br, I). Aust. J. Chem. 2002, 53, 875–878. [Google Scholar] [CrossRef]
- Soper, A.K. Computer simulation as a tool for the interpretation of total scattering data from glasses and liquids. Mol. Sim. 2012, 38, 1171–1185. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Yoshida, K.; Machida, S.; Hattori, T. Neutron scattering on an aqueous sodium chloride solution in the gigapascal pressure range. J. Mol. Liq. 2022, 365, 120181. [Google Scholar] [CrossRef]
- Katayama, Y.; Hattori, T.; Saitoh, H.; Ikeda, T.; Aoki, K.; Fukui, H.; Funakoshi, K. Structure of Liquid Water under High Pressure up to 17 GPa. Phys. Rev. B 2010, 81, 014109. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Fujimura, K.; Uchi, K.; Yoshida, K.; Katayama, Y. Structure of Water from Ambient to 4 GPa revealed by Energy-Dispersive X-ray Diffraction Combined with Empirical Potential Structure Refinement Modeling. J. Mol. Liq. 2012, 176, 44–51. [Google Scholar] [CrossRef]
- Kameda, Y.; Amo, Y.; Usuki, T.; Umebayashi, Y.; Watanabe, H.; Ikeda, K.; Otomo, T. Direct determination of intramolecular structure of D2O in the first hydration shell of Ni2+. J. Mol. Liq. 2023, 382, 121927. [Google Scholar] [CrossRef]
- Kuhs, W.F.; Lehmann, M.S. The structure of the ice Ih by neutron diffraction. J. Phys. Chem. 1983, 87, 4312–4313. [Google Scholar] [CrossRef]
- Arnold, G.P.; Finch, E.D.; Rabideau, S.W.; Wenzel, R.G. Neutron diffraction study of ice polymorphs. III. Ice Ic. J. Chem. Phys. 1968, 49, 4365–4369. [Google Scholar] [CrossRef]
- Kuhs, W.F.; Finney, J.L.; Vettier, C.; Bliss, D.V. Structure and hydrogen ordering in ices VI, VII, and VIII by neutron powder diffraction. J. Chem. Phys. 1984, 81, 3612–3623. [Google Scholar] [CrossRef]
- Gingrich, N.S.; Tompson, C.W. Atomic Distribution in Liquid Argon Near the Triple Point. J. Chem. Phys. 1962, 36, 2398–2400. [Google Scholar] [CrossRef]
- Yamaguchi, T. Solvent Properties. In Metal Ions and Complexes in Solution, 1st ed.; Yamaguchi, T., Persson, I., Eds.; The Royal Society of Chemistry: London, UK, 2024; p. 99. [Google Scholar]
- Marshall, W.L. Dielectric Constant of Water Discovered to be Simple Function of Density over Extreme Ranges from −35 to +600 °C and 1200 MPa (12000 Atm.), Believed Universal. Nat. Preced. 2008, 1. [Google Scholar] [CrossRef]
- Sears, V.F. Neutron scattering lengths and cross sections. Neutron. News 1992, 3, 26. [Google Scholar] [CrossRef]
- Wagner, W.; Pruß, A. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data 2002, 31, 387. [Google Scholar] [CrossRef]
- Eisenberg, D.; Kauzmann, W. The Structure and Properties of Water; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Hattori, T.; Sano-Furukawa, A.; Arima, H.; Komatsu, K.; Yamada, A.; Inamura, Y.; Nakatani, T.; Seto, Y.; Nagai, T.; Tsumi, W.; et al. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 780, 55–67. [Google Scholar] [CrossRef]
- Sano-Furukawa, A.; Hattori, T.; Arima, H.; Yamada, A.; Tabata, S.; Kondo, M.; Nakamura, A.; Kagi, H.; Yagi, T. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments. Rev. Sci. Instrum. 2014, 85, 113905. [Google Scholar] [CrossRef]
- NOVA Group. Program nvaSq Manual; NOVA Group, Institute of Materials Structure Science: Tsukuba, Japan, 2019; Available online: https://research.kek.jp/group/hydrogen/reduction/index.html (accessed on 12 August 2025).
- Granada, J.R.; Gillette, V.H.; Mayer, R.E. Neutron cross sections and thermalization parameters using a synthetic scattering function. II: Applications to H2O, D2O, and C6H6. Phys. Rev. A 1987, 36, 5594. [Google Scholar] [CrossRef] [PubMed]
- Kameda, Y.; Sasaki, M.; Usuki, T.; Ohtomo, T.; Itoh, K.; Suzuya, K.; Fukunaga, T. Inelasticity effects on neutron scattering intensities of the null-H2O. J. Neutron. Res. 2003, 11, 153–163. [Google Scholar] [CrossRef]
- Origin Pro 2022. The Ultimate Software for Graphing and Analysis; Light Stone Ltd.: New York, NY, USA, 2022. [Google Scholar]
- Jensen, K.P.; Jorgensen, W.L. Halide, Ammonium, and Alkali Metal Ion Parameters for Modeling Aqueous Solutions. J. Chem. Theory Comput. 2006, 2, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar] [CrossRef]
- Soper, A.K. Empirical Potential Structure Refinement; A User’s Guide, Version 25; ISIS, STFC Rutherford Appleton Laboratory: Didcot, UK, 2017; Available online: https://www.isis.stfc.ac.uk/Pages/Empirical-Potential-Structure-Refinement.aspx (accessed on 27 June 2025).
Method | r/Å | CN | System | Refs. |
---|---|---|---|---|
NS + EPSR | 2.11(2) (Ow), 2.42(2) (Cl) | 5.2 (Ow), 1.4 (Cl) | 1 m ScCl3 in 0.01 m DCl at 0.1 MPa, 298 K | This work |
2.11(2) (Ow), 2.42(2) (Cl) | 6.6 (Ow), 0.4 (Cl) | at 1 GPa, 298 K | ||
2.11(2) (Ow), 2.42(2) (Cl) | 5.0 (Ow), 1.4 (Cl) | at 1 GPa, 523 K | ||
2.11(2) (Ow), 2.44(2) (Cl) | 5.2 (Ow), 1.5 (Cl) | at 4 GPa, 523 K | ||
XS + EPSR + XANES + DV-Xα | 2.14 (Ow), 2.14 (ON) | 6.2 (Ow), 1.2 (ON) | 0.96 M Sc(NO3)3 in 0.06 M HNO3 | [18] |
1H-NMR | n.a. | n.a. | Sc(ClO4)3, Sc(NO3)3 in water-acetone mixture | [7] |
Raman | n.a. | 7 | Sc(NO3)3.20H2O | [8] |
Raman | n.a. | 7 | 2.2 M Sc(ClO4)3 at pH = 1.6 | [9] |
Raman + HF-MP2 MO | 2.18 | 6 | 1.65 M Sc(ClO4)3 in 0.16 M HClO4 | [10,11] |
LAXS + EXAFS | 2.18 | 7 | 1.06, 3.00 M Sc(ClO4)3 in 0.01 M HClO4 | [12] |
LAXS | 2.15 | 7 | 1, 3 M Sc(ClO4)3 in 0.01 M HClO4 | [13] |
EXAFS + LAXS | 2.17(1)(6×), 2.32(4), 2.5 | 8 | 0.98 M Sc(ClO4)3 in 0.88 M HClO4 | [14] |
EXAFS + QM/MD | 2.16 | 8 | 0.2 M Sc(CF3SO3)3 | [14] |
MD | 2.16 | 10 | 1 Sc(III) in 819 H2O | [14] |
QM/MM/MD | 2.14(6×), 2.26(1×) | 7 | 1 Sc(III) in 499 H2O | [16] |
QMCF MD | 2.14 | 6.03 | 1 Sc(III) in 2000 H2O | [17] |
RI-MP2 QM/MM/MD | 2.15 | 6 | 1 Sc(III) in 2000 H2O | [17] |
Conditions | Parameters | Sc–Ow(I) | Sc–Hw(I) | Sc–Ow(II) | Cl–Ow(I) | Cl–Hw(I) | Cl–Ow(II) |
---|---|---|---|---|---|---|---|
0 GPa 298 K | r/Å | 2.11 | 2.79 | 4.31 | 3.10 | 2.14 | 5.64 |
CN | 5.2 ± 1.6 | 10.4 ± 3.2 | 7.8 ± 1.4 | 4.7 ± 2.2 | |||
rmax/Å | 2.90 | 3.33 | 3.89 | 2.81 | |||
1 GPa 298 K | r/Å | 2.11 | 2.81 | 4.35 | 3.05 | 2.12 | 5.62 |
CN | 6.6 ± 1.2 | 13.5 ± 1.7 | 9.7 ± 1.2 | 6.8 ± 1.5 | |||
rmax/Å | 2.64 | 3.30 | 3.92 | 2.79 | |||
1 GPa 523 K | r/Å | 2.11 | 2.81 | 4.42 | 3.11 | 2.20 | 5.72 |
CN | 5.0 ± 1.6 | 10.2 ± 3.2 | 8.3 ± 1.7 | 4.2 ± 2.1 | |||
rmax/Å | 2.64 | 3.30 | 3.92 | 2.79 | |||
4 GPa 523 K | r/Å | 2.11 | 2.78 | 4.45 | 3.10 | 2.17 | 5.78 |
CN | 5.2 ± 1.8 | 10.3 ± 3.5 | 10.9 ± 1.7 | 4.6 ± 2.2 | |||
rmax/Å | 2.96 | 3.30 | 4.18 | 2.76 |
Abbreviation | Parameters | Sc–Cl(I) | Sc–Cl(II) | Sc–Sc |
---|---|---|---|---|
0 GPa 298 K | r/Å | 2.42 | 4.44 | 4.88 |
CN | 1.4 ± 1.1 | 0.056 ± 0.24 | ||
rmax/Å | 3.04 | 5.32 | ||
1 GPa 298 K | r/Å | 2.42 | 4.44 | n.a. |
CN | 0.38 ± 0.80 | |||
rmax/Å | 3.00 | |||
1 GPa 523 K | r/Å | 2.42 | 4.53 | 4.86 |
CN | 1.4 ± 1.1 | 0.43 ± 0.63 | ||
rmax/Å | 3.00 | 5.38 | ||
4 GPa 523 K | r/Å | 2.44 | 4.53 | 4.89 |
CN | 1.5 ± 1.2 | 0.22 ± 0.42 | ||
rmax/Å | 3.05 | 5.30 |
Abbreviation | Parameters | Ow-Ow(I) | Ow-Hw(I) | Ow-Ow(II) | Ow–Hw(II) | Ow-Ow(III) | Ow–Hw(III) |
---|---|---|---|---|---|---|---|
0 GPa 298 K | r/Å | 2.77 | 1.83 | 4.13 | 3.28 | 7.12 | 6.90 |
CN | 5.5 ± 1.5 | 2.1 ± 1.1 | |||||
rmax/Å | 3.52 | 2.31 | |||||
1 GPa 298 K | r/Å | 2.78 | 1.86 | 5.94 | 3.30 | 8.97 | 6.21 |
CN | 14.3 ± 1.6 | 1.94 ± 1.1 | |||||
rmax/Å | 4.50 | 2.28 | |||||
1 GPa 523 K | r/Å | 2.84 | 1.95 | 5.55 | 3.20 | 8.24 | 5.74 |
CN | 11.9 ± 2.0 | 1.9 ± 1.1 | |||||
rmax/Å | 4.50 | 2.28 | |||||
4 GPa 523 K | r/Å | 2.89 | 2.08 | 5.68 | 3.20 | 8.33 | 5.78 |
CN | 12.6 ± 1.8 | 1.8 ± 1.1 | |||||
rmax/Å | 4.37 | 2.18 |
Abbreviation | c/mol dm−3 | d/g cm−3 | ρS/atoms Å−3 | ρV/atoms Å−3 | p/GPa | T/K |
---|---|---|---|---|---|---|
0 GPa 298 K | 1.113 | 1.247 | 0.1009 | 0.07258 | 1.0 × 10−4 | 298 |
1 GPa 298 K | 1.320 | 1.479 | 0.1197 | 0.07301 | 0.66 | 298 |
1 GPa 523 K | 1.140 | 1.277 | 0.1034 | 0.07238 | 0.49 | 523 |
4 GPa 523 K | 1.285 | 1.440 | 0.1165 | 0.07324 | 3.54 | 523 |
Atoms | ε/kJ mol−1 | σ/Å | Atomic Mass | Coulomb Charge/(e) |
---|---|---|---|---|
OW | 0.650 | 3.165 | 16.0 | −0.8480 |
HW | 0.00 | 0.00 | 2.0 | 0.4240 |
Cl− | 0.710 | 4.02 | 35.452 | −1 |
Sc3+ | 26.3 | 1.50 | 44.956 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaguchi, T.; Machida, S.; Hattori, T. Scandium(III) Solvation and Association and Water Structure in the Gigapascal Pressure Range Investigated by Neutron Scattering. Molecules 2025, 30, 3417. https://doi.org/10.3390/molecules30163417
Yamaguchi T, Machida S, Hattori T. Scandium(III) Solvation and Association and Water Structure in the Gigapascal Pressure Range Investigated by Neutron Scattering. Molecules. 2025; 30(16):3417. https://doi.org/10.3390/molecules30163417
Chicago/Turabian StyleYamaguchi, Toshio, Sinichi Machida, and Takanori Hattori. 2025. "Scandium(III) Solvation and Association and Water Structure in the Gigapascal Pressure Range Investigated by Neutron Scattering" Molecules 30, no. 16: 3417. https://doi.org/10.3390/molecules30163417
APA StyleYamaguchi, T., Machida, S., & Hattori, T. (2025). Scandium(III) Solvation and Association and Water Structure in the Gigapascal Pressure Range Investigated by Neutron Scattering. Molecules, 30(16), 3417. https://doi.org/10.3390/molecules30163417