PROTACs in Antivirals: Current Advancements and Future Perspectives
Abstract
1. Introduction
2. PROTAC Degrader for Hepatitis Virus
2.1. Hepatitis B Virus (HBV)
2.2. Hepatitis C Virus (HCV)
2.3. Hepatitis A Virus (HAV)
3. PROTAC Degrader for Human Cytomegalovirus (HCMV)
4. PROTAC Degrader for Influenza Virus
4.1. PROTAC Degraders for the Influenza Virus NA
4.2. PROTAC Degraders for the Influenza HA
4.3. PROTAC Viral Vaccine
5. PROTAC Degrader for SARS-CoV-2
5.1. PROTACs Targeting the Degradation of Host Proteins
5.1.1. PROTACs Targeting ACE2
5.1.2. PROTAC Targeting TMPRSS2
5.1.3. PROTAC Targeting PGES-2
5.2. PROTAC Targeting the Degradation of Viral Proteins
5.2.1. PROTAC Targeting Mpro
5.2.2. PROTAC Targeting Envelope Protein E
6. PROTAC Degrader for Flaviviruses
7. PROTAC Degrader for HIV
8. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3CLpro | 3C-like protease; |
ACE2 | Angiotensin-converting enzyme 2; |
AIDS | Acquired immune deficiency syndrome; |
BHH | Bromohexin Hydrochloride; |
CADD | Computer-aided drug design; |
CMV | Cytomegalovirus; |
CoV | Coronaviruses; |
COVID-19 | Coronavirus Disease 2019; |
CPPs | Cell-penetrating peptides; |
CRBN | Celeblon; |
CsA | Cyclosporin A; |
CypA | Cyclophilin A; |
DENV | Dengue virus; |
DHQs | Dihydroquinolizinones; |
E | Envelope protein; |
HA | Hemagglutinin; |
HAV | Hepatitis A virus; |
HBV | Hepatitis B Virus; |
HCC | Hepatocellular carcinoma; |
HCMV | Human Cytomegalovirus; |
HCV | Hepatitis C Virus; |
HIV-1 | Human immunodeficiency virus-1; |
IAV | Influenza A virus; |
IIV | Influenza vaccines; |
JEV | Japanese encephalitis virus; |
LAIV | Live attenuated influenza vaccines; |
M | Membrane protein; |
MERS-CoV | Middle East Respiratory Syndrome Coronavirus; |
Mpro | Main protease; |
N | Nucleocapsid protein; |
NA | Neuraminidase; |
NDA | New Drug Application |
OA | Oleanolic acid; |
PGES-2 | Prostaglandin E synthase-2; |
PROTAC | Proteolysis-targeting chimeras; |
RBD | Receptor-binding domain; |
S | Spike protein; |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2; |
TEV | Tobacco etch virus; |
TEVp | TEV protease; |
TMPRSS2 | Transmembrane protease serines 2; |
TPD | Targeted protein degradation; |
UPS | Ubiquitin–proteasome system; |
UTRs | Untranslated regions; |
VHL | von Hippel–Lindau; |
vPOL | viral polymerase; |
vRNA | Viral RNA; |
WNV | West Nile virus; |
YFV | Yellow fever virus; |
ZIKV | Zika virus. |
References
- Akhter, S.; Akhtar, S. Emerging coronavirus diseases and future Perspectives. Virus Dis. 2020, 31, 113–120. [Google Scholar] [CrossRef] [PubMed]
- WHO COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/deaths?n=c (accessed on 26 June 2025).
- Garcia-Beltran, W.F.; St Denis, K.J.; Hoelzemer, A.; Lam, E.C.; Nitido, A.D.; Sheehan, M.L.; Berrios, C.; Ofoman, O.; Chang, C.C.; Hauser, B.M.; et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 2022, 185, 457–466. [Google Scholar] [CrossRef]
- Mahase, E. Covid-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ 2021, 375, n2713. [Google Scholar] [CrossRef]
- Zeng, S.; Zhang, H.; Shen, Z.; Huang, W. Photopharmacology of Proteolysis-Targeting Chimeras: A New Frontier for Drug Discovery. Front. Chem. 2021, 9, 639176. [Google Scholar] [CrossRef]
- Bond, M.J.; Crews, C.M. Proteolysis targeting chimeras (PROTACs) come of age: Entering the third decade of targeted protein degradation. RSC Chem. Biol. 2021, 2, 725. [Google Scholar] [CrossRef]
- Asher Mullard. Targeted protein degraders crowd into the clinic. Nature Rev. Drug Discov. 2021, 20, 247. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, S.; Wang, J.; Pan, W.; Yao, H.; Li, G.; Niu, M. Recent advances in PROTAC-based antiviral and antibacterial Therapeutics. Bioorg. Chem. 2025, 160, 108437. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Zhou, J. NDA Submission of Vepdegestrant (ARV-471) to U.S. FDA: The Beginning of a New Era of PROTAC Degraders. J. Med. Chem. 2025, 68, 14129–14136. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Wu, Y.; Lan, K.; Dong, C.; Wu, S.; Li, S.; Zhou, H.B. Antiviral PROTACs: Opportunity borne with challenge. Cell Insight 2023, 2, 100092. [Google Scholar] [CrossRef] [PubMed]
- Montrose, K.; Krissansen, G.W. Design of a PROTAC that antagonizes and destroys the cancer-forming X-protein of the hepatitis B virus. Biochem. Biophys. Res. Commun. 2014, 453, 735–740. [Google Scholar] [CrossRef]
- de Wispelaere, M.; Du, G.; Donovan, K.A.; Zhang, T.; Eleuteri, N.A.; Yuan, J.C.; Kalabathula, J.; Nowak, R.P.; Fischer, E.S.; Gray, N.S.; et al. Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations. Nat. Commun. 2019, 10, 3468. [Google Scholar] [CrossRef]
- Desantis, J.; Goracci, L. Proteolysis targeting chimeras in antiviral research. Future Med. Chem. 2022, 14, 459–462. [Google Scholar] [CrossRef]
- Li, Y.; Hwang, N.; Snedeker, A.; Lemon, S.M.; Noe, D.; Sun, L.; Clement, J.A.; Zhou, T.; Tang, L.; Block, T.; et al. “PROTAC” modified dihydroquinolizinones (DHQs) that cause degradation of PAPD-5 and inhibition of hepatitis A virus and hepatitis B virus, in vitro. Bioorg. Med. Chem. Lett. 2024, 102, 129680. [Google Scholar] [CrossRef]
- Hahn, F.; Hamilton, S.T.; Wangen, C.; Wild, M.; Kicuntod, J.; Brückner, N.; Follett, J.E.L.; Herrmann, L.; Kheimar, A.; Kaufer, B.B.; et al. Development of a PROTAC-Based Targeting Strategy Provides a Mechanistically Unique Mode of Anti-Cytomegalovirus Activity. Int. J. Mol. Sci. 2021, 22, 12858. [Google Scholar] [CrossRef]
- Chen, R.; Wierda, W.G.; Chubb, S.; Hawtin, R.E.; Fox, J.A.; Keating, M.J.; Gandhi, V.; Plunkett, W. Mechanism of action of SNS-032, a novel cyclin-dependent kinase inhibitor, in chronic lymphocytic leukemia. Blood 2009, 113, 4637–4645. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, X.; Ma, X.; Zou, W.; Chen, Q.; Chen, F.; Deng, X.; Liang, J.; Dong, C.; Lan, K.; et al. Discovery of oseltamivir-based novel PROTACs as degraders targeting neuraminidase to combat H1N1 influenza virus. Cell Insight 2022, 1, 100030. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, S.; Ma, W.; Cheng, B.; Yi, Y.; Ma, X.; Xiao, S.; Zhang, L.; Zhou, D. Discovery of pentacyclic triterpenoid PROTACs as a class of effective hemagglutinin protein degraders. J. Med. Chem. 2022, 65, 7154–7169. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, J.; Pang, X.; Liu, Z.; Li, Q.; Yi, D.; Zhang, Y.; Fang, X.; Zhang, T.; Zhou, R.; et al. An anti-influenza A virus microbial metabolite acts by degrading viral endonuclease PA. Nat. Commun. 2022, 13, 2079. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Ho, J.S.Y.; Meng, F.; Zheng, S.; Kurland, A.P.; Tian, L.; Rea-Moreno, M.; Song, X.; Seo, J.S.; Kaniskan, H.Ü.; et al. Generation of host-directed and virus-specific antivirals using targeted protein degradation promoted by small molecules and viral RNA mimics. Cell Host Microbe 2023, 31, 1154–1169.e10. [Google Scholar] [CrossRef]
- Blanco-Lobo, P.; Nogales, A.; Rodríguez, L.; Martínez-Sobrido, L. Novel approaches for the development of live attenuated influenza vaccines. Viruses 2019, 11, 190. [Google Scholar] [CrossRef]
- Si, L.; Shen, Q.; Li, J.; Chen, L.; Shen, J.; Xiao, X.; Bai, H.; Feng, T.; Ye, A.Y.; Li, L.; et al. Generation of a live attenuated influenza A vaccine by proteolysis targeting. Nat. Biotechnol. 2022, 40, 1370–1395. [Google Scholar] [CrossRef] [PubMed]
- Gilbertson, B.; Subbarao, K. A new route to vaccines using PROTACs. Nat. Biotechnol. 2022, 40, 1328–1329. [Google Scholar] [CrossRef] [PubMed]
- Monteil, V.; Kwon, H.; Prado, P.; Hagelkrüys, A.; Wimmer, R.A.; Stahl, M.; Leopoldi, A.; Garreta, E.; Hurtado Del Pozo, C.; Prosper, F.; et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020, 181, 905–913. [Google Scholar] [CrossRef]
- Chatterjee, P.; Ponnapati, M.; Kramme, C.; Plesa, A.M.; Church, G.M.; Jacobson, J.M. Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions. Commun. Biol. 2020, 3, 715. [Google Scholar] [CrossRef]
- Baughn, L.B.; Sharma, N.; Elhaik, E.; Sekulic, A.; Bryce, A.H.; Fonseca, R. Targeting TMPRSS2 in SARS-CoV-2 Infection. Mayo Clin. Proc. 2020, 95, 1989–1999. [Google Scholar] [CrossRef]
- Shapira, T.; Monreal, I.A.; Dion, S.P.; Buchholz, D.W.; Imbiakha, B.; Olmstead, A.D.; Jager, M.; Désilets, A.; Gao, G.; Martins, M.; et al. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature 2022, 605, 340–348. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, M.; Wang, Z. Degradation Agent Targeting Host Cell Transmembrane Serine Protease 2 and Its Synthesis and Application. CN115677825A, 3 February 2023. [Google Scholar]
- Al-Horani, R.A.; Kar, S. Potential anti-SARS-CoV-2 therapeutics that target the post-entry stages of the viral life cycle: A comprehensive. Viruses 2020, 12, 1092. [Google Scholar] [CrossRef]
- Desantis, J.; Mercorelli, B.; Celegato, M.; Croci, F.; Bazzacco, A.; Baroni, M.; Siragusa, L.; Cruciani, G.; Loregian, A.; Goracci, L. Indomethacin-based PROTACs as pan-coronavirus antiviral agents. Eur. J. Med. Chem. 2021, 226, 113814. [Google Scholar] [CrossRef] [PubMed]
- Desantis, J.; Bazzacco, A.; Eleuteri, M.; Tuci, S.; Bianconi, E.; Macchiarulo, A.; Mercorelli, B.; Loregian, A.; Goracci, L. Design, synthesis, and biological evaluation of first-in-class indomethacin-based PROTACs degrading SARS-CoV-2 main protease and with broad-spectrum antiviral activity. Eur. J. Med. Chem. 2024, 268, 116202. [Google Scholar] [CrossRef]
- Ahmad, S.; Usman Mirza, M.; Yean Kee, L.; Nazir, M.; Abdul Rahman, N.; Trant, J.F.; Abdullah, I. Fragment-based in silico design of SARS-CoV-2 main protease inhibitors. Chem. Biol. Drug Des. 2021, 98, 604–619. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, C.; Xin, L.; Ren, X.; Tian, L.; Ju, X.; Li, H.; Wang, Y.; Zhao, Q.; Liu, H.; et al. The development of Coronavirus 3C-Like protease (3CLpro) inhibitors from 2010 to 2020. Eur. J. Med. Chem. 2020, 206, 112711. [Google Scholar] [CrossRef]
- Shaheer, M.; Singh, R.; Sobhia, M.E. Protein degradation: A novel computational approach to design protein degrader probes for main protease of SARS-CoV-2. J. Biomol. Struct. Dyn. 2022, 40, 10905–10917. [Google Scholar] [CrossRef] [PubMed]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S.-H. An Overview of Severe Acute Respiratory Syndrome–Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy. J. Med. Chem. 2016, 59, 6595–6628. [Google Scholar] [CrossRef]
- Hung, H.C.; Ke, Y.Y.; Huang, S.Y.; Huang, P.N.; Kung, Y.A.; Chang, T.Y.; Yen, K.J.; Peng, T.T.; Chang, S.E.; Huang, C.T.; et al. Discovery of M Protease Inhibitors Encoded by SARS-CoV-2. Antimicrob. Agents Chemother. 2020, 64, e00872-e20. [Google Scholar] [CrossRef] [PubMed]
- Li, X.B.; Cheng, S.H.; Bi, Y.H.; Feng, Y.; Wu, B.J.; Shi, W.W.; Li, C.N. PROTAC Molecules Targeting SARS-CoV-2 3C Protease and Its Applications. CN 114874204A, 5 February 2021. [Google Scholar]
- Cheng, S.; Feng, Y.; Li, W.; Liu, T.; Lv, X.; Tong, X.; Xi, G.; Ye, X.; Li, X. Development of novel antivrial agents that induce the degradation of the main protease of human-infecting coronaviruses. Eur. J. Med. Chem. 2024, 275, 116629. [Google Scholar] [CrossRef]
- Grifagni, D.; Lenci, E.; De Santis, A.; Orsetti, A.; Barracchia, C.G.; Tedesco, F.; Bellini Puglielli, R.; Lucarelli, F.; Lauriola, A.; Assfalg, M.; et al. Development of a GC-376 Based Peptidomimetic PROTAC as a Degrader of 3-Chymotrypsin-like Protease of SARS-CoV-2. ACS Med. Chem. Lett. 2024, 15, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Khurshid, R.; Schulz, J.M.; Hu, J.; Snowden, T.S.; Reynolds, R.C.; Schürer, S.C. Targeted degrader technologies as prospective SARS-CoV-2 therapies. Drug Discov. Today 2024, 29, 103847. [Google Scholar] [CrossRef]
- Alugubelli, Y.R.; Xiao, J.; Khatua, K.; Kumar, S.; Ma, Y.; Ma, X.R.; Vulupala, V.R.; Atla, S.R.; Blankenship, L.; Coleman, D.; et al. Discovery of First-in-Class PROTAC Degraders of SARS-CoV-2 Main Protease. J. Med. Chem. 2024, 67, 6495–6507. [Google Scholar] [CrossRef]
- Martinez-Ortiz, W.; Zhou, M.M. Could PROTACs Protect Us From COVID-19? Drug Discov. Today 2020, 25, 1894–1896. [Google Scholar] [CrossRef]
- Liu, H.Y.; Li, Z.; Reindl, T.; He, Z.; Qiu, X.; Golden, R.P.; Donovan, K.A.; Bailey, A.; Fischer, E.S.; Zhang, T.; et al. Broad-spectrum activity against mosquito-borne flaviviruses achieved by a targeted protein degradation mechanism. Nat. Commun. 2024, 15, 5179. [Google Scholar] [CrossRef]
- Emert-Sedlak, L.A.; Tice, C.M.; Shi, H.; Alvarado, J.J.; Shu, S.T.; Reitz, A.B.; Smithgall, T.E. PROTAC-mediated degradation of HIV-1 Nef efficiently restores cell-surface CD4 and MHC-I expression and blocks HIV-1 replication. Cell Chem. Biol. 2024, 31, 658–668.e14. [Google Scholar] [CrossRef]
- Crunkhorn, S. PROTAC induces HIV-1 Nef degradation. Nat. Rev. Drug Discov. 2024, 23, 340. [Google Scholar] [CrossRef]
- Hilbig, K.; Towers, R.; Schmitz, M.; Bornhäuser, M.; Lennig, P.; Zhang, Y. Cyclosporin A-Based PROTACs Can Deplete Abundant Cellular Cyclophilin A without Suppressing T Cell Activation. Molecules 2024, 29, 2779. [Google Scholar] [CrossRef]
- Newton, L.S.; Gathmann, C.; Ridewood, S.; Smith, R.J.; Wijaya, A.J.; Hornsby, T.W.; Morling, K.L.; Annett, D.; Chiozzi, R.Z.; Reuschl, A.K.; et al. Macrocycle-based PROTACs selectively degrade cyclophilin A and inhibit HIV-1 and HCV. Nat. Commun. 2025, 16, 1484. [Google Scholar] [CrossRef]
- Luo, D.; Luo, R.; Wang, W.; Deng, R.; Wang, S.; Ma, X.; Pu, C.; Liu, Y.; Zhang, H.; Yu, S.; et al. Discovery of L15 as a novel Vif PROTAC degrader with antiviral activity against HIV-1. Bioorg. Med. Chem. Lett. 2024, 111, 129880. [Google Scholar] [CrossRef]
- Grohmann, C.; Marapana, D.S.; Ebert, G. Targeted protein degradation at the host-pathogen interface. Mol. Microbiol. 2022, 117, 670–681. [Google Scholar] [CrossRef]
- Ahmad, H.; Zia, B.; Husain, H.; Husain, A. Recent Advances in PROTAC-Based Antiviral Strategies. Vaccines 2023, 11, 270. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Chang, X.; Xie, W.; Zhou, X. Targeted protein degradation: Advances in drug discovery and clinical practice. Signal Transduct. Target. Ther. 2024, 9, 308. [Google Scholar] [CrossRef]
- Smith, B.E.; Wang, S.L.; Jaime-Figueroa, S.; Harbin, A.; Wang, J.; Hamman, B.D.; Crews, C.M. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat. Commun. 2019, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Bhole, R.P.; Kute, P.; Gurav, S.S. PROTACs in the treatment of viral diseases. Future Med. Chem. 2025, 17, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Graham, H. The mechanism of action and clinical value of PROTACs: A graphical review. Cell Signal 2022, 99, 110446. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, J.; Quan, M.; Cao, X.; Zhang, Y.; Xu, X.; Wang, Z. PROTACs in Antivirals: Current Advancements and Future Perspectives. Molecules 2025, 30, 3402. https://doi.org/10.3390/molecules30163402
Jin J, Quan M, Cao X, Zhang Y, Xu X, Wang Z. PROTACs in Antivirals: Current Advancements and Future Perspectives. Molecules. 2025; 30(16):3402. https://doi.org/10.3390/molecules30163402
Chicago/Turabian StyleJin, Jiacheng, Mengxiang Quan, Xueyan Cao, Yun Zhang, Xiangwei Xu, and Zunyuan Wang. 2025. "PROTACs in Antivirals: Current Advancements and Future Perspectives" Molecules 30, no. 16: 3402. https://doi.org/10.3390/molecules30163402
APA StyleJin, J., Quan, M., Cao, X., Zhang, Y., Xu, X., & Wang, Z. (2025). PROTACs in Antivirals: Current Advancements and Future Perspectives. Molecules, 30(16), 3402. https://doi.org/10.3390/molecules30163402