Trisubstituted Alkenes as Valuable Building Blocks
Abstract
1. Introduction
2. Results and Discussion
2.1. Addition Reactions
2.2. Oxidative Cleavage of Trisubstituted Alkenes
2.3. Ring Formation Involving Trisubstituted Alkenes
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, D.-Y.; Han, G.-Y.; Yang, N.-N.; Lan, L.-F.; Li, X.-W.; Guo, Y.-W. Racemic Trinorsesquiterpenoids from the Beihai Sponge Spongia Officinalis: Structure and Biomimetic Total Synthesis. Org. Chem. Front. 2018, 5, 1022–1027. [Google Scholar] [CrossRef]
- Seo, Y.-J.; Lee, K.-T.; Rho, J.-R.; Choi, J.-H. Phorbaketal A, Isolated from the Marine Sponge Phorbas sp., Exerts Its Anti-Inflammatory Effects Via Nf-κB Inhibition and Heme Oxygenase-1 Activation in Lipopolysaccharide-Stimulated Macrophages. Mar. Drugs 2015, 13, 7005–7019. [Google Scholar] [CrossRef] [PubMed]
- Legha, S.S. Tamoxifen in the Treatment of Breast Cancer. Ann. Intern. Med. 1988, 109, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Conlon, J.L. Diethylstilbestrol: Potential Health Risks for Women Exposed in Utero and Their Offspring. JAAPA 2017, 30, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-Y.; Zhai, S.; Nong, X.-M.; Gu, A.; Li, J.; Lin, G.-Q.; Liu, Y. Trisubstituted Alkenes Featuring Aryl Groups: Stereoselective Synthetic Strategies and Applications. Sci. China Chem. 2023, 66, 1261–1287. [Google Scholar] [CrossRef]
- La, D.D.; Bhosale, S.V.; Jones, L.A.; Bhosale, S.V. Tetraphenylethylene-Based AIE-Active Probes for Sensing Applications. ACS Appl. Mater. Interfaces 2018, 10, 12189–12216. [Google Scholar] [CrossRef]
- Yan, D.; Wu, Q.; Wang, D.; Tang, B.Z. Innovative Synthetic Procedures for Luminogens Showing Aggregation-Induced Emission. Angew. Chem. Int. Ed. 2021, 60, 15724–15742. [Google Scholar] [CrossRef]
- Bhakta, S.; Ghosh, T. Emerging Nickel Catalysis in Heck Reactions: Recent Developments. Adv. Synth. Catal. 2020, 362, 5257–5274. [Google Scholar] [CrossRef]
- Burt, L.K.; Fuller, R.O.; Maiti, D.; Bissember, A.C. Mizoroki-Heck-Type Transformations in Natural Product Synthesis: Case Studies in Carbopalladation and Forging All-Carbon Quaternary Stereocenters. Chem Catal. 2024, 4, 100921. [Google Scholar] [CrossRef]
- Wu, J.; Du, W.; Zhang, L.; Li, G.; Xia, Z. Gold-Catalyzed Heck and Suzuki-Type Reactions: Challenges and Recent Advances. Eur. J. Org. Chem. 2024, 27, e202400793. [Google Scholar] [CrossRef]
- Zhao, G.; Li, W.; Zhang, J. Recent Advances in Palladium-Catalyzed Asymmetric Heck/Tsuji–Trost Reactions of 1,n-Dienes. Chem. Eur. J. 2024, 30, e202400076. [Google Scholar] [CrossRef]
- Bhakta, S.; Ghosh, T. Nickel-Catalyzed Hydroarylation Reaction: A Useful Tool in Organic Synthesis. Org. Chem. Front. 2022, 9, 5074–5103. [Google Scholar] [CrossRef]
- Bora, J.; Dutta, M.; Chetia, B. Cobalt Catalyzed Alkenylation/Annulation Reactions of Alkynes Via C–H Activation: A Review. Tetrahedron 2023, 132, 133248. [Google Scholar] [CrossRef]
- Ghosh, T.; Chatterjee, J.; Bhakta, S. Gold-Catalyzed Hydroarylation Reactions: A Comprehensive Overview. Org. Biomol. Chem. 2022, 20, 7151–7187. [Google Scholar] [CrossRef]
- Maayuri, R.; Gandeepan, P. Manganese-Catalyzed Hydroarylation of Multiple Bonds. Org. Biomol. Chem. 2023, 21, 441–464. [Google Scholar] [CrossRef]
- Zhu, W.; Gunnoe, T.B. Advances in Group 10 Transition-Metal-Catalyzed Arene Alkylation and Alkenylation. J. Am. Chem. Soc. 2021, 143, 6746–6766. [Google Scholar] [CrossRef] [PubMed]
- Hoveyda, A.H.; Qin, C.; Sui, X.Z.; Liu, Q.; Li, X.; Nikbakht, A. Taking Olefin Metathesis to the Limit: Stereocontrolled Synthesis of Trisubstituted Alkenes. Acc. Chem. Res. 2023, 56, 2426–2446. [Google Scholar] [CrossRef] [PubMed]
- Odewole, O.A.; Swart, M.R.; Erasmus, E. Metathesis Reactions: Effect of Additives as Co-Catalysts to Grubbs’ or Schrock’s Catalyst. Tetrahedron 2024, 162, 134105. [Google Scholar] [CrossRef]
- Chrenko, D.; Pospíšil, J. Latest Developments of the Julia–Kocienski Olefination Reaction: Mechanistic Considerations. Molecules 2024, 29, 2719. [Google Scholar] [CrossRef]
- Ouzounthanasis, K.A.; Rizos, S.R.; Koumbis, A.E. Julia-Kocienski Olefination in the Synthesis of Trisubstituted Alkenes: Recent Progress. Eur. J. Org. Chem. 2023, 26, e202300626. [Google Scholar] [CrossRef]
- Rinu, P.X.T.; Radhika, S.; Anilkumar, G. Recent Applications and Trends in the Julia-Kocienski Olefination. ChemistrySelect 2022, 7, e202200760. [Google Scholar] [CrossRef]
- Sakaine, G.; Leitis, Z.; Ločmele, R.; Smits, G. Julia-Kocienski Olefination: A Tutorial Review. Eur. J. Org. Chem. 2023, 26, e202201217. [Google Scholar] [CrossRef]
- Varsha, V.; Radhika, S.; Anilkumar, G. An Overview of Julia-Lythgoe Olefination. Curr. Org. Synth. 2024, 21, 97–126. [Google Scholar] [CrossRef] [PubMed]
- Janicki, I.; Kiełbasiński, P. Still–Gennari Olefination and Its Applications in Organic Synthesis. Adv. Synth. Catal. 2020, 362, 2552–2596. [Google Scholar] [CrossRef]
- Ilia, G.; Simulescu, V.; Plesu, N.; Chiriac, V.; Merghes, P. Wittig and Wittig–Horner Reactions under Sonication Conditions. Molecules 2023, 28, 1958. [Google Scholar] [CrossRef]
- McNulty, J.; McLeod, D.; Das, P.; Zepeda-Velázquez, C. Wittig Reactions of Trialkylphosphine-Derived Ylides: New Directions and Applications in Organic Synthesis. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 619–632. [Google Scholar] [CrossRef]
- Cachatra, V.; Rauter, A.P. Revisiting Wittig Olefination and Aza-Wittig Reaction for Carbohydrate Transformations and Stereocontrol in Sugar Chemistry. Curr. Org. Chem. 2014, 18, 1731–1748. [Google Scholar] [CrossRef]
- Bisceglia, J.Á.; Orelli, L.R. Recent Progress in the Horner-Wadsworth-Emmons Reaction. Curr. Org. Chem. 2015, 19, 744–775. [Google Scholar] [CrossRef]
- Bilska-Markowska, M.; Kaźmierczak, M. Horner–Wadsworth–Emmons Reaction as an Excellent Tool in the Synthesis of Fluoro-Containing Biologically Important Compounds. Org. Biomol. Chem. 2023, 21, 1095–1120. [Google Scholar] [CrossRef]
- Roman, D.; Sauer, M.; Beemelmanns, C. Applications of the Horner–Wadsworth–Emmons Olefination in Modern Natural Product Synthesis. Synthesis 2021, 53, 2713–2739. [Google Scholar]
- Tobrman, T.; Mrkobrada, S. Palladium-Catalyzed Cross-Coupling Reactions of Borylated Alkenes for the Stereoselective Synthesis of Tetrasubstituted Double Bond. Organics 2022, 3, 210–239. [Google Scholar] [CrossRef]
- Edlová, T.; Čubiňák, M.; Tobrman, T. Cross-Coupling Reactions of Double or Triple Electrophilic Templates for Alkene Synthesis. Synthesis 2021, 53, 255–266. [Google Scholar]
- Polák, P.; Váňová, H.; Dvořák, D.; Tobrman, T. Recent Progress in Transition Metal-Catalyzed Stereoselective Synthesis of Acyclic All-Carbon Tetrasubstituted Alkenes. Tetrahedron Lett. 2016, 57, 3684–3693. [Google Scholar] [CrossRef]
- Negishi, E.-i.; Huang, Z.; Wang, G.; Mohan, S.; Wang, C.; Hattori, H. Recent Advances in Efficient and Selective Synthesis of Di-, Tri-, and Tetrasubstituted Alkenes Via Pd-Catalyzed Alkenylation−Carbonyl Olefination Synergy. Acc. Chem. Res. 2008, 41, 1474–1485. [Google Scholar] [CrossRef]
- Reiser, O. Palladium-Catalyzed Coupling Reactions for the Stereoselective Synthesis of Tri- and Tetrasubstituted Alkenes. Angew. Chem. Int. Ed. 2006, 45, 2838–2840. [Google Scholar] [CrossRef] [PubMed]
- Buttard, F.; Sharma, J.; Champagne, P.A. Recent Advances in the Stereoselective Synthesis of Acyclic All-Carbon Tetrasubstituted Alkenes. Chem. Commun. 2021, 57, 4071–4088. [Google Scholar] [CrossRef]
- Flynn, A.B.; Ogilvie, W.W. Stereocontrolled Synthesis of Tetrasubstituted Olefins. Chem. Rev. 2007, 107, 4698–4745. [Google Scholar] [CrossRef]
- Oeser, P.; Tobrman, T. Organophosphates as Versatile Substrates in Organic Synthesis. Molecules 2024, 29, 1593. [Google Scholar] [CrossRef]
- Alkayal, A.; Tabas, V.; Montanaro, S.; Wright, I.A.; Malkov, A.V.; Buckley, B.R. Harnessing Applied Potential: Selective Β-Hydrocarboxylation of Substituted Olefins. J. Am. Chem. Soc. 2020, 142, 1780–1785. [Google Scholar] [CrossRef]
- Huang, H.; Ye, J.-H.; Zhu, L.; Ran, C.-K.; Miao, M.; Wang, W.; Chen, H.; Zhou, W.-J.; Lan, Y.; Yu, B.; et al. Visible-Light-Driven Anti-Markovnikov Hydrocarboxylation of Acrylates and Styrenes with CO2. CCS Chem. 2021, 3, 1746–1756. [Google Scholar] [CrossRef]
- Qi, W.; Gu, S.; Xie, L.-G. Reductive Radical-Polar Crossover Enabled Carboxylative Alkylation of Aryl Thianthrenium Salts with CO2 and Styrenes. Org. Lett. 2024, 26, 728–733. [Google Scholar] [CrossRef]
- Tanaka, S.; Tanaka, Y.; Chiba, M.; Hattori, T. Lewis Acid-Mediated β-Selective Hydrocarboxylation of α,α-Diaryl- and α-Arylalkenes with R3SiH and CO2. Tetrahedron Lett. 2015, 56, 3830–3834. [Google Scholar] [CrossRef]
- Liao, L.-L.; Cao, G.-M.; Jiang, Y.-X.; Jin, X.-H.; Hu, X.-L.; Chruma, J.J.; Sun, G.-Q.; Gui, Y.-Y.; Yu, D.-G. α-Amino Acids and Peptides as Bifunctional Reagents: Carbocarboxylation of Activated Alkenes Via Recycling CO2. J. Am. Chem. Soc. 2021, 143, 2812–2821. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-W.; Zhu, L.; Gui, Y.-Y.; Jing, K.; Jiang, Y.-X.; Bo, Z.-Y.; Lan, Y.; Li, J.; Yu, D.-G. Highly Selective and Catalytic Generation of Acyclic Quaternary Carbon Stereocenters Via Functionalization of 1,3-Dienes with CO2. J. Am. Chem. Soc. 2019, 141, 18825–18835. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Yuan, R.; Gui, Y.-Y.; Chen, X.-W.; Min, S.-Y.; Wang, B.-Q.; Yu, D.-G. Cu-Catalyzed Reductive Aminomethylation of 1,3-Dienes with N,O-Acetals: Facile Construction of β-Chiral Amines with Quaternary Stereocenters. Org. Chem. Front. 2023, 10, 467–472. [Google Scholar] [CrossRef]
- Ye, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, Z.-B.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Selective Oxytrifluoromethylation of Allylamines with CO2. Angew. Chem. Int. Ed. 2016, 55, 10022–10026. [Google Scholar] [CrossRef]
- Sun, L.; Ye, J.-H.; Zhou, W.-J.; Zeng, X.; Yu, D.-G. Oxy-Alkylation of Allylamines with Unactivated Alkyl Bromides and CO2 Via Visible-Light-Driven Palladium Catalysis. Org. Lett. 2018, 20, 3049–3052. [Google Scholar] [CrossRef]
- Baś, S.; Yamashita, Y.; Kobayashi, S. Development of Brønsted Base–Photocatalyst Hybrid Systems for Highly Efficient C–C Bond Formation Reactions of Malonates with Styrenes. ACS Catal. 2020, 10, 10546–10550. [Google Scholar] [CrossRef]
- Cauwenbergh, R.; Sahoo, P.K.; Maiti, R.; Mathew, A.; Kuniyil; Das, S. Selective Synthesis of Functionalized Linear Aliphatic Primary Amines Via Decarboxylative Radical-Polar Crossover. Green Chem. 2024, 26, 264–276. [Google Scholar] [CrossRef]
- Kitamura, T.; Komoto, R.; Oyamada, J.; Higashi, M.; Kishikawa, Y. Iodine-Mediated Fluorination of Alkenes with an Hf Reagent: Regioselective Synthesis of 2-Fluoroalkyl Iodides. J. Org. Chem. 2021, 86, 18300–18303. [Google Scholar] [CrossRef]
- Liu, J.; Rong, J.; Wood, D.P.; Wang, Y.; Liang, S.H.; Lin, S. Co-Catalyzed Hydrofluorination of Alkenes: Photocatalytic Method Development and Electroanalytical Mechanistic Investigation. J. Am. Chem. Soc. 2024, 146, 4380–4392. [Google Scholar] [CrossRef]
- Fu, N.; Sauer, G.S.; Lin, S. Electrocatalytic Radical Dichlorination of Alkenes with Nucleophilic Chlorine Sources. J. Am. Chem. Soc. 2017, 139, 15548–15553. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Fu, N.; Lin, S. Three-Component Chlorophosphinoylation of Alkenes Via Anodically Coupled Electrolysis. Synlett 2019, 30, 1199–1203. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Z.; Wang, W.; Liu, S.; Wang, Y. Iodonium Ylides Enable the Direct Installation of Hydroxylamines and Oximes into a Broad Range of Alkenes. Org. Lett. 2019, 21, 9171–9174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, L.; Wu, P.; Gong, P.; Liu, R.; Xu, K. Substrate-Dependent Electrochemical Dimethoxylation of Olefins. Adv. Synth. Catal. 2019, 361, 485–489. [Google Scholar] [CrossRef]
- Cai, C.-Y.; Xu, H.-C. Dehydrogenative Reagent-Free Annulation of Alkenes with Diols for the Synthesis of Saturated O-Heterocycles. Nat. Commun. 2018, 9, 3551. [Google Scholar] [CrossRef]
- Zhang, J.-Z.; Tang, Y. Iron-Catalyzed Regioselective Oxo- and Hydroxy-Phthalimidation of Styrenes: Access to α-Hydroxyphthalimide Ketones. Adv. Synth. Catal. 2016, 358, 752–764. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Cai, Z.; Kang, S.; Wang, J.; Cui, Y.; Han, S.; Sheng, L.; Yin, Q.; Dai, A.; et al. Electrochemical Aerobic Wacker-Type Oxygenation of Triaryl Substituted Alkenes to 1,2,2-Triarylethanones. Chem. Commun. 2024, 60, 3035–3038. [Google Scholar] [CrossRef]
- Liu, S.; Ju, L.; Wang, X.; Wu, X.; Zhang, T.; Wu, Q. Electrochemical Oxidation-Induced Diazolation of Alkenes to Build N,N′-Ethylene-Bridged Bispyrazole Derivatives. Tetrahedron 2023, 148, 133707. [Google Scholar] [CrossRef]
- Musacchio, A.J.; Lainhart, B.C.; Zhang, X.; Naguib, S.G.; Sherwood, T.C.; Knowles, R.R. Catalytic Intermolecular Hydroaminations of Unactivated Olefins with Secondary Alkyl Amines. Science 2017, 355, 727–730. [Google Scholar] [CrossRef]
- Geunes, E.P.; Meinhardt, J.M.; Wu, E.J.; Knowles, R.R. Photocatalytic Anti-Markovnikov Hydroamination of Alkenes with Primary Heteroaryl Amines. J. Am. Chem. Soc. 2023, 145, 21738–21744. [Google Scholar] [CrossRef]
- Wu, Z.-J.; Li, Z.; Ren, Y.; Meng, L.-G. Overcoming Selectivity Trade-Offs in Alkene Azidodifluoroalkylation: An Enlightening Synergistic Catalytic Approach. Org. Lett. 2025, 27, 115–120. [Google Scholar] [CrossRef]
- Fu, N.; Sauer, G.S.; Lin, S. A General, Electrocatalytic Approach to the Synthesis of Vicinal Diamines. Nat. Protoc. 2018, 13, 1725–1743. [Google Scholar] [CrossRef]
- Fu, N.; Sauer, G.S.; Saha, A.; Loo, A.; Lin, S. Metal-Catalyzed Electrochemical Diazidation of Alkenes. Science 2017, 357, 575–579. [Google Scholar] [CrossRef]
- Siu, J.C.; Sauer, G.S.; Saha, A.; Macey, R.L.; Fu, N.; Chauviré, T.; Lancaster, K.M.; Lin, S. Electrochemical Azidooxygenation of Alkenes Mediated by a Tempo–N3 Charge-Transfer Complex. J. Am. Chem. Soc. 2018, 140, 12511–12520. [Google Scholar] [CrossRef]
- Ju, M.; Lee, S.; Marvich, H.M.; Lin, S. Accessing Alkoxy Radicals Via Frustrated Radical Pairs: Diverse Oxidative Functionalizations of Tertiary Alcohols. J. Am. Chem. Soc. 2024, 146, 19696–19703. [Google Scholar] [CrossRef]
- Kendall, A.J.; Barry, J.T.; Seidenkranz, D.T.; Ryerson, A.; Hiatt, C.; Salazar, C.A.; Bryant, D.J.; Tyler, D.R. Highly Efficient Biphasic Ozonolysis of Alkenes Using a High-Throughput Film-Shear Flow Reactor. Tetrahedron Lett. 2016, 57, 1342–1345. [Google Scholar] [CrossRef]
- Li, X.; Hua, H.; Liu, Y.; Yu, L. Iron-Promoted Catalytic Activity of Selenium Endowing the Aerobic Oxidative Cracking Reaction of Alkenes. Org. Lett. 2023, 25, 6720–6724. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jing, X.; Chen, C.; Yu, L. Organoselenium-Catalyzed Oxidative C=C Bond Cleavage: A Relatively Green Oxidation of Alkenes into Carbonyl Compounds with Hydrogen Peroxide. J. Org. Chem. 2017, 82, 9342–9349. [Google Scholar] [CrossRef]
- Yap, C.P.; Ng, J.K.; Madrahimov, S.; Bengali, A.A.; Chwee, T.S.; Fan, W.Y. Oxidation of Aromatic Alkenes and Alkynes Catalyzed by a Hexa-Acetonitrile Iron(II) Ionic Complex [Fe(Ch3CN)6][BF4]2. New J. Chem. 2018, 42, 11131–11136. [Google Scholar] [CrossRef]
- Joarder, D.D.; Gayen, S.; Sarkar, R.; Bhattacharya, R.; Roy, S.; Maiti, D.K. (Ar-tpy)RuII(Acn)3: A Water-Soluble Catalyst for Aldehyde Amidation, Olefin Oxo-Scissoring, and Alkyne Oxygenation. J. Org. Chem. 2019, 84, 8468–8480. [Google Scholar] [CrossRef]
- Yu, T.; Guo, M.; Wen, S.; Zhao, R.; Wang, J.; Sun, Y.; Liu, Q.; Zhou, H. Poly(Ethylene Glycol) Dimethyl Ether Mediated Oxidative Scission of Aromatic Olefins to Carbonyl Compounds by Molecular Oxygen. RSC Adv. 2021, 11, 13848–13852. [Google Scholar] [CrossRef]
- Chen, Y.-X.; He, J.-T.; Wu, M.-C.; Liu, Z.-L.; Tang, K.; Xia, P.-J.; Chen, K.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H. Photochemical Organocatalytic Aerobic Cleavage of C=C Bonds Enabled by Charge-Transfer Complex Formation. Org. Lett. 2022, 24, 3920–3925. [Google Scholar] [CrossRef]
- Wise, D.E.; Gogarnoiu, E.S.; Duke, A.D.; Paolillo, J.M.; Vacala, T.L.; Hussain, W.A.; Parasram, M. Photoinduced Oxygen Transfer Using Nitroarenes for the Anaerobic Cleavage of Alkenes. J. Am. Chem. Soc. 2022, 144, 15437–15442. [Google Scholar] [CrossRef]
- Huang, Z.; Guan, R.; Shanmugam, M.; Bennett, E.L.; Robertson, C.M.; Brookfield, A.; McInnes, E.J.L.; Xiao, J. Oxidative Cleavage of Alkenes by O2 with a Non-Heme Manganese Catalyst. J. Am. Chem. Soc. 2021, 143, 10005–10013. [Google Scholar] [CrossRef]
- Xue, W.; Jiang, Y.; Lu, H.; You, B.; Wang, X.; Tang, C. Direct C−C Double Bond Cleavage of Alkenes Enabled by Highly Dispersed Cobalt Catalyst and Hydroxylamine. Angew. Chem. Int. Ed. 2023, 62, e202314364. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.-F.; Meng, Q.-Y. Carboxylation of Alkenes with CO2 Via Photocatalytic Cleavage of C=C Double Bonds. Synlett 2024, 35, 1937–1946. [Google Scholar] [CrossRef]
- Li, Y.-L.; Li, J.; Ma, A.-L.; Huang, Y.-N.; Deng, J. Metal-Free Synthesis of Indole Via Nis-Mediated Cascade C–N Bond Formation/Aromatization. J. Org. Chem. 2015, 80, 3841–3851. [Google Scholar] [CrossRef] [PubMed]
- Youn, S.W.; Ko, T.Y.; Jang, M.J.; Jang, S.S. Silver(I)-Mediated C–H Amination of 2-Alkenylanilines: Unique Solvent-Dependent Migratory Aptitude. Adv. Synth. Catal. 2015, 357, 227–234. [Google Scholar] [CrossRef]
- Youn, S.W.; Lee, S.R. Unusual 1,2-Aryl Migration in Pd(II)-Catalyzed Aza-Wacker-Type Cyclization of 2-Alkenylanilines. Org. Biomol. Chem. 2015, 13, 4652–4656. [Google Scholar] [CrossRef]
- Zhang, H.-M.; Gao, Z.-H.; Yi, L.; Ye, S. Brønsted Acid-Catalyzed Synthesis of N-Arylindoles from 2-Vinylanilines and Quinones. Chem. Asian J. 2016, 11, 2671–2674. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.-Y.; Li, K.; Pang, Y.; Li, J.-Q.; Liang, C.; Su, G.-F.; Mo, D.-L. Iodine(III) Reagent-Mediated Intramolecular Amination of 2-Alkenylanilines to Prepare Indoles. Adv. Synth. Catal. 2018, 360, 1919–1925. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, S.A.; Jeon, T.S.; Cha, J.K.; Kim, Y.G. A Unified Approach to Mono- and 2,3-Disubstituted N–H Indoles. Synlett 2023, 34, 1719–1722. [Google Scholar] [CrossRef]
- Tong, S.; Xu, Z.; Mamboury, M.; Wang, Q.; Zhu, J. Aqueous Titanium Trichloride Promoted Reductive Cyclization of O-Nitrostyrenes to Indoles: Development and Application to the Synthesis of Rizatriptan and Aspidospermidine. Angew. Chem. Int. Ed. 2015, 54, 11809–11812. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Zhou, F.; Kuang, Z.; Gao, G.; Driver, T.G.; Song, Q. Diborane-Mediated Deoxygenation of O-Nitrostyrenes to Form Indoles. Org. Lett. 2016, 18, 4088–4091. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, D.-S.; Driver, T.G. Palladium-Catalyzed Formation of N-Heteroarenes from Nitroarenes Using Molybdenum Hexacarbonyl as the Source of Carbon Monoxide. Adv. Synth. Catal. 2015, 357, 3463–3468. [Google Scholar] [CrossRef]
- Cheng, H.; Hernández, J.G.; Bolm, C. Mechanochemical Ruthenium-Catalyzed Hydroarylations of Alkynes under Ball-Milling Conditions. Org. Lett. 2017, 19, 6284–6287. [Google Scholar] [CrossRef]
- Yang, D.; Zhu, Y.; Yang, N.; Jiang, Q.; Liu, R. One-Step Synthesis of Substituted Benzofurans from Ortho- Alkenylphenols Via Palladium-Catalyzed C–H Functionalization. Adv. Synth. Catal. 2016, 358, 1731–1735. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Z.; Liao, J.; Li, J.; Wu, W.; Jiang, H. MnO2-Promoted Carboesterification of Alkenes with Anhydrides: A Facile Approach to δ-Lactones. Chem. Commun. 2016, 52, 2628–2631. [Google Scholar] [CrossRef]
- Kochi, J.K.; Jenkins, C.L.I. Ligand Transfer of Halides (Chloride, Bromide, Iodide) and Pseudohalides (Thiocyanate, Azide, Cyanide) from Copper(II) to Alkyl Radicals. J. Org. Chem. 1971, 36, 3095–3102. [Google Scholar] [CrossRef]
- Yang, Q.; Jia, Z.; Li, L.; Zhang, L.; Luo, S. Visible-Light Promoted Arene C–H/C–X Lactonization Via Carboxylic Radical Aromatic Substitution. Org. Chem. Front. 2018, 5, 237–241. [Google Scholar] [CrossRef]
- Li, L.; Yang, Q.; Jia, Z.; Luo, S. Organocatalytic Electrochemical C–H Lactonization of Aromatic Carboxylic Acids. Synthesis 2018, 50, 2924–2929. [Google Scholar] [CrossRef]
- Yu, E.; Kim, H.; Park, C.-M. Metal- and Oxidant-Free Electrosynthesis of Heterocycles from 1,2-Diarylalkene Derivatives. Adv. Synth. Catal. 2022, 364, 4088–4096. [Google Scholar] [CrossRef]
- Baris, N.; Dračínský, M.; Tarábek, J.; Filgas, J.; Slavíček, P.; Ludvíková, L.; Boháčová, S.; Slanina, T.; Klepetářová, B.; Beier, P. Photocatalytic Generation of Trifluoromethyl Nitrene for Alkene Aziridination. Angew. Chem. Int. Ed. 2024, 63, e202315162. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, W.; Li, J.; Wu, N.; Liu, C.; Wang, X.; Li, S.; Zhu, Y.; Liang, Y.; Cheng, X. Electrochemical Aziridination of Tetrasubstituted Alkenes with Ammonia. CCS Chem. 2022, 4, 693–703. [Google Scholar] [CrossRef]
- Li, J.; Huang, W.; Chen, J.; He, L.; Cheng, X.; Li, G. Electrochemical Aziridination by Alkene Activation Using a Sulfamate as the Nitrogen Source. Angew. Chem. Int. Ed. 2018, 57, 5695–5698. [Google Scholar] [CrossRef]
- Ošeka, M.; Laudadio, G.; van Leest, N.P.; Dyga, M.; Bartolomeu, A.d.A.; Gooßen, L.J.; de Bruin, B.; de Oliveira, K.T.; Noël, T. Electrochemical Aziridination of Internal Alkenes with Primary Amines. Chem 2021, 7, 255–266. [Google Scholar] [CrossRef]
- Kinoshita, H.; Yaguchi, K.; Tohjima, T.; Hirai, N.; Miura, K. Diisobutylaluminum Hydride-Promoted Cyclization of O-(Trimethylsilylethynyl)Styrenes to Substituted Naphthalenes. Tetrahedron Let. 2016, 57, 2039–2043. [Google Scholar] [CrossRef]
- García-García, P.; Sanjuán, A.M.; Rashid, M.A.; Martínez-Cuezva, A.; Fernández-Rodríguez, M.A.; Rodríguez, F.; Sanz, R. Synthesis of Functionalized 1H-Indenes and Benzofulvenes through Iodocyclization of o-(Alkynyl)Styrenes. J. Org. Chem. 2017, 82, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Humanes, M.; Sans-Panadés, E.; Virumbrales, C.; Milián, A.; Sanz, R.; García-García, P.; Fernández-Rodríguez, M.A. Selective Synthesis of Boron-Functionalized Indenes and Benzofulvenes by BCl3-Promoted Cyclizations of Ortho-Alkynylstyrenes. Org. Lett. 2024, 26, 6568–6573. [Google Scholar] [CrossRef]
- Sanjuán, A.M.; Virumbrales, C.; García-García, P.; Fernández-Rodríguez, M.A.; Sanz, R. Formal [4 + 1] Cycloadditions of β,β-Diaryl-Substituted ortho-(Alkynyl)Styrenes through Gold(I)-Catalyzed Cycloisomerization Reactions. Org. Lett. 2016, 18, 1072–1075. [Google Scholar] [CrossRef]
- Virumbrales, C.; El-Remaily, M.A.E.A.A.A.; Suárez-Pantiga, S.; Fernández-Rodríguez, M.A.; Rodríguez, F.; Sanz, R. Gold(I) Catalysis Applied to the Stereoselective Synthesis of Indeno[2,1-b]Thiochromene Derivatives and Seleno Analogues. Org. Lett. 2022, 24, 8077–8082. [Google Scholar] [CrossRef]
- Wu, R.; Chen, Y.; Zhu, S. Rh(II)-Catalyzed Enynal Cycloisomerization for the Generation of Vinyl Carbene: Divergent Access to Polycyclic Heterocycles. ACS Catal. 2023, 13, 132–140. [Google Scholar] [CrossRef]
- Wang, H.; Cai, S.; Ai, W.; Xu, X.; Li, B.; Wang, B. Silver-Catalyzed Activation of Pyridotriazoles for Formal Intramolecular Carbene Insertion into Vinylic C(Sp2)–H Bonds. Org. Lett. 2020, 22, 7255–7260. [Google Scholar] [CrossRef]
- Yang, J.; Rérat, A.; Lim, Y.J.; Gosmini, C.; Yoshikai, N. Cobalt-Catalyzed Enantio- and Diastereoselective Intramolecular Hydroacylation of Trisubstituted Alkenes. Angew. Chem. Int. Ed. 2017, 56, 2449–2453. [Google Scholar] [CrossRef]
- Biegasiewicz, K.F.; Cooper, S.J.; Gao, X.; Oblinsky, D.G.; Kim, J.H.; Garfinkle, S.E.; Joyce, L.A.; Sandoval, B.A.; Scholes, G.D.; Hyster, T.K. Photoexcitation of Flavoenzymes Enables a Stereoselective Radical Cyclization. Science 2019, 364, 1166–1169. [Google Scholar] [CrossRef]
- Turek-Herman, J.R.; Rosenberger, M.; Hyster, T.K. Synthesis of β-Quaternary Lactams Using Photoenzymatic Catalysis. Asian J. Org. Chem. 2023, 12, e202300274. [Google Scholar] [CrossRef]
- Laguerre, N.; Riehl, P.S.; Oblinsky, D.G.; Emmanuel, M.A.; Black, M.J.; Scholes, G.D.; Hyster, T.K. Radical Termination Via β-Scission Enables Photoenzymatic Allylic Alkylation Using “Ene”-Reductases. ACS Catal. 2022, 12, 9801–9805. [Google Scholar] [CrossRef] [PubMed]
- Clayman, P.D.; Hyster, T.K. Photoenzymatic Generation of Unstabilized Alkyl Radicals: An Asymmetric Reductive Cyclization. J. Am. Chem. Soc. 2020, 142, 15673–15677. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.T.; Zhu, Q.; Knowles, R.R. PCET-Enabled Olefin Hydroamidation Reactions with N-Alkyl Amides. ACS Catal. 2019, 9, 4502–4507. [Google Scholar] [CrossRef]
- Choi, G.J.; Knowles, R.R. Catalytic Alkene Carboaminations Enabled by Oxidative Proton-Coupled Electron Transfer. J. Am. Chem. Soc. 2015, 137, 9226–9229. [Google Scholar] [CrossRef] [PubMed]
- Roos, C.B.; Demaerel, J.; Graff, D.E.; Knowles, R.R. Enantioselective Hydroamination of Alkenes with Sulfonamides Enabled by Proton-Coupled Electron Transfer. J. Am. Chem. Soc. 2020, 142, 5974–5979. [Google Scholar] [CrossRef] [PubMed]
- Xu, E.Y.; Werth, J.; Roos, C.B.; Bendelsmith, A.J.; Sigman, M.S.; Knowles, R.R. Noncovalent Stabilization of Radical Intermediates in the Enantioselective Hydroamination of Alkenes with Sulfonamides. J. Am. Chem. Soc. 2022, 144, 18948–18958. [Google Scholar] [CrossRef]
- Zhang, Z.; Liao, L.-L.; Yan, S.-S.; Wang, L.; He, Y.-Q.; Ye, J.-H.; Li, J.; Zhi, Y.-G.; Yu, D.-G. Lactamization of Sp2 C−H Bonds with CO2: Transition-Metal-Free and Redox-Neutral. Angew. Chem. Int. Ed. 2016, 55, 7068–7072. [Google Scholar] [CrossRef]
- Jiang, H.; Lang, K.; Lu, H.; Wojtas, L.; Zhang, X.P. Intramolecular Radical Aziridination of Allylic Sulfamoyl Azides by Cobalt(II)-Based Metalloradical Catalysis: Effective Construction of Strained Heterobicyclic Structures. Angew. Chem. Int. Ed. 2016, 55, 11604–11608. [Google Scholar] [CrossRef]
- Xu, H.; Wang, D.-S.; Zhu, Z.; Deb, A.; Zhang, X.P. New Mode of Asymmetric Induction for Enantioselective Radical N-Heterobicyclization Via Kinetically Stable Chiral Radical Center. Chem 2024, 10, 283–298. [Google Scholar] [CrossRef]
- Lee, W.-C.C.; Wang, J.; Zhu, Y.; Zhang, X.P. Asymmetric Radical Bicyclization for Stereoselective Construction of Tricyclic Chromanones and Chromanes with Fused Cyclopropanes. J. Am. Chem. Soc. 2023, 145, 11622–11632. [Google Scholar] [CrossRef]
- Wang, X.; Ke, J.; Zhu, Y.; Deb, A.; Xu, Y.; Zhang, X.P. Asymmetric Radical Process for General Synthesis of Chiral Heteroaryl Cyclopropanes. J. Am. Chem. Soc. 2021, 143, 11121–11129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, D.-S.; Lee, W.-C.C.; McKillop, A.M.; Zhang, X.P. Controlling Enantioselectivity and Diastereoselectivity in Radical Cascade Cyclization for Construction of Bicyclic Structures. J. Am. Chem. Soc. 2021, 143, 11130–11140. [Google Scholar] [CrossRef]
Entry | Conditions | Intermediates | Alkenes | Selected Products |
---|---|---|---|---|
1 | O3 EtOAc:H2O | 1/10 | ||
2 | H2O2 (1.8 equiv.) (c-C6H11Se)2 (4 mol%) Fe(NO3)2 (4 mol%) Acetone, 80 °C, O2 | 6/27 | ||
3 | H2O2 (5.0 equiv.) (RSe)2 (5 mol%) EtOH, 80–120 °C | 13/28 | ||
4 | H2O2 (3.0 equiv.) Cat5 (10.0 mol%) MeCN, rt | 3/10 | ||
5 | Cat6 (1.0 mol%) TBAI (10 mol%) NaIO4 (2.0 equiv.) H2O, rt | 1/15 | ||
Entry | Conditions | Intermediate | Alkenes | Selected Products |
---|---|---|---|---|
1 | O2 PEGDME 110 °C | 2/34 | ||
2 | PhSO2Na, O2 30 W purple LED, DCE | 1/40 | ||
3 | 4-NO2(C6H4)CN (1.5 equiv.) 390 nm MeCN, 23 °C | 11/39 | ||
4 | Mn(dtbpy)2(OTf)2 (2 mol%) MeOH/THF blue light (9 W, 470 nm), 20 °C, O2 | 3/80 |
Entry | Conditions | Intermediate | Alkenes | Selected Products |
---|---|---|---|---|
1 | NIS (2.0 equiv.) DCM, rt | 4/41 | ||
2 | Ag2CO3 (1.3 equiv.) DMF, 150 °C | 8/50 | ||
3 | Benzoquinone (1.0 equiv.) TsOH•H2O (20 mol%) 1,4-dioxane, 80 °C | 12/23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tobrman, T.; Hron, V. Trisubstituted Alkenes as Valuable Building Blocks. Molecules 2025, 30, 3370. https://doi.org/10.3390/molecules30163370
Tobrman T, Hron V. Trisubstituted Alkenes as Valuable Building Blocks. Molecules. 2025; 30(16):3370. https://doi.org/10.3390/molecules30163370
Chicago/Turabian StyleTobrman, Tomáš, and Václav Hron. 2025. "Trisubstituted Alkenes as Valuable Building Blocks" Molecules 30, no. 16: 3370. https://doi.org/10.3390/molecules30163370
APA StyleTobrman, T., & Hron, V. (2025). Trisubstituted Alkenes as Valuable Building Blocks. Molecules, 30(16), 3370. https://doi.org/10.3390/molecules30163370