Liquid-Mediated Si-OH Healing of ZSM-22 Zeolites for Improved Performance in N-Decane Hydroisomerization
Abstract
1. Introduction
2. Results and Discussion
2.1. Liquid-Mediated Defect Healing Treatment
2.2. Insights on the Physicochemical Properties
2.3. Catalytic Performance in N-Decane Hydrosomerization
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Zeolite Synthesis
3.3. Si-OH Defect Healing Treatment
3.4. Catalyst Preparation
3.5. Characterizations
3.6. Catalytic Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, K.; Van der Wal, L.I.; Yoshida, H. Impact of the spatial organization of bifunctional metal-zeolite catalysts on the hydroisomerization of light alkanes. Angew. Chem. Int. Ed. 2020, 132, 3620–3628. [Google Scholar] [CrossRef]
- Liu, S.; Ren, J.; Zhang, H. Synthesis, characterization and isomerization performance of micro/mesoporous materials based on H-ZSM-22 zeolite. J. Catal. 2016, 335, 11–23. [Google Scholar] [CrossRef]
- He, M.; Wang, M.; Tang, G.; Fang, Y.; Tan, T. From medium chain fatty alcohol to jet fuel: Rational integration of selective dehydration and hydro-processing. Appl. Catal. A Gen. 2018, 550, 160–167. [Google Scholar] [CrossRef]
- Schmidt, J.E.; Smit, B.; Chen, C.Y.; Xie, D.; Maesen, T.M. Toward superior hydroisomerization catalysts through thermodynamic optimization. ACS Catal. 2023, 13, 6710–6720. [Google Scholar] [CrossRef]
- Liu, S.; Ren, J.; Zhu, S. Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance. J. Catal. 2015, 330, 485–496. [Google Scholar] [CrossRef]
- Xiong, S.; Sun, J.; Li, H.; Wang, W.; Wu, W. The synthesis of hierarchical ZSM-22 zeolite with only the PHMB template for hydroisomerization of n-hexadecane. Microporous Mesoporous Mater. 2024, 365, 112895. [Google Scholar] [CrossRef]
- Liu, S.; Luo, C.; Deng, X.; Fang, Y. Toward rational design of narrowly-distributed mesopore on ZSM-22 zeolite for enhanced Pt dispersion and n-alkane isomerization performance. Fuel 2022, 328, 125282. [Google Scholar] [CrossRef]
- Medeiros-Costa, I.C.; Dib, E.; Nesterenko, N.; Dath, J.P.; Gilson, J.P.; Mintova, S. Silanol defect engineering and healing in zeolites: Opportunities to fine-tune their properties and performances. Chem. Soc. Rev. 2021, 50, 11156. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, K.; Chen, B.; White, J.L.; Resasco, D.E. Factors that determine zeolite stability in hot liquid water. J. Am. Chem. Soc. 2015, 137, 11810–11819. [Google Scholar] [CrossRef]
- Qin, Z.; You, Z.; Bozhilov, K.N. Dissolution behavior and varied mesoporosity of zeolites by NH4F etching. Chem. Eur. J. 2022, 28, e202104339. [Google Scholar] [CrossRef] [PubMed]
- Heard, C.J.; Grajciar, L.; Uhlík, F. Zeolite (in)stability under aqueous or steaming conditions. Adv. Mater. 2020, 32, 2003264. [Google Scholar] [CrossRef]
- Qin, Z.; Lakiss, L.; Tosheva, L. Comparative study of nano-ZSM-5 catalysts synthesized in OH- and F- media. Adv. Funct. Mater. 2014, 24, 257–264. [Google Scholar] [CrossRef]
- Lu, P.; Chen, L.; Zhang, Y. Rapid synthesis of ZSM-22 zeolites using imidazolium-based ionic liquids as OSDAs in fluoride media. Microporous Mesoporous Mater. 2016, 236, 193–201. [Google Scholar] [CrossRef]
- Li, X.; Pan, T.; Choi, J.; Park, H.; Wu, Z.; Yip, A.C. Comparison of catalytic consequences of ionic liquid-templated ZSM-22 and ZSM-5 zeolites in propene dimerization. Microporous Mesoporous Mater. 2022, 337, 111941. [Google Scholar] [CrossRef]
- Liu, T.; Li, X.; Shim, J.; Curnow, O.J.; Choi, J.; Yip, A.C. Accelerated crystallization kinetics of MFI zeolite via imidazolium-based synthesis. Cryst. Growth Des. 2024, 24, 4122–4130. [Google Scholar] [CrossRef]
- Tan, Y.; Hu, W.; Du, Y.; Li, J. Species and impacts of metal sites over bifunctional catalyst on long chain n-alkane hydroisomerization: A review. Appl. Catal. A-Gen. 2021, 611, 117916. [Google Scholar] [CrossRef]
- Song, J.; Xie, J.; Zhang, T.; Xing, M.; Peng, Z.; Gu, W.; Tang, J.; Tang, L.; Liu, S.; Liu, Y.; et al. Ionic liquid-assisted synthesis of nanosized ZSM-22 zeolites with enhanced hydroisomerization performance. Cryst. Growth Des. 2025, 25, 996–1010. [Google Scholar] [CrossRef]
- Breck, D.W.; Skeels, G.W. Replacement of part of aluminum with silicon. US 4503023, 5 March 1985. [Google Scholar]
- Prodinger, S.; Shi, H.; Eckstein, S. Stability of zeolites in aqueous phase reactions. Chem. Mater. 2017, 29, 7255–7262. [Google Scholar] [CrossRef]
- Prodinger, S.; Derewinski, M.A.; Vjunov, A.; Burton, S.D.; Arslan, I.; Lercher, J.A. Improving stability of zeolites in aqueous phase via selective removal of structural defects. J. Am. Chem. Soc. 2016, 138, 4408–4415. [Google Scholar] [CrossRef]
- Iyoki, K.; Kikumasa, K.; Onishi, T. Extremely stable zeolites developed via designed liquid-mediated treatment. J. Am. Chem. Soc. 2020, 142, 3931. [Google Scholar] [CrossRef]
- Li, B.; Lyoki, K.; Techasarintr, P. Hydrophobicity manipulation of titanium silicalite-1 with enhanced catalytic performance via liquid-mediated defect healing treatment. ACS Catal. 2023, 13, 15155–15163. [Google Scholar] [CrossRef]
- Jamil, A.; Muraza, O. Facile control of nanosized ZSM-22 crystals using dynamic crystallization technique. Microporous Mesoporous Mater. 2016, 227, 16–22. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, Y.; Bai, X.; He, L.; Fu, W.; Tang, T. Ni catalyst on ZSM-22 nanofibers bundles with good catalytic performance in the hydroisomerization of n-dodecane. Fuel 2024, 357, 129885. [Google Scholar] [CrossRef]
- Yuan, K.; Jia, X.Y.; Wang, S. Effect of crystal size of ZSM-11 zeolite on the catalytic performance and reaction route in methanol to olefins. Chem. Syn. 2023, 4, 31. [Google Scholar] [CrossRef]
- Lin, H.; Xu, C.; Wang, W.; Wu, W. In situ synthesis of nanosized ZSM-12 zeolite isomorphously substituted by gallium for the n-hexadecane hydroisomerization. Chem. Syn. 2024, 4, 49. [Google Scholar] [CrossRef]
- Gola, A.; Rebours, B.; Milazzo, E. Effect of leaching agent in the dealumination of stabilized Y zeolites. Microporous Mesoporous Mater. 2000, 40, 73. [Google Scholar] [CrossRef]
- Williams, J.J.; Lethbridge, Z.A.; Clarkson, G.J.; Ashbrook, S.E.; Evans, K.E.; Walton, R.I. The bulk material dissolution method with small amines for the synthesis of large crystals of the siliceous zeolites ZSM-22 and ZSM-48. Microporous Mesoporous Mater. 2009, 119, 259–266. [Google Scholar] [CrossRef]
- Balkus, K.J.; Shepelev, S. Synthesis of nonasil molecular sieves in the presence of cobalticinium hydroxide. Microporous Mater. 1993, 1, 393–400. [Google Scholar] [CrossRef]
- Emeis, C.A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 1993, 141, 347–354. [Google Scholar] [CrossRef]
- Dalena, F.; Yue, Q.; Dib, E.; Aitblal, A.; Piva, D.H.; Qin, Z.; Mintova, S. Enhanced catalytic ring-opening of propylene oxide using a germanium-containing MFI zeolite catalyst with high selectivity. ACS Catal. 2025, 15, 8024–8035. [Google Scholar] [CrossRef]
- van der Wal, L.I.; de Jong, K.P.; Zečević, J. The origin of metal loading heterogeneities in Pt/Zeolite Y bifunctional catalysts. ChemCatChem 2019, 11, 4081–4088. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, X.; Guan, Y.; Xu, H.; Zhang, J.; Jiang, J.; Chen, L.; Xue, T.; Xue, Q.; Wei, F.; et al. Skeleton-Sn anchoring isolated Pt site to confine subnanometric clusters within BEA topology. J. Catal. 2021, 397, 44–57. [Google Scholar] [CrossRef]
- Zou, R.; Chansai, S.; Xu, S.; An, B.; Zainal, S.; Zhou, Y.; Xin, R.; Gao, P.; Hou, G.; D’Agostino, C.; et al. Pt nanoparticles on Beta zeolites for catalytic toluene oxidation: Effect of the hydroxyl groups of Beta Zeolite. ChemCatChem 2023, 15, e202300811. [Google Scholar] [CrossRef]
- Guisnet, M. “Ideal” bifunctional catalysis over Pt-acid zeolites. Catal. Today 2013, 218, 123–134. [Google Scholar] [CrossRef]
- Bhan, A.; Iglesia, E. A link between reactivity and local structure in acid catalysis on zeolites. Acc. Chem. Res. 2008, 41, 559–567. [Google Scholar] [CrossRef]
- Gounder, R.; Iglesia, E. Effects of partial confinement on the specificity of monomolecular alkane reactions for acid sites in side pockets of mordenite. Angew. Chem. Int. Ed. 2010, 49, 808–811. [Google Scholar] [CrossRef]
- Noh, G.; Shi, Z.; Zones, S.I.; Iglesia, E. Isomerization and b-scission reactions of alkanes on bifunctional metal- acid catalysts: Consequences of confinement and diffusional constraints on reactivity and selectivity. J. Catal. 2018, 368, 389–410. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, H.; Chen, H. Fabrication of a core-shell MFI@ TON material and its enhanced catalytic performance for toluene alkylation. Catal. Sci. Technol. 2020, 10, 1281–1291. [Google Scholar] [CrossRef]
Run | Samples | Compositions | Conditions | Phases a | Relative Crys. b | |
---|---|---|---|---|---|---|
TEAOH/NH4F mol/mol | Temp./°C | Dura./Hours | ||||
HZ22 | -- | TON | 1.00 | |||
1 | HZ22-LM-1 | 0.1/0.1 | 120 | 24 | TON | 1.08 |
2 | HZ22-LM-2 | 0.1/0.4 | 120 | 24 | TON | 1.19 |
3 | HZ22-LM-3 | 0.1/0.7 | 120 | 24 | TON | 0.83 |
4 | HZ22-LM-4 | 0.4/0.4 | 120 | 24 | TON | 1.32 |
5 | HZ22-LM-5 | 0.7/0.4 | 120 | 24 | TON | 0.93 |
6 | HZ22-LM-6 | 0.4/0.4 | 120 | 12 | TON | 1.06 |
7 | HZ22-LM-7 | 0.4/0.4 | 120 | 48 | TON | 1.35 |
8 | HZ22-LM-8 | 0.4/0.4 | 100 | 24 | TON | 1.13 |
9 | HZ22-LM-9 | 0.4/0.4 | 150 | 24 | TON + MFI | -- |
Samples | Si/Al Ratios a | SMicro m2/g | VMicro cm3/g | Acidity (µmol/g) b | |||
---|---|---|---|---|---|---|---|
Brønsted | Lewis | ||||||
200 °C | 350 °C | 200 °C | 350 °C | ||||
HZ22 | 38.1 | 163.7 | 0.071 | 116.2 | 80.1 | 23.6 | 22.3 |
HZ22-LM-4 | 37.0 | 175.1 | 0.077 | 118.7 | 85.4 | 7.8 | 3.9 |
Catalysts | d CO-Chem a (nm) | Dispersion a (%) | nPt/nA b (mol/mol) |
---|---|---|---|
Pt/HZ22 | 2.4 | 46.2 | 0.25 |
Pt/HZ22-LM-4 | 2.8 | 32.4 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, T.; Deng, R.; Xie, J.; Tang, J.; Gu, W.; Peng, Z.; Liu, S. Liquid-Mediated Si-OH Healing of ZSM-22 Zeolites for Improved Performance in N-Decane Hydroisomerization. Molecules 2025, 30, 3319. https://doi.org/10.3390/molecules30163319
Chang T, Deng R, Xie J, Tang J, Gu W, Peng Z, Liu S. Liquid-Mediated Si-OH Healing of ZSM-22 Zeolites for Improved Performance in N-Decane Hydroisomerization. Molecules. 2025; 30(16):3319. https://doi.org/10.3390/molecules30163319
Chicago/Turabian StyleChang, Tong, Renhui Deng, Jiaxin Xie, Jianyu Tang, Wenyao Gu, Zimin Peng, and Suyao Liu. 2025. "Liquid-Mediated Si-OH Healing of ZSM-22 Zeolites for Improved Performance in N-Decane Hydroisomerization" Molecules 30, no. 16: 3319. https://doi.org/10.3390/molecules30163319
APA StyleChang, T., Deng, R., Xie, J., Tang, J., Gu, W., Peng, Z., & Liu, S. (2025). Liquid-Mediated Si-OH Healing of ZSM-22 Zeolites for Improved Performance in N-Decane Hydroisomerization. Molecules, 30(16), 3319. https://doi.org/10.3390/molecules30163319