Adsorptive Separation of Chlorobenzene and Chlorocyclohexane by Nonporous Adaptive Crystals of Perethylated Pillar[6]arene
Abstract
1. Introduction
2. Results
3. Materials, Theoretical Calculations, and Methods
3.1. Materials
3.2. Theoretical Calculations
3.3. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, J.; Yu, G.; Li, Q.; Wang, M.; Huang, F. Separation of benzene and cyclohexane by nonporous adaptive crystals of a hybrid[3]arene. J. Am. Chem. Soc. 2020, 142, 2228–2232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhu, X.; Alimi, L.O.; Liu, X.; Chen, A.; Moosa, B.M.; Khashab, N.M. Adsorptive molecular sieving of aromatic hydrocarbons over cyclic aliphatic hydrocarbons via an intrinsic/extrinsic approach. J. Mater. Chem. A 2024, 12, 6875–6879. [Google Scholar] [CrossRef]
- Hu, S.; Zhao, H.; Liang, M.; Zhou, N.; Ding, B.; Liu, X.; Zeng, Y.; Tang, B.; Hao, J.; Xue, P. Luminescent porous organic crystals for adsorptive separation of toluene and methylcyclohexane. ACS Appl. Mater. Interfaces 2024, 16, 4863–4872. [Google Scholar] [CrossRef]
- Zeng, F.; Tang, L.-L.; Yu, H.; Xu, F.-P.; Wang, L. Hydrogen-bonding-driven self-assembly nonporous adaptive crystals for the separation of benzene from BTX and cyclohexane. Chin. Chem. Lett. 2023, 34, 108304. [Google Scholar] [CrossRef]
- Cui, P.-F.; Liu, X.-R.; Lin, Y.-J.; Li, Z.-H.; Jin, G.-X. Highly selective separation of nenzene and cyclohexane in a spatially confined carborane metallacage. J. Am. Chem. Soc. 2022, 144, 6558–6565. [Google Scholar] [CrossRef]
- Yao, H.; Wang, Y.-M.; Quan, M.; Farooq, M.U.; Yang, L.-P.; Jiang, W. Adsorptive separation of benzene, cyclohexene, and cyclohexane by amorphous nonporous amide naphthotube solids. Angew. Chem. Int. Ed. 2020, 59, 19945–19950. [Google Scholar] [CrossRef]
- Wu, J.-R.; Yang, Y.-W. Geminiarene: Molecular scale dual selectivity for chlorobenzene and chlorocyclohexane fractionation. J. Am. Chem. Soc. 2019, 141, 12280–12287. [Google Scholar] [CrossRef]
- Gilevska, T.; Ojeda, A.S.; Kümmel, S.; Gehre, M.; Seger, E.; West, K.; Morgan, S.A.; Mack, E.E.; Lollar, B.S. Multi-element isotopic evidence for monochlorobenzene and benzene degradation under anaerobic conditions in contaminated sediments. Water Res. 2021, 207, 117809. [Google Scholar] [CrossRef]
- Wacławek, S.; Silvestri, D.; Hrabák, P.; Padil, V.V.T.; Torres-Mendieta, R.; Wacławek, M.; Černík, M.; Dionysiou, D.D. Chemical oxidation and reduction of hexachlorocyclohexanes: A review. Water Res. 2019, 162, 302–319. [Google Scholar] [CrossRef]
- Zinke, L. Monitoring monochlorobenzene. Nat. Rev. Earth Environ. 2021, 2, 822. [Google Scholar] [CrossRef]
- Musilová-Kebrlová, N.; Janderkab, P.; Trnková, L. Electrochemical processes of adsorbed chlorobenzene and fluorobenzene on a platinum polycrystalline electrode. Collect. Czech. Chem. Commun. 2009, 74, 611–625. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, H.; Jin, H.; Chen, J.; Chen, D. Metal–organic framework derived bio-anode enhances chlorobenzene removal and electricity generation: Special Ru4+/Ru3+-bridged intracellular electron transfer. Water Res. 2023, 245, 120578. [Google Scholar] [CrossRef] [PubMed]
- Errico, M.; Rong, B.-G.; Tola, G.; Spano, M. Optimal synthesis of distillation systems for bioethanol separation. Part 1: Extractive distillation with simple columns. Ind. Eng. Chem. Res. 2013, 52, 1612–1619. [Google Scholar] [CrossRef]
- Sholl, D.S.; Lively, R.P. Seven chemical separations to change the world. Nature 2016, 532, 435–437. [Google Scholar] [CrossRef]
- Liang, S.; Cao, Y.; Liu, X.; Li, X.; Zhao, Y.; Wang, Y.; Wang, Y. Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control. Chem. Eng. Res. Des. 2017, 117, 318–335. [Google Scholar] [CrossRef]
- Qi, J.; Li, Y.; Xue, J.; Qiao, R.; Zhang, Z.; Li, Q. Comparison of heterogeneous azeotropic distillation and energy-saving extractive distillation for separating the acetonitrile-water mixtures. Sep. Purif. Technol. 2020, 238, 116487. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Lin, E.; Geng, S.; Wang, M.; Liu, J.; Chen, Y.; Cheng, P.; Zhang, Z. Kilogram-scale fabrication of a robust olefin-linked covalent organic framework for separating ethylene from a ternary C2 hydrocarbon mixture. J. Am. Chem. Soc. 2023, 145, 21483–21490. [Google Scholar] [CrossRef]
- Idrees, K.B.; Li, Z.; Xie, H.; Kirlikovali, K.O.; Kazem-Rostami, M.; Wang, X.; Wang, X.; Tai, T.-Y.; Islamoglu, T.; Stoddart, J.F.; et al. Separation of aromatic hydrocarbons in porous materials. J. Am. Chem. Soc. 2022, 144, 12212–12218. [Google Scholar] [CrossRef]
- Xie, F.; Wang, H.; Li, J. Flexible hydrogen-bonded organic framework to split ethane and ethylene. Matter 2022, 5, 2516–2518. [Google Scholar] [CrossRef]
- Smoljan, C.S.; Li, Z.; Xie, H.; Setter, C.J.; Idrees, K.B.; Son, F.A.; Formalik, F.; Shafaie, S.; Islamoglu, T.; Macreadie, L.K.; et al. Engineering metal–organic frameworks for selective separation of hexane isomers using 3-dimensional linkers. J. Am. Chem. Soc. 2023, 145, 6434–6441. [Google Scholar] [CrossRef]
- Wang, J.; Fan, Y.; Jiang, J.; Wan, Z.; Pang, S.; Guan, Y.; Xu, H.; He, X.; Ma, Y.; Huang, A.; et al. Layered zeolite for assembly of two-dimensional separation membranes for hydrogen purification. Angew. Chem. Int. Ed. 2023, 62, e202304734. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Li, H.; Li, Z.; Li, P.-Z.; Zhao, Y. Linking nitrogen-rich organic cages into isoreticular covalent organic frameworks for enhancing iodine adsorption capability. ACS Mater. Lett. 2023, 5, 1546–1555. [Google Scholar] [CrossRef]
- Fulong, C.R.P.; Liu, J.; Pastore, V.J.; Lin, H.; Cook, T.R. Mixed-matrix materials using metal–organic polyhedra with enhanced compatibility for membrane gas separation. Dalton Trans. 2018, 47, 7905–7915. [Google Scholar] [CrossRef]
- Siegelman, R.L.; Kim, E.J.; Long, J.R. Porous materials for carbon dioxide separations. Nat. Mater. 2021, 20, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.-J.; Deng, C.; Peng, Y.-L.; Zhang, X.; Zhang, Z.; Zaworotko, M.J. State of the art, challenges and prospects in metal–organic frameworks for the separation of binary propylene/propane mixtures. Coordin. Chem. Rev. 2024, 506, 215697. [Google Scholar] [CrossRef]
- Yan, M.; Wang, Y.; Chen, J.; Zhou, J. Potential of nonporous adaptive crystals for hydrocarbon separation. Chem. Soc. Rev. 2023, 52, 6075–6119. [Google Scholar] [CrossRef]
- Dey, A.; Chand, S.; Maity, B.; Bhatt, P.M.; Ghosh, M.; Cavallo, L.; Eddaoudi, M.; Khashab, N.M. Adsorptive molecular sieving of styrene over ethylbenzene by trianglimine crystals. J. Am. Chem. Soc. 2021, 143, 4090–4094. [Google Scholar] [CrossRef]
- Wei, S.; Wang, Y.; Zhou, J. Highly selective separation of toluene and methylcyclohexane based on nonporous adaptive crystals of hybrid[3]arene. Mater. Chem. Front. 2024, 8, 3150. [Google Scholar] [CrossRef]
- Jie, K.; Zhou, Y.; Li, E.; Huang, F. Nonporous adaptive crystals of pillararenes. Acc. Chem. Res. 2018, 51, 2064–2072. [Google Scholar] [CrossRef]
- Wu, J.-R.; Yang, Y.-W. Synthetic macrocycle-based nonporous adaptive crystals for molecular separation. Angew. Chem. Int. Ed. 2021, 60, 1690–1701. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, J.; Li, E.; Zhou, Y.; Li, Q.; Huang, F. Separation of monochlorotoluene isomers by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. J. Am. Chem. Soc. 2019, 141, 17102–17106. [Google Scholar] [CrossRef]
- Chen, J.; Wu, S.; Wang, Y.; Zhou, J. Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chin. Chem. Lett. 2025, 36, 110102. [Google Scholar] [CrossRef]
- Wu, J.-R.; Li, B.; Yang, Y.-W. Separation of bromoalkanes isomers by nonporous adaptive crystals of leaning pillar[6]arene. Angew. Chem. Int. Ed. 2020, 59, 2251–2255. [Google Scholar] [CrossRef]
- Chen, Y.; Song, X.; Li, A.; Song, Z.; Fu, S.; Xie, Y.; Tang, B.Z.; Li, Z. Solvent-responsive nonporous adaptive crystals derived from pyridinium hydrochloride and the application in iodine adsorption. Adv. Mater. 2024, 36, 2402885. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.-Y.; Chen, C.-F. Adsorptive separation of picoline isomers by adaptive calix[3]acridan crystals. Chem. Commun. 2022, 58, 4356–4359. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, Q.; Li, E.; Liu, J.; Zhou, J.; Huang, F. Vapochromic behaviors of a solid-state supramolecular polymer based on exo-wall complexation of perethylated pillar[5]arene with 1,2,4,5-tetracyanobenzene. Angew. Chem. Int. Ed. 2021, 60, 8115–8120. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-Y.; Yao, H.; Hu, H.; Chen, W.-J.; Yang, L.-P.; Wang, L.-L. Selective adsorption of trace morpholine impurities over N-ethyl morpholine by tetralactam solids. Chem. Commun. 2023, 59, 7204–7207. [Google Scholar] [CrossRef]
- Luo, D.; Tian, J.; Sessler, J.L.; Chi, X. Nonporous adaptive calix[4]pyrrole crystals for polar compound separations. J. Am. Chem. Soc. 2021, 143, 18849–18853. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Wei, S.; Wu, S.; Wang, M.; Yu, G.; Chen, P.; Liu, X.; Zhou, J. Efficient separation of xylene isomers by nonporous adaptive crystals of hybrid[3]arene in both vapor and liquid phases. Mater. Chem. Front. 2024, 8, 2273–2281. [Google Scholar] [CrossRef]
- Yan, M.; Hou, J.; Zhou, J. Effective adsorption of cyclohexene and analytically perfect separation of cyclohexene/cyclohexanol azeotropes by nonporous adaptive crystals of a hybrid[3]arene. Chem. Mater. 2024, 36, 10850–10856. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, L.-W.; Wei, Z.-H.; Wang, F.; Zhu, Q.-W.; Han, Y.-F. Calix[2]azolium[2]benzimidazolone hosts for selective binding of neutral substrates in water. Nat. Commun. 2024, 15, 6616. [Google Scholar] [CrossRef]
- Lu, B.; Yan, X.; Wang, J.; Jing, D.; Bei, J.; Cai, Y.; Yao, Y. Rim-differentiated pillar[5]arene based nonporous adaptive crystals. Chem. Commun. 2022, 58, 2480–2483. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, S.; Wei, S.; Wang, Z.; Zhou, J. Selectivity separation of ortho-chlorotoluene using nonporous adaptive crystals of hybrid[3]arene. Chem. Mater. 2024, 36, 1631–1638. [Google Scholar] [CrossRef]
- Luo, J.; Yang, G.; Zhang, G.; Huang, Z.; Peng, J.; Luo, Y.; Wang, X.; Yang, C.; Jiang, J.; Cao, D.; et al. Kinetic sieving separation of a gating macrocyclic crystal for purification of propylene. Chem 2024, 10, 3148–3158. [Google Scholar] [CrossRef]
- He, D.; Clowes, R.; Little, M.A.; Liu, M.; Cooper, A.I. Creating porosity in a trianglimine macrocycle by heterochiral pairing. Chem. Commun. 2021, 57, 6141–6144. [Google Scholar] [CrossRef]
- Pei, D.; Guo, W.; Liu, P.; Xue, T.; Meng, X.; Shu, X.; Nie, J.; Chang, Y. Prism[5]arene-based nonporous adaptive crystals for the capture and detection of aromatic volatile organic compounds. Chem. Eng. J. 2022, 433, 134463. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, K.; Li, B.; Cui, L.; Li, J.; Jia, X.; Zhao, H.; Fang, J.; Li, C. Efficient separation of cis-and trans-1,2-dichloroethene isomers by adaptive biphen[3]arene crystals. Angew. Chem. Int. Ed. 2019, 58, 10281–10284. [Google Scholar] [CrossRef]
- Yan, M.; Yu, G.; Wang, M.; Zhou, J. Vapochromic materials based on pillar[n]arenes. Cell Rep. Phys. Sci. 2024, 5, 102307. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Z.; Si, W.-D.; Chu, H.; Zhou, L.; Li, T.; Huang, X.-Q.; Gao, Z.-Y.; Azam, M.; Tung, C.-H.; et al. Dynamic and transformable Cu12 cluster-based C-H···π-stacked porous supramolecular frameworks. Nat. Commun. 2023, 14, 6413. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, W.; Yang, W.; Xi, F.; He, H.; Liang, M.; Dong, Q.; Hou, J.; Wang, M.; Yu, G.; et al. Separation of benzene and toluene associated with vapochromic behaviors by hybrid[4] arene-based co-crystals. Nat. Commun. 2024, 15, 1260. [Google Scholar] [CrossRef]
- Shi, B.; Jiang, J.; An, H.; Qi, L.; Wei, T.-B.; Qu, W.-J.; Lin, Q. Clamparene: Synthesis, structure, and its application in spontaneous formation of 3D porous crystals. J. Am. Chem. Soc. 2024, 146, 2901–2906. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, J.; Hua, B.; Shao, L.; Zhang, Z.; Yu, G. The synthesis, structure, and molecular recognition properties of a[2]calix[1]biphenyl-type hybrid[3]arene. Chem. Commun. 2016, 52, 1622–1624. [Google Scholar] [CrossRef]
- Zhou, W.; Li, A.; Zhou, M.; Xu, Y.; Zhang, Y.; He, Q. Nonporous amorphous superadsorbents for highly effective and selective adsorption of iodine in water. Nat. Commun. 2023, 14, 5388. [Google Scholar] [CrossRef]
- Yang, W.; Samanta, K.; Wan, X.; Thikekar, T.U.; Chao, Y.; Li, S.; Du, K.; Xu, J.; Gao, Y.; Zuilhof, H.; et al. Tiara[5]arenes: Synthesis, solid-state conformational studies, host–guest properties, and application as nonporous adaptive crystals. Angew. Chem. Int. Ed. 2020, 59, 3994–3999. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Yang, C.; Tang, D.; Huang, S.; Lou, X.; Cui, R.; Ye, C.; Chen, J.; Qiu, T. Revealing the mechanism behind the highly selective separation of 1,4-butyrolactone from n-methylpyrrolidone using nonporous adaptive crystals of perethylated pillar[5]arene. Chem. Eng. J. 2024, 495, 153508. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.; Wang, Y.; Liu, Y.; Wang, L.; Zhang, Z.-Y.; Li, C. Vapochromic separation of toluene and pyridine azeotropes using adaptive macrocycle co-crystals. Chem. Commun. 2024, 60, 6889–6892. [Google Scholar] [CrossRef] [PubMed]
- Ogoshi, T.; Saito, K.; Sueto, R.; Kojima, R.; Hamada, Y.; Akine, S.; Moeljadi, A.M.P.; Hirao, H.; Kakuta, T.; Yamagishi, T.-a. Separation of linear and branched alkanes using host–guest complexation of cyclic and branched alkane vapors by crystal state pillar[6]arene. Angew. Chem. Int. Ed. 2018, 57, 1592–1595. [Google Scholar] [CrossRef]
- Chen, J.; Liang, X.; Pan, C.; Liang, M.; Yang, W.; Wu, S.; Zhu, H.; Zhou, J. Perfect separation of n-pentane and iso-pentane by nonporous adaptive crystals of perethylated pillar[5]arene. Cryst. Growth Des. 2024, 24, 7749–7754. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, W.; Chen, J.; Zhou, J. Mono-functionalized pillar[n]arenes: Syntheses, host–guest properties and applications. Chin. Chem. Lett. 2024, 35, 108740. [Google Scholar] [CrossRef]
- Chen, T.; Wang, J.; Tang, R.; Huang, Y.; Zhao, Q.; Yao, Y. An amphiphilic[2]biphenyl-extended pillar[6]arene: Synthesis, controllable self-assembly in water and application in cell-imaging. Chin. Chem. Lett. 2023, 34, 108088. [Google Scholar] [CrossRef]
- Ho, Q.D.; Rauls, E. Ab initio study: Investigating the adsorption behaviors of polarized greenhouse gas molecules on pillar[5]arenes. Mater. Today Commun. 2023, 36, 106875. [Google Scholar] [CrossRef]
- Bhadane, S.A.; Lande, D.N.; Gejji, S.P. Understanding binding of cyano-adamantyl derivatives to pillar[6]arene macrocycle from density functional theory. J. Phys. Chem. A 2016, 120, 8738–8749. [Google Scholar] [CrossRef]
- Ho, Q.D.; Rauls, E. Cavity size effects on the adsorption of CO2 on pillar[n]arene structures: A density functional theory study. ChemistrySelect 2023, 8, e202302266. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251. [Google Scholar] [CrossRef]
- Wang, M.; Fang, S.; Yang, S.; Li, Q.; Khashab, N.M.; Zhou, J.; Huang, F. Separation of ethyltoluene isomers by nonporous adaptive crystals of perethylated and perbromoethylated pillararenes. Mater. Today Chem. 2022, 24, 100919. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 2024, 161, 082503. [Google Scholar] [CrossRef]
Species | Structures | ΔG (kJ/mol) | EBE (kJ/mol) |
---|---|---|---|
CB@EtP6 | −56.27 | −113.17 | |
CCH@EtP6 | −82.84 | −142.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Chi, Y.; Dong, Q.; Zhou, J. Adsorptive Separation of Chlorobenzene and Chlorocyclohexane by Nonporous Adaptive Crystals of Perethylated Pillar[6]arene. Molecules 2025, 30, 3312. https://doi.org/10.3390/molecules30153312
Wu S, Chi Y, Dong Q, Zhou J. Adsorptive Separation of Chlorobenzene and Chlorocyclohexane by Nonporous Adaptive Crystals of Perethylated Pillar[6]arene. Molecules. 2025; 30(15):3312. https://doi.org/10.3390/molecules30153312
Chicago/Turabian StyleWu, Sha, Yuyue Chi, Qian Dong, and Jiong Zhou. 2025. "Adsorptive Separation of Chlorobenzene and Chlorocyclohexane by Nonporous Adaptive Crystals of Perethylated Pillar[6]arene" Molecules 30, no. 15: 3312. https://doi.org/10.3390/molecules30153312
APA StyleWu, S., Chi, Y., Dong, Q., & Zhou, J. (2025). Adsorptive Separation of Chlorobenzene and Chlorocyclohexane by Nonporous Adaptive Crystals of Perethylated Pillar[6]arene. Molecules, 30(15), 3312. https://doi.org/10.3390/molecules30153312