Ultra-Weak Photon Emission from Crown Ethers Exposed to Fenton’s Reagent Fe2+-H2O2
Abstract
1. Introduction
1.1. Ultra-Weak Photon Emission from Biomolecules
1.2. Ultra-Weak Photon Emission from Fe2+–EGTA–H2O2System: Mechanisms and Possible Application for Determination of Redox Activities of Phytochemicals
1.3. Study Aims
2. Results and Discussion
3. Directions for Future Research
4. Material and Methods
4.1. Chemicals and Solutions
4.2. Preparation of Aqueous Solutions of Crown Ethers
4.3. Light-Emitting Systems and Measurements of Ultra-Weak Photon Emission
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zapata, F.; Pastor-Ruiz, V.; Ortega-Ojeda, F.; Montalvo, G.; Ruiz-Zolle, A.V.; García-Ruiz, C. Human ultra-weak photon emission as non-invasive spectroscopic tool for diagnosis of internal states—A review. J. Photochem. Photobiol. B 2021, 216, 112141. [Google Scholar] [CrossRef]
- Du, J.; Deng, T.; Cao, B.; Wang, Z.; Yang, M.; Han, J. The application and trend of ultra-weak photon emission in biology and medicine. Front. Chem. 2023, 11, 1140128. [Google Scholar] [CrossRef] [PubMed]
- Tafur, J.; Van Wijk, E.P.; Van Wijk, R.; Mills, P.J. Biophoton detection and low-intensity light therapy: A potential clinical partnership. Photomed. Laser Surg. 2010, 28, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.; Duchová, H.; Manoharan, R.R.; Rathi, D.; Pospíšil, P. Imaging and characterization of oxidative protein modifications in skin. Int. J. Mol. Sci. 2023, 24, 3981. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Pang, J.; Liu, J.; Liu, Y.; Fan, H.; Han, J. Spectral discrimination between healthy people and cold patients using spontaneous photon emission. Biomed. Opt. Express 2015, 6, 1331–1339. [Google Scholar] [CrossRef]
- Wijk, E.P.; Wijk, R.V. Multi-site recording and spectral analysis of spontaneous photon emission from human body. Forsch Komplementarmed Kl. Naturheilkd 2005, 12, 96–106. [Google Scholar] [CrossRef]
- Pospíšil, P.; Prasad, A.; Rác, M. Role of reactive oxygen species in ultra-weak photon emission in biological systems. J. Photochem. Photobiol. B 2014, 139, 11–23. [Google Scholar] [CrossRef]
- Miyamoto, S.; Martinez, G.R.; Medeiros, M.H.; Di Mascio, P. Singlet molecular oxygen generated by biological hydroperoxides. J. Photochem. Photobiol. B 2014, 139, 24–33. [Google Scholar] [CrossRef]
- Ramos, L.D.; Gomes, T.M.V.; Stevani, C.V.; Bechara, E.J.H. Mining reactive triplet carbonyls in biological systems. J. Photochem. Photobiol. B 2023, 243, 112712. [Google Scholar] [CrossRef]
- Prasad, A.; Pospíšil, P. Linoleic acid-induced ultra-weak photon emission from Chlamydomonas reinhardtii as a tool for monitoring of lipid peroxidation in the cell membranes. PLoS ONE 2011, 6, e22345. [Google Scholar] [CrossRef]
- Miyazawa, T.; Kaneda, T. Extra-week chemiluminescence of organ homogenate and blood in tocopherol-deficient rats. J. Nutr. Sci. Vitaminol. 1981, 27, 415–423. [Google Scholar] [CrossRef]
- Nowak, M.; Tryniszewski, W.; Sarniak, A.; Wlodarczyk, A.; Nowak, P.J.; Nowak, D. Light emission from the Fe2+-EGTA-H2O2 system: Possible application for the determination of antioxidant activity of plant phenolics. Molecules 2018, 23, 866. [Google Scholar] [CrossRef]
- Sasak, K.; Nowak, M.; Wlodarczyk, A.; Sarniak, A.; Tryniszewski, W.; Nowak, D. Light emission from Fe2+-EGTA-H2O2 system depends on the pH of the reaction milieu within the range that may occur in cells of the human body. Molecules 2024, 29, 4014. [Google Scholar] [CrossRef]
- Nowak, M.; Tryniszewski, W.; Sarniak, A.; Wlodarczyk, A.; Nowak, P.J.; Nowak, D. Concentration dependence of anti- and pro-oxidant activity of polyphenols as evaluated with a light-emitting Fe2+-EGTA-H2O2 system. Molecules 2022, 27, 3453. [Google Scholar] [CrossRef]
- Nowak, M.; Tryniszewski, W.; Sarniak, A.; Wlodarczyk, A.; Nowak, P.J.; Nowak, D. Effect of physiological concentrations of vitamin C on the inhibitation of hydroxyl radical induced light emission from Fe2+-EGTA-H2O2 and Fe3+-EGTA-H2O2 systems in vitro. Molecules 2021, 26, 1993. [Google Scholar] [CrossRef]
- Antiñolo, M.; Ocaña, A.J.; Aranguren, J.P.; Lane, S.I.; Albaladejo, J.; Jiménez, E. Atmospheric degradation of 2-chloroethyl vinyl ether, allyl ether and allyl ethyl ether: Kinetics with OH radicals and UV photochemistry. Chemosphere 2017, 181, 232–240. [Google Scholar] [CrossRef]
- Stadelmann-Ingrand, S.; Favreliere, S.; Fauconneau, B.; Mauco, G.; Tallineau, C. Plasmalogen degradation by oxidative stress: Production and disappearance of specific fatty aldehydes and fatty alpha-hydroxyaldehydes. Free Radic. Biol. Med. 2001, 31, 1263–1271. [Google Scholar] [CrossRef]
- Moriarty, J.; Sidebottom, H.; Wenger, J.; Mellouki, A.; Le Bras, G. Kinetic studies on the reactions of hydroxyl radicals with cyclic ethers and aliphatic diethers. J. Phys. Chem. A 2003, 107, 1499–1505. [Google Scholar] [CrossRef]
- Guo, J.; Ma, Y.L.; Yu, J.Y.; Gao, Y.J.; Ma, N.X.; Wu, X.Y. Highly selective cleavage C–O ether bond of lignin model compounds over Ni/CaO–H-ZSM-5 in ethanol. BMC Chem. 2019, 13, 36. [Google Scholar] [CrossRef]
- Lanzalunga, O.; Bietti, M. Photo- and radiation chemical induced degradation of lignin model compounds. J. Photochem. Photobiol. B 2000, 56, 85–108. [Google Scholar] [CrossRef]
- Chang, L.; An, Q.; Duan, L.; Feng, K.; Zuo, Z. Alkoxy radicals see the light: New paradigms of photochemical synthesis. Chem. Rev. 2022, 122, 2429–2486. [Google Scholar] [CrossRef]
- Albara, A.M.A.; Gehani, E.; Maashi, H.A.; Harnedy, J.; Morrill, L.C. Electrochemical generation and utilization of alkoxy radicals. Chem. Commun. 2023, 59, 3655–3664. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.S.; Shadnia, H.; Chepelev, L.L. Stability of carbon-centered radicals: Effect of functional groups on the energetics of addition of molecular oxygen. J. Comput. Chem. 2009, 30, 1016–1026. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Osuka, A. Platforms for stable carbon-centered radicals. Angew. Chem. Int. Ed. Engl. 2019, 58, 8978–8986. [Google Scholar] [CrossRef]
- Pospíšil, P.; Prasad, A.; Rác, M. Mechanism of the formation of electronically excited species by oxidative metabolic processes: Role of reactive oxygen species. Biomolecules 2019, 9, 258. [Google Scholar] [CrossRef] [PubMed]
- Rác, M.; Sedlářová, M.; Pospíšil, P. The formation of electronically excited species in the human multiple myeloma cell suspension. Sci. Rep. 2015, 5, 8882. [Google Scholar] [CrossRef]
- Wan, L.K.; Peng, P.; Lin, M.Z.; Muroya, Y.; Katsumura, Y.; Fu, H.Y. Hydroxyl radical, sulfate radical and nitrate radical reactivity towards crown ethers in aqueous solutions. Radiat. Phys. Chem. 2012, 81, 524–530. [Google Scholar] [CrossRef]
- Bonnin, M.A.; Feldmann, C. Insights of the Structure and Luminescence of Mn2+/Sn2+—Containing crown-ether coordination compounds. Inorg. Chem. 2021, 60, 14645–14654. [Google Scholar] [CrossRef]
- Bradshaw, J.S.; Izatt, R.M.A.; Bordunov, V.; Zhu, C.Y.; Hathaway, J.K. Crown ethers. In Comprehensive Supramolecular Chemistry; Gokel, G.W., Ed.; Elsevier: Amsterdam, The Netherlands, 1996; Volume 1, p. 35. [Google Scholar]
- Hayyan, M.; Hashim, M.A.; AlNashef, I.M. Superoxide ion: Generation and chemical implications. Chem. Rev. 2016, 116, 3029–3085. [Google Scholar] [CrossRef]
- Smith, J.D.; Sio, V.; Yu, L.; Zhang, Q.; Anastasio, C. Secondary organic aerosol production from aqueous reactions of atmospheric phenols with an organic triplet excited state. Environ. Sci. Technol. 2014, 48, 1049–1057. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Feng, S. Contribution of the excited triplet state of humic acid and superoxide radical anion to generation and elimination of phenoxyl radical. Environ. Sci. Technol. 2018, 52, 8283–8291. [Google Scholar] [CrossRef]
- Petersen-Sonn, E.A.; Brigante, M.; Deguillaume, L.; Jaffrezo, J.L.; George, C. Tropospheric multiphase chemistry: Excited triplet states compete with OH radicals and singlet molecular oxygen. ACS Earth Space Chem. 2025, 9, 533–544. [Google Scholar] [CrossRef]
Compound | Chemical Structure with Marked in Red Ether Bonds | Number of Ether Bonds (R−O−R’) in the Backbone Structure | UPE After Exposure to Fe2+-H2O2 [RLU] |
---|---|---|---|
EGTA | 2 | 2863 ± 58 (2853; 96) † | |
12-Crown-4 | 4 | 579 ± 109 (589; 76) | |
15-Crown-5 | 5 | 615 ± 86 (623; 67) | |
18-Crown-6 | 6 | 1161 ± 78 (1143; 72) * |
Experiment | Light Emission from Control Systems [RLU] | ||||
---|---|---|---|---|---|
Medium Alone | H2O2 Alone | Crown Ether–Fe2+ | Crown Ether–H2O2 | Fe2+-H2O2 | |
12–Crown-4 | 607 ± 64 (636;115) | 585 ± 76 (625;132) | 596 ± 64 (631;108) | 568 ± 76 (603;145) | 637 ± 69 (650;133) |
15-Crown-5 | 578 ± 72 (578;130) | 682 ± 55 (682;95) | 575 ± 75 (520;132) | 549 ± 70 (549;125) | 628 ± 63 (630;98) |
18–Crown-6 | 662 ± 20 (662;13) | 659 ± 27 (658;43) | 655 ± 32 (658;39) | 662 ± 29 (670;51) | 822 ± 52 (822;50) |
Experiment Number | Sample | Volumes of Working Solutions Added to Luminometer Tube (µL) | ||||
---|---|---|---|---|---|---|
A | B | C | D | E | ||
PB (pH = 6.6) | Crown Ether | Fe2+ | H2O2 | H2O | ||
1 | Complete system Fe2+-Crown ether-H2O2 | 940 | 20 | 20 | 100 | - |
2 | Incomplete system Fe2+-H2O2 | 960 | - | 20 | 100 | - |
3 | Incomplete system Crown ether-H2O2 | 960 | 20 | - | 100 | - |
4 | H2O2 alone | 980 | - | - | 100 | - |
Additional controls | ||||||
5 | Crown ether-Fe2+ | 940 | 20 | 20 | - | 100 |
6 | Medium alone | 980 | - | - | - | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, M.; Sasak, K.; Wlodarczyk, A.; Grabska-Kobylecka, I.; Sarniak, A.; Nowak, D. Ultra-Weak Photon Emission from Crown Ethers Exposed to Fenton’s Reagent Fe2+-H2O2. Molecules 2025, 30, 3282. https://doi.org/10.3390/molecules30153282
Nowak M, Sasak K, Wlodarczyk A, Grabska-Kobylecka I, Sarniak A, Nowak D. Ultra-Weak Photon Emission from Crown Ethers Exposed to Fenton’s Reagent Fe2+-H2O2. Molecules. 2025; 30(15):3282. https://doi.org/10.3390/molecules30153282
Chicago/Turabian StyleNowak, Michał, Krzysztof Sasak, Anna Wlodarczyk, Izabela Grabska-Kobylecka, Agata Sarniak, and Dariusz Nowak. 2025. "Ultra-Weak Photon Emission from Crown Ethers Exposed to Fenton’s Reagent Fe2+-H2O2" Molecules 30, no. 15: 3282. https://doi.org/10.3390/molecules30153282
APA StyleNowak, M., Sasak, K., Wlodarczyk, A., Grabska-Kobylecka, I., Sarniak, A., & Nowak, D. (2025). Ultra-Weak Photon Emission from Crown Ethers Exposed to Fenton’s Reagent Fe2+-H2O2. Molecules, 30(15), 3282. https://doi.org/10.3390/molecules30153282