Migration Safety of Perfluoroalkyl Substances from Sugarcane Pulp Tableware: Residue Analysis and Takeout Simulation Study
Abstract
1. Introduction
2. Results and Discussion
2.1. TF and EOF Content Analysis
2.1.1. ISE Method Validation
2.1.2. TF and EOF Content in Samples
2.2. PFAS Residue Analysis
2.2.1. LC-MS/MS Method Validation for Residues
2.2.2. Optimization of PFAS Extraction
2.2.3. PFAS Residues in Samples
2.3. PFAS Migration Analysis
2.3.1. LC-MS/MS Method Validation for Migration
2.3.2. Migration into Food Simulants Under Intended Use Conditions
2.3.3. Effect of Oscillation Time on PFOA Migration
2.3.4. Effect of Storage Conditions on PFOA Migration
3. Materials and Methods
3.1. Materials and Reagents
3.2. Instrumentation and Equipment
3.3. Determination of TF and EOF Content
3.4. Determination of PFAS Residues
3.4.1. Optimization of Extraction Procedure
3.4.2. Sample Extraction for Residue Analysis
3.4.3. LC-MS/MS Analysis
3.5. Migration Studies
3.5.1. Migration Tests Under Intended Use Conditions
3.5.2. Impact of Simulated Takeout Conditions on Migration
3.5.3. Calculation of Residues and Migration
3.6. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pottinger, A.S.; Geyer, R.; Biyani, N.; Martinez, C.C.; Nathan, N.; Morse, M.R.; Liu, C.; Hu, S.; de Bruyn, M.; Boettiger, C.; et al. Pathways to reduce global plastic waste mismanagement and greenhouse gas emissions by 2050. Science 2024, 386, 1168–1173. [Google Scholar] [CrossRef]
- Tang, M.M.; Chen, C.; Song, J.Z.; Ni, Y.B.; Xiang, B.; Zou, J.; Xu, D.K. Safety of plant fiber-based food contact materials: Overview of the discovery, identification, detection and risk assessment of unknown risk substances. Food Packag. Shelf Life 2024, 43, 101281. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Tang, S.; Qiu, J.; Luo, Y.; Yang, C.; Lai, X.; Wang, Q.; Cao, H. Per- and Polyfluoroalkyl Substances (PFAS) in Consumer Products: An Overview of the Occurrence, Migration, and Exposure Assessment. Molecules 2025, 30, 994. [Google Scholar] [CrossRef] [PubMed]
- Guzman-Puyol, S. Fluorinated compounds in paper and paperboard based food packaging materials. NPJ Sci. Food 2024, 8, 82. [Google Scholar] [CrossRef] [PubMed]
- Calisi, A.; Baranzini, N.; Marcolli, G.; Bon, C.; Rotondo, D.; Gualandris, D.; Pulze, L.; Grimaldi, A.; Dondero, F. Evaluation of per- and polyfluoroalkyl substances (PFAS) toxic effects on the acute inflammatory response in the medicinal leech Hirudoverbana. Chemosphere 2024, 366, 143519. [Google Scholar] [CrossRef]
- Lohmann, R.; Letcher, R.J. The universe of fluorinated polymers and polymeric substances and potential environmental impacts and concerns. Curr. Opin. Green Sustain. Chem. 2023, 41, 100795. [Google Scholar] [CrossRef] [PubMed]
- van Gerwen, M.; Colicino, E.; Guan, H.; Dolios, G.; Nadkarni, G.N.; Vermeulen, R.C.H.; Wolff, M.S.; Arora, M.; Genden, E.M.; Petrick, L.M. Per- and polyfluoroalkyl substances (PFAS) exposure and thyroid cancer risk. eBioMedicine 2023, 97, 104831. [Google Scholar] [CrossRef]
- Das, K.P.; Grey, B.E.; Rosen, M.B.; Wood, C.R.; Tatum-Gibbs, K.R.; Zehr, R.D.; Strynar, M.J.; Lindstrom, A.B.; Lau, C. Developmental toxicity of perfluorononanoic acid in mice. Reprod. Toxicol. 2015, 51, 133–144. [Google Scholar] [CrossRef]
- Anderson, J.K.; Luz, A.L.; Goodrum, P.; Durda, J. Perfluorohexanoic acid toxicity, part II: Application of human health toxicity value for risk characterization. Regul. Toxicol. Pharmacol. 2019, 103, 10–20. [Google Scholar] [CrossRef]
- Venkatesan, A.K.; Halden, R.U. National inventory of perfluoroalkyl substances in archived U.S. biosolids from the 2001 EPA National Sewage Sludge Survey. J. Hazard. Mater. 2013, 252–253, 413–418. [Google Scholar] [CrossRef]
- Weatherly, L.M.; Shane, H.L.; Lukomska, E.; Baur, R.; Anderson, S.E. Systemic toxicity induced by topical application of perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), and perfluoropentanoic acid (PFPeA) in a murine model. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2023, 171, 113515. [Google Scholar] [CrossRef]
- Bonato, T.; Pal, T.; Benna, C.; Di Maria, F. Contamination of the terrestrial food chain by per- and polyfluoroalkyl substances (PFAS) and related human health risks: A systematic review. Sci. Total Environ. 2025, 961, 178337. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, J.; Liu, S.; Wang, C.; Jin, Y.; Lai, H.; Tu, W. Aberrant hepatic lipid metabolism associated with gut microbiota dysbiosis triggers hepatotoxicity of novel PFOS alternatives in adult zebrafish. Environ. Int. 2022, 166, 107351. [Google Scholar] [CrossRef]
- Klein, M.; Neumair, C.; Primoceri, M.; Tacker, M.; Apprich, S. Fit for the Future: An Assessment of the Sustainability Parameters of Liquid Dairy Product Packaging in the DACH Region and the Implications of Upcoming Regulatory Changes. Foods 2025, 14, 195. [Google Scholar] [CrossRef] [PubMed]
- Ignacio, M.; Curtzwiler, G.W.; Early, M.R.; Updegraff, K.M.; Vorst, K.L. Ion Selective Electrode (ISE) Method for Determination of Total Fluorine and Total Organic Fluorine in Packaging Substrates. Methods Protoc. 2023, 6, 10. [Google Scholar] [CrossRef]
- Sapozhnikova, Y.; Taylor, R.B.; Bedi, M.; Ng, C. Assessing per- and polyfluoroalkyl substances in globally sourced food packaging. Chemosphere 2023, 337, 139381. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Peng, H.; Huang, C.; Hu, J. Ubiquitous Occurrence of Fluorotelomer Alcohols in Eco-Friendly Paper-Made Food-Contact Materials and Their Implication for Human Exposure. Environ. Sci. Technol. 2016, 50, 942–950. [Google Scholar] [CrossRef]
- Idowu, I.G.; Ekpe, O.D.; Megson, D.; Bruce-Vanderpuije, P.; Sandau, C.D. A systematic review of methods for the analysis of total per- and polyfluoroalkyl substances (PFAS). Sci. Total Environ. 2025, 967, 178644. [Google Scholar] [CrossRef]
- Hu, J.; Cochran, R.E.; Grim, C.M.; Rumachik, N.G. Comprehensive Screening of Per- and Polyfluoroalkyl Substances (PFAS) in Food Contact Materials: Utilizing Combustion Ion Chromatography for Total Organic Fluorine (TOF) Analysis. J. AOAC Int. 2025, 108, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, P.V.; Nguyen, K.H.; de Quiros, A.R.B.; Sendon, R.; Granby, K.; Niklas, A.A. Identification and quantification of per- and polyfluorinated alkyl substances (PFAS) migrating from food contact materials (FCM). Chemosphere 2024, 360, 142360. [Google Scholar] [CrossRef]
- Schultes, L.; Peaslee, G.F.; Brockman, J.D.; Majumdar, A.; McGuinness, S.R.; Wilkinson, J.T.; Sandblom, O.; Ngwenyama, R.A.; Benskin, J.P. Total Fluorine Measurements in Food Packaging: How Do Current Methods Perform? Environ. Sci. Technol. Lett. 2019, 6, 73–78. [Google Scholar] [CrossRef]
- de Vega, R.G.; Plassmann, M.; Clases, D.; Zangger, K.; Muller, V.; Rosenberg, E.; Reimann, A.; Skedung, L.; Benskin, J.P.; Feldmann, J. A multi-platform approach for the comprehensive analysis of per- and polyfluoroalkyl substances (PFAS) and fluorine mass balance in commercial ski wax products. Anal. Chim. Acta 2024, 1314, 342754. [Google Scholar] [CrossRef]
- Young, A.S.; Pickard, H.M.; Sunderland, E.M.; Allen, J.G. Organic Fluorine as an Indicator of Per- and Polyfluoroalkyl Substances in Dust from Buildings with Healthier versus Conventional Materials. Environ. Sci. Technol. 2022, 56, 17090–17099. [Google Scholar] [CrossRef]
- Lauria, M.Z.; Naim, A.; Plassmann, M.; Faldt, J.; Suhring, R.; Benskin, J.P. Widespread Occurrence of Non-Extractable Fluorine in Artificial Turfs from Stockholm, Sweden. Environ. Sci. Technol. Lett. 2022, 9, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Jiao, E.; Larsson, P.; Wang, Q.; Zhu, Z.; Yin, D.; Karrman, A.; van Hees, P.; Karlsson, P.; Qiu, Y.; Yeung, L.W.Y. Further Insight into Extractable (Organo)fluorine Mass Balance Analysis of Tap Water from Shanghai, China. Environ. Sci. Technol. 2023, 57, 14330–14339. [Google Scholar] [CrossRef]
- Adu, O.; Ma, X.; Sharma, V.K. Bioavailability, phytotoxicity and plant uptake of per-and polyfluoroalkyl substances (PFAS): A review. J. Hazard. Mater. 2023, 447, 130805. [Google Scholar] [CrossRef]
- Brenes, A.L.M.; Curtzwiler, G.; Dixon, P.; Harrata, K.; Talbert, J.; Vorst, K. PFOA and PFOS levels in microwave paper packaging between 2005 and 2018. Food Addit. Contam. Part B Surveill. 2019, 12, 191–198. [Google Scholar] [CrossRef]
- Xu, B.; Qiu, W.; Du, J.; Wan, Z.; Zhou, J.L.; Chen, H.; Liu, R.; Magnuson, J.T.; Zheng, C. Translocation, bioaccumulation, and distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in plants. iScience 2022, 25, 104061. [Google Scholar] [CrossRef]
- Duan, L.; Gu, M.; Wang, M.; Liu, L.; Cheng, X.; Fan, X.; Huang, J. Mechanochemical destruction of perfluorooctane sulfonate (PFOS) using boron carbide (B(4)C). J. Hazard. Mater. 2025, 486, 137044. [Google Scholar] [CrossRef]
- Eeso, K.; Gallan, R.; Goukeh, M.N.; Tate, K.; Raja, R.K.B.; Popovic, Z.; Abichou, T.; Chen, H.; Locke, B.R.; Tang, Y. Degradation of per- and polyfluoroalkyl substances in landfill leachate by a thin-water-film nonthermal plasma reactor. Waste Manag. 2023, 161, 104–115. [Google Scholar] [CrossRef]
- Weidemann, E.; Gassmann, M. Transformation and Leaching Simulation of 6:2 and 8:2 diPAP and Related Metabolites in Unsaturated Soil Column Studies with MACRO. Environ. Model. Assess. 2024, 29, 223–234. [Google Scholar] [CrossRef]
- Zweigle, J.; Bugsel, B.; Schmitt, M.; Zwiener, C. Electrochemical Oxidation of 6:2 Polyfluoroalkyl Phosphate Diester-Simulation of Transformation Pathways and Reaction Kinetics with Hydroxyl Radicals. Environ. Sci. Technol. 2021, 55, 11070–11079. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, W.; Jiang, R.W.; Pawliszyn, J. Solid-phase microextraction with recessed matrix compatible coating for in situ sampling of per- and polyfluoroalkyl substances in meat. Food Chem. 2025, 480, 143891. [Google Scholar] [CrossRef]
- Olomukoro, A.A.; DeRosa, C.; Gionfriddo, E. Investigation of the adsorption/desorption mechanism of perfluoroalkyl substances on HLB-WAX extraction phases for microextraction. Anal. Chim. Acta 2023, 1260, 341206. [Google Scholar] [CrossRef]
- Olomukoro, A.A.; Lüthy, L.; Flug, T.; Gionfriddo, E. Evaluation of extraction methodologies for PFAS analysis in mascara: A comparative study of SPME and automated µSPE. Anal. Bioanal. Chem. 2025, 25, 5908. [Google Scholar] [CrossRef]
- Biek, S.K.; Khudur, L.S.; Askeland, M.; Jones, J.; Sundararajan, K.; Lakshminarayanan, S.; Ball, A.S. Fate of per- and polyfluoroalkyl substances through commercial composting facilities. Bioresour. Technol. 2025, 428, 132485. [Google Scholar] [CrossRef]
- Goswami, L.; Dikshit, P.K.; Prakash, A.; Vidanage, P.W.; Verma, J.P.; Oh, S. A critical review on occurrence, speciation, mobilization, and toxicity of per- and polyfluoroalkyl substances in the soil-microbe-plant system and bioremediation strategies. J. Hazard. Mater. 2025, 494, 138743. [Google Scholar] [CrossRef]
- Tang, L.; Yu, X.; Zhao, W.; Barcelo, D.; Lyu, S.; Sui, Q. Occurrence, behaviors, and fate of per- and polyfluoroalkyl substances (PFASs) in typical municipal solid waste disposal sites. Water Res. 2024, 252, 121215. [Google Scholar] [CrossRef]
- Lerch, M.; Nguyen, K.H.; Granby, K. Is the use of paper food contact materials treated with per- and polyfluorinated alkyl substances safe for high-temperature applications?—Migration study in real food and food simulants. Food Chem. 2022, 393, 133375. [Google Scholar] [CrossRef]
- Carnero, A.R.; Lestido-Cardama, A.; Loureiro, P.V.; Barbosa-Pereira, L.; de Quirós, A.R.B.; Sendón, R. Presence of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in Food Contact Materials (FCM) and Its Migration to Food. Foods 2021, 10, 1443. [Google Scholar] [CrossRef]
- Shen, N.; Tang, J.; Chen, J.; Sheng, C.; Han, T.; He, X.; Liu, C.; Han, C.; Li, X. Occurrence and prevalence of per- and polyfluoroalkyl substances in the sediment pore water of mariculture sites: Novel findings of PFASs from the Bohai and Yellow Seas using a newly established analytical method. J. Hazard. Mater. 2024, 471, 134256. [Google Scholar] [CrossRef]
- Arshadi, M.; Garza-Rubalcava, U.; Guedes, A.; Capiro, N.L.; Pennell, K.D.; Christ, J.; Abriola, L.M. Modeling 1-D aqueous film forming foam transport through the vadose zone under realistic site and release conditions. Sci. Total Environ. 2024, 919, 170566. [Google Scholar] [CrossRef]
- Lemay, A.C.; Bourg, I.C. Interactions between Per- and Polyfluoroalkyl Substances (PFAS) at the Water-Air Interface. Environ. Sci. Technol. 2025, 59, 2201–2210. [Google Scholar] [CrossRef]
- Pranic, M.; Carlucci, L.; van der Wal, A.; Dykstra, J.E. Kinetic and isotherm study for the adsorption of per- and polyfluoroalkyl substances (PFAS) on activated carbon in the low ng/L range. Chemosphere 2025, 370, 143889. [Google Scholar] [CrossRef]
- Alam, M.S.; Abbasi, A.; Chen, G. Fate, distribution, and transport dynamics of Per- and Polyfluoroalkyl Substances (PFASs) in the environment. J. Environ. Manag. 2024, 371, 123163. [Google Scholar] [CrossRef]
- Mikhael, E.; Bouazza, A.; Gates, W.P. Sorption and desorption of per-fluoroalkyl substances (PFAS) on waste containment liner components. J. Environ. Manag. 2025, 381, 125288. [Google Scholar] [CrossRef]
- Kronic, J.; Duckworth, R.M.; Angione, C.; Levy, S.M.; Zohoori, F.V. Assessment of fluoride bio-accessibility in early childhood diets. Front. Oral Health 2025, 6, 1526262. [Google Scholar] [CrossRef]
- Chandio, N.; John, J.R.; Floyd, S.; Gibson, E.; Wong, D.K.Y.; Levy, S.M.; Heilman, J.R.; Arora, A. Fluoride Content of Ready-to-Eat Infant Foods and Drinks in Australia. Int. J. Environ. Res. Public Health 2022, 19, 14087. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Qiu, J.; Luo, Y.; Yang, C.; Tang, S.; Cao, H.; Wang, Q.; Lai, X. Development of a procedure based on dispersive solid phase extraction and LC-MS/MS for the analysis of perfluoroalkyl and polyfluoroalkyl substances in food contact materials. J. Chromatogr. A 2025, 1747, 465815. [Google Scholar] [CrossRef]
- Lambré, C.; Baviera, J.M.B.; Bolognesi, C.; Chesson, A.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; Lampi, E.; Mengelers, M.; et al. Identification and prioritisation for risk assessment of phthalates, structurally similar substances and replacement substances potentially used as plasticisers in materials and articles intended to come into contact with food. EFSA J. 2022, 20, e07231. [Google Scholar] [CrossRef]
Analyte | Linear Range (μg/L) | LOD (μg/L) | LOQ (μg/L) | Linear Equation | R2 |
---|---|---|---|---|---|
TF | 6–100 | 3.0 | 6.0 | Y = 407.76 − 53.03X | 0.9998 |
EOF | 4–100 | 2.0 | 4.0 | Y = 407.76 − 53.03X | 0.9998 |
Analyte | Spike Level (μg/L) | Avg. Recovery (%) |
---|---|---|
TF | 10.0 | 87.1 ± 6.5 |
40.0 | 102.6 ± 4.6 | |
80.0 | 111.4 ± 7.9 | |
EOF | 10.0 | 103.8 ± 6.7 |
40.0 | 97.5 ± 2.2 | |
80.0 | 108.7 ± 3.8 |
PFAS | Linear Range (μg/L) | LOD (μg/L) | LOQ (μg/L) | Linear Equation | R2 |
---|---|---|---|---|---|
PFOA | 0.5–40 | 0.2 | 0.5 | y = 4568.7x + 1973.9 | 0.9999 |
PFOS | 1.2–40 | 0.5 | 1.2 | y = 16,035.1x + 298.5 | 0.9999 |
PFNA | 0.5–40 | 0.2 | 0.5 | y = 20,900.7x + 773.8 | 0.9998 |
PFHxA | 0.5–40 | 0.2 | 0.5 | y = 33,342.9x + 5325.6 | 0.9998 |
PFPeA | 0.5–40 | 0.2 | 0.5 | y = 62,119.2x + 5372.3 | 0.9998 |
Substance | Spiked Level (μg/L) | Average Recovery (%) | ||||
---|---|---|---|---|---|---|
Methanol | Ultrapure Water | 4% Acetic Acid | 50% Ethanol | 95% Ethanol | ||
PFOA | 5.0 | 86.2 ± 8.9 | 115.4 ± 8.1 | 98.3 ± 7.2 | 114.3 ± 6.2 | 103.4 ± 4.8 |
7.5 | 107.4 ± 7.1 | 83.8 ± 3.1 | 109.1 ± 3.9 | 110.1 ± 5.5 | 88.5 ± 5.0 | |
30.0 | 93.1 ± 7.2 | 100.7 ± 0.8 | 90.0 ± 6.5 | 105.4 ± 6.2 | 101.9 ± 6.8 | |
PFOS | 5.0 | 89.7 ± 3.17 | 105.4 ± 7.3 | 89.5 ± 5.5 | 105.8 ± 7.1 | 96.4 ± 7.0 |
7.5 | 95.6 ± 3.4 | 108.8 ± 6.4 | 99.7 ± 5.2 | 101.0 ± 5.2 | 97.7 ± 6.3 | |
30 | 93.8 ± 7.1 | 110.7 ± 4.9 | 104.1 ± 7.3 | 99.3 ± 5.0 | 89.7 ± 5.2 | |
PFNA | 5.0 | 85.9 ± 1.5 | 92.3 ± 7.3 | 87.2 ± 3.2 | 98.3 ± 6.7 | 97.5 ± 6.1 |
7.5 | 95.9 ± 2.9 | 104.8 ± 4.3 | 98.3 ± 0.8 | 86.8 ± 2.9 | 88.9 ± 4.5 | |
30.0 | 104.6 ± 6.5 | 92.9 ± 2.3 | 104.3 ± 1.2 | 95.4 ± 4.2 | 93.4 ± 7.3 | |
PFHxA | 5.0 | 91.7 ± 8.9 | 112.5 ± 3.2 | 96.3 ± 0.7 | 105.9 ± 3.2 | 93.4 ± 2.8 |
7.5 | 96.7 ± 3.8 | 107.1 ± 1.4 | 100.5 ± 3.9 | 99.3 ± 3.1 | 91.8 ± 3.7 | |
30.0 | 99.4 ± 6.8 | 100.7 ± 0.8 | 98.0 ± 5.5 | 95.3 ± 2.9 | 94.5 ± 4.5 | |
PFPeA | 5.0 | 90.9 ± 7.4 | 112.1 ± 8.8 | 96.5 ± 0.8 | 101.0 ± 4.8 | 98.1 ± 2.9 |
7.5 | 99.6 ± 6.8 | 118.6 ± 1.4 | 94.5 ± 2.3 | 99.1 ± 5.3 | 96.8 ± 3.5 | |
30.0 | 97.0 ± 6.1 | 108.7 ± 5.4 | 92.1 ± 8.2 | 103.2 ± 5.9 | 87.8 ± 2.4 |
Name | Food Simulant | Linear Equation | R2 | Linear Range (μg/L) | LOD/(μg/L) | LOQ/(μg/L) |
---|---|---|---|---|---|---|
PFOA | Ultrapure water | Y = 35,311.9x + 201,942.6 | 0.9999 | 0.5~40 | 0.2 | 0.5 |
4% acetic acid | Y = 39,154.6x + 265,547.2 | 0.9997 | 0.5~40 | 0.2 | 0.5 | |
50% ethanol | Y = 51,231.5x + 269,475.3 | 0.9987 | 0.5~40 | 0.2 | 0.5 | |
95% ethanol | Y = 24,186.9x + 289,795.3 | 0.9986 | 0.5~40 | 0.2 | 0.5 | |
PFOS | Ultrapure water | Y = 2572.5x + 2772.1 | 0.9999 | 1.5~40 | 0.5 | 1.5 |
4% acetic acid | Y = 2258.7x + 711.1 | 0.9971 | 3.0~40 | 0.9 | 3.0 | |
50% ethanol | Y = 4587.1x + 1028 | 0.9998 | 0.8~40 | 0.3 | 0.8 | |
95% ethanol | Y = 1353x + 4179.1 | 0.9991 | 3.0~40 | 0.9 | 3.0 | |
PFNA | Ultrapure water | Y = 24,917.4x − 10,909.3 | 0.9984 | 0.5~40 | 0.1 | 0.3 |
4% acetic acid | Y = 20,301.5x − 1033.1 | 0.9979 | 0.5~40 | 0.2 | 0.5 | |
50% ethanol | Y = 35,932.5x + 6584.2 | 0.9999 | 0.5~40 | 0.1 | 0.3 | |
95% ethanol | Y = 16,679.2x + 37,326.8 | 0.9977 | 0.5~40 | 0.2 | 0.5 | |
PFHxA | Ultrapure water | Y = 2250.2x − 387.9 | 0.9981 | 0.5~40 | 0.2 | 0.5 |
4% acetic acid | Y = 2594.4x + 485.1 | 0.9984 | 0.5~40 | 0.2 | 0.5 | |
50% ethanol | Y = 2639.7x + 835.1 | 0.9999 | 0.5~40 | 0.2 | 0.5 | |
95% ethanol | Y = 1249.12x + 7812 | 0.9999 | 0.5~40 | 0.2 | 0.5 | |
PFPeA | Ultrapure water | Y = 34,432.7x + 12,957.1 | 0.9993 | 0.5~40 | 0.2 | 0.5 |
4% acetic acid | Y = 39,984.1x + 38,144.2 | 0.9995 | 0.5~40 | 0.2 | 0.5 | |
50% ethanol | Y = 41,437.8x + 16,946 | 0.9999 | 0.5~40 | 0.2 | 0.5 | |
95% ethanol | Y = 23,838.6x + 83,774.2 | 0.9999 | 0.5~40 | 0.2 | 0.5 |
Sample Type | Expected Contact Time | Food Simulants | Migration Conditions |
---|---|---|---|
T1–T13 (Containers) | 60 < t ≤ 90 min | 50% EtOH, 95% EtOH | Reflux Temp, 2 h |
Ultrapure H2O, 4% HAc | 100 °C, 2 h | ||
C1–C9 (Tea Cups) | 5 < t ≤ 30 min | 50% EtOH, 95% EtOH | Reflux Temp, 30 min |
Ultrapure H2O, 4% HAc | 100 °C, 30 min |
Sample ID | Max. Use Temp. (°C) | Microwave Safe | Sample ID | Max. Use Temp. (°C) | Microwave Safe |
---|---|---|---|---|---|
T1 | 120 | Yes | T12 | 120 | Yes |
T2 | 120 | Yes | T13 | 120 | Yes |
T3 | 170 | Yes | C1 | 120 | N/A |
T4 | 120 | Yes | C2 | 120 | N/A |
T5 | 120 | Yes | C3 | 100 | N/A |
T6 | 150 | Yes | C4 | 100 | N/A |
T7 | 100 | Yes | C5 | 100 | N/A |
T8 | 120 | Yes | C6 | 100 | N/A |
T9 | 120 | Yes | C7 | 120 | N/A |
T10 | 120 | Yes | C8 | 120 | N/A |
T11 | 120 | Yes | C9 | 120 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Hu, C.; Wang, Z. Migration Safety of Perfluoroalkyl Substances from Sugarcane Pulp Tableware: Residue Analysis and Takeout Simulation Study. Molecules 2025, 30, 3166. https://doi.org/10.3390/molecules30153166
Chen L, Hu C, Wang Z. Migration Safety of Perfluoroalkyl Substances from Sugarcane Pulp Tableware: Residue Analysis and Takeout Simulation Study. Molecules. 2025; 30(15):3166. https://doi.org/10.3390/molecules30153166
Chicago/Turabian StyleChen, Ling, Changying Hu, and Zhiwei Wang. 2025. "Migration Safety of Perfluoroalkyl Substances from Sugarcane Pulp Tableware: Residue Analysis and Takeout Simulation Study" Molecules 30, no. 15: 3166. https://doi.org/10.3390/molecules30153166
APA StyleChen, L., Hu, C., & Wang, Z. (2025). Migration Safety of Perfluoroalkyl Substances from Sugarcane Pulp Tableware: Residue Analysis and Takeout Simulation Study. Molecules, 30(15), 3166. https://doi.org/10.3390/molecules30153166