Simple Cobalt Nanoparticle-Catalyzed Reductive Amination for Selective Synthesis of a Broad Range of Primary Amines
Abstract
1. Introduction
2. Results and Discussion
2.1. Preparation of the Co-Ph@SiO2(x)
2.2. Catalytic Performance of Various Catalysts
2.3. Reasons for the High Activity of Co-Ph@SiO2(900)
2.4. Optimization of Reaction Conditions
2.5. Substrate Scope
2.6. Mechanism Investigation
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fliedel, C.; Ghisolfi, A.; Braunstein, P. Functional short-bite ligands: Synthesis, coordination chemistry, and applications of N-functionalized bis(diaryl/dialkylphosphino)amine-type ligands. Chem. Rev. 2016, 116, 9237–9304. [Google Scholar] [CrossRef] [PubMed]
- Afanasyev, O.; Kuchuk, E.; Usanov, D.; Chusov, D. Reductive amination in the synthesis of pharmaceuticals. Chem. Rev. 2019, 119, 11857–11911. [Google Scholar] [CrossRef] [PubMed]
- Luan, S.; Wu, W.; Zheng, B.X.; Wu, Y.X.; Dong, M.H.; Shen, X.J.; Wang, T.J.; Deng, Z.J.; Zhang, B.; Chen, B.F.; et al. Atomically dispersed cobalt catalysts for tandem synthesis of primary benzylamines from oxidized b-O-4 segments. Chem. Sci. 2024, 15, 10954–10962. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Shibuya, R.; Nakahara, Y.; Germain, N.; Ohshima, T.; Mashima, K. Platinum-catalyzed direct amination of allylic alcohols with aqueous ammonia: Selective synthesis of primary allylamines. Angew. Chem. Int. Ed. 2012, 51, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Gunanathan, C.; Milstein, D. Selective synthesis of primary amines directly from alcohols and ammonia. Angew. Chem. Int. Ed. 2008, 47, 8661–8664. [Google Scholar] [CrossRef] [PubMed]
- Imm, S.; Bähn, S.; Zhang, M.; Neubert, L.; Neumann, H.; Klasovsky, F.; Pfeffer, J.; Haas, T.; Beller, M. Improved rutheniumcatalyzed amination of alcohols with ammonia: Synthesis of diamines and amino esters. Angew. Chem. Int. Ed. 2011, 50, 7599–7603. [Google Scholar] [CrossRef] [PubMed]
- Goksu, H.; Sert, H.; Kilbas, B.; Sen, F. Recent advances in the reduction of nitro compounds by heterogenous catalysts. Curr. Org. Chem. 2017, 21, 794–820. [Google Scholar] [CrossRef]
- Adam, R.; Bheeter, C.B.; Cabrero-Antonino, J.R.; Junge, K.; Jackstell, R.; Beller, M. Selective hydrogenation of nitriles to primary amines by using a cobalt phosphine catalyst. ChemSusChem 2017, 10, 842–846. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Gautam, R.; Yadav, H.; Kushwaha, V.; Mishra, A.; Gupta, S.; Arora, V. Efficient reduction of C-N multiple bonds catalyzed by magnetically retrievable magnetite nanoparticles with sodium borohydride. Catal. Lett. 2016, 146, 2149–2156. [Google Scholar] [CrossRef]
- Das, S.; Wendt, B.; Möller, K.; Junge, K.; Beller, M. Two iron catalysts are better than one: A general and convenient reduction of aromatic and aliphatic primary amides. Angew. Chem. Int. Ed. 2012, 51, 1662–1666. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Guo, H.; Su, Y.; Hiraga, Y.; Fang, Z.; Hensen, E.J.M.; Watanabe, M.; Smith, R.L. N-formyl-stabilizing quasi-catalytic species afford rapid and selective solvent-free amination of biomass-derived feedstocks. Nat. Commun. 2019, 10, 699. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.X.; Xu, J.; Song, J.L.; Wu, H.H.; Mei, X.L.; Zhang, K.L.; Han, W.Y.; Wu, W.; He, M.Y.; Han, B.X. Nanoparticles and single atoms of cobalt synergistically enabled low-temperature reductive amination of carbonyl compounds. Chem. Sci. 2022, 13, 9047–9055. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Song, J.L.; Hua, M.L.; Hu, Y.; Huang, X.; Wu, H.R.; Yang, G.Y.; Han, B.X. Ambient-temperature synthesis of primary amines via reductive amination of carbonyl compounds. ACS Catal. 2020, 10, 7763–7772. [Google Scholar] [CrossRef]
- Gallardo-Donaire, J.; Hermsen, M.; Wysocki, J.; Ernst, M.; Rominger, F.; Trapp, O.; Hashmi, A.S.K.; Schäfer, A.; Comba, P.; Schaub, T. Direct asymmetric ruthenium-catalyzed reductive amination of alkyl-aryl ketones with ammonia and hydrogen. J. Am. Chem. Soc. 2018, 140, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Furukawa, S.; Fu, X.; Yan, N. Organonitrogen chemicals from oxygen-containing feedstock over heterogeneous catalysts. ACS Catal. 2019, 10, 311–335. [Google Scholar] [CrossRef]
- Tokmic, K.; Jackson, B.J.; Salazar, A.; Woods, T.J.; Fout, A.R. Cobalt-catalyzed and lewis acid-assisted nitrile hydrogenation to primary amines: A combined effort. J. Am. Chem. Soc. 2017, 139, 13554–13561. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Kon, K.; Touchy, A.S.; Shimizu, K.-I.; Ueda, W. Selective synthesis of primary amines by reductive amination of ketones with ammonia over supported Pt catalysts. ChemCatChem 2015, 7, 921–924. [Google Scholar] [CrossRef]
- Liang, G.F.; Wang, A.Q.; Li, L.; Xu, G.; Yan, N.; Zhang, T. Production of primary amines by reductive amination of biomass-derived aldehydes/ketones. Angew. Chem. Int. Ed. 2017, 56, 3050–3054. [Google Scholar] [CrossRef] [PubMed]
- Komanoya, T.; Kinemura, T.; Kita, Y.; Kamata, Y.K.; Hara, M. Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds. J. Am. Chem. Soc. 2017, 139, 11493–11499. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, M.; Ishizakaa, T.; Kawanami, H. Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: An environmentally friendly approach. Green Chem. 2016, 18, 487–496. [Google Scholar] [CrossRef]
- Gross, T.; Seayad, A.M.; Ahmad, M.; Beller, M. Synthesis of primary amines: first homogeneously catalyzed reductive amination with ammonia. Org. Lett. 2002, 4, 2055–2058. [Google Scholar] [CrossRef] [PubMed]
- Senthamarai, T.; Murugesan, K.; Schneidewind, J.; Kalevaru, N.V.; Baumann, W.; Neumann, H.; Kamer, P.C.J.; Beller, M.; Jagadeesh, R.V. Simple ruthenium-catalyzed reductive amination enables the synthesis of a broad range of primary amines. Nat. Commun. 2018, 9, 4123. [Google Scholar] [CrossRef] [PubMed]
- Heinz, C.; Lutz, J.P.; Simmons, E.M.; Miller, M.M.; Ewing, W.R.; Doyle, A.G. Ni-catalyzed carbon–carbon bond-forming reductive amination. J. Am. Chem. Soc. 2018, 140, 2292–2300. [Google Scholar] [CrossRef] [PubMed]
- Jagadeesh, R.V.; Murugesan, K.; Alshammari, A.S.; Neumann, H.; Pohl, M.-M.; Radnik, J.; Beller, M. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science 2017, 358, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Elfinger, M.; Schönauer, T.; Thomä, S.L.J.; Stäglich, R.; Drechsler, M.; Zobel, M.; Senker, J.; Kempe, R. Co-catalyzed synthesis of primary amines via reductive amination employing hydrogen under very mild conditions. ChemSusChem 2021, 14, 2360–2366. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, K.; Beller, M.; Jagadeesh, R.V. Reusable nickel nanoparticles-catalyzed reductive amination for selective synthesis of primary amines. Angew. Chem. Int. Ed. 2019, 58, 5064–5068. [Google Scholar] [CrossRef] [PubMed]
- Hahn, G.; Kunnas, P.; de Jonge, N.; Kempe, R. Generalsynthesis of primary amines via reductive amination employing a reusable nickel catalyst. Nat. Catal. 2019, 2, 71–77. [Google Scholar] [CrossRef]
- Bäumler, C.; Bauer, C.; Kempe, R. The synthesis of primary amines through reductive amination employing an iron catalyst. ChemSusChem 2020, 13, 3110–3114. [Google Scholar] [CrossRef] [PubMed]
- Chary, K.V.R.; Seela, K.K.; Naresh, D.; Ramakanth, P. Characterization and reductive amination of cyclohexanol and cyclohexanone over Cu/ZrO2 catalysts. Catal. Commun. 2008, 9, 75–81. [Google Scholar] [CrossRef]
- Zhang, J.H.; Xu, Y.L.; Huang, M.M.; Fan, Y.W.; Zhang, E.Q.; Zhang, J.S. Enhanced efficiency and stability of Cs-modified Ni-based catalysts for selective synthesis of primary amines. Chem. Eng. J. 2025, 503, 158280. [Google Scholar] [CrossRef]
- Kita, Y.; Yanagisaw, N.; Arai, M.; Kamata, K.; Hara, M. Supported Fe catalysts prepared through layered double hydroxides for primary amine synthesis by reductive amination of carbonyl compounds. Catal. Sci. Technol. 2024, 14, 5430–5438. [Google Scholar] [CrossRef]
- Tsuda, T.; Ishikawa, H.; Sheng, M.; Hirayama, M.; Suganuma, S.; Osuga, R.; Nakajima, K.; Kondo, J.N.; Yamaguchi, S.; Mizugaki, T.; et al. Highly active and air-stable iron phosphide catalyst for reductive amination of carbonyl compounds enabled by metal-support synergy. J. Am. Chem. Soc. 2025, 147, 14326–14335. [Google Scholar] [CrossRef] [PubMed]
- Sheng, M.; Fujita, S.; Yamaguchi, S.; Yamasaki, J.; Nakajima, K.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T. Single-crystal cobalt phosphide nanorods as a high-performance catalyst for reductive amination of carbonyl compounds. JACS Au 2021, 1, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.H.; Wang, L.Y.; Shang, S.S.; Li, G.S.; Lv, Y.; Gao, S.; Dai, W. Cobalt Nanoparticles-catalyzed widely applicable successive C-C bond cleavage in alcohols to access esters. Angew. Chem. Int. Ed. 2020, 59, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.K.; Jin, W.W.; Jiang, Q.B. Brønsted acid activation strategy in transition-metal catalyzed asymmetric hydrogenation of N-unprotected imines, enamines, and N-heteroaromatic compounds. Angew. Chem. Int. Ed. 2012, 51, 6060–6072. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-J.; Villa-Marcos, B.; Xiao, J.L. Metal-brønsted acid cooperative catalysis for asymmetric reductive amination. J. Am. Chem. Soc. 2009, 131, 6967–6969. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wang, Y.Z.; Yan, N. A remarkable solvent effect on reductive amination of ketones. Mol. Catal. 2018, 454, 87–93. [Google Scholar] [CrossRef]
Entry | Catalyst | Conversion (%) | Selectivity (%) | ||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | |||
1 | blank | 66.0 | 0 | 0 | >99 | 0 | 0 |
2 | precursor | 72.7 | 0 | 0 | >99 | 0 | 0 |
3 | Co-Ph@SiO2(700) | 71.4 | 36.2 | 1.1 | 27.7 | 35.0 | 0 |
4 | Co-Ph@SiO2(800) | 82.6 | 69.4 | 1.4 | 1.8 | 27.4 | 0 |
5 | Co-Ph@SiO2(900) | 92.1 | 82.2 | 2.0 | 1.0 | 17.5 | 0 |
6 | Co-Ph@SiO2(1000) | 65.1 | 2.2 | 0 | 76.0 | 21.8 | 0 |
7 b | Co-Ph@SiO2(900) | >99 | 98.0 | 2.0 | 0 | 0 | 0 |
8 | Ni-Ph@SiO2(900) | 67.1 | 0 | 0 | 95.5 | 4.5 | 0 |
9 | Fe-Ph@SiO2(900) | 68.3 | 0 | 0 | 98.1 | 1.9 | 0 |
Entry | Ketone | Product | Yields b, e (%) |
---|---|---|---|
1 | 98 (96) | ||
2 | 99 (97) | ||
3 | 98 (95) | ||
4 | 95 (93) | ||
5 | 96 (93) | ||
6 | 97 (92) | ||
7 | 95 (93) | ||
8 c | 98 (95) | ||
9 | 98 (94) | ||
10 | 97 (93) | ||
11 | 96 (93) | ||
12 d | 96 (94) | ||
13 | 98 (95) | ||
14 | 98 (94) |
Entry | Ketone | Product | Yields b,d (%) |
---|---|---|---|
1 | 98 (96) | ||
2 | 99 (95) | ||
3 | 97 (94) | ||
4 | 96 (93) | ||
5 | 97 (93) | ||
6 | 97 (95) | ||
7 | 94 (92) | ||
8 | 98 (94) | ||
9 | 97 (93) | ||
10 c | 90 (88) |
Entry | Aldehyde | Product | Yields b, e(%) |
---|---|---|---|
1 | 98 (93) | ||
2 | 96 (93) | ||
3 | 95 (92) | ||
4 | 93 (90) | ||
5 | 95 (93) | ||
6 c | 93 (92) | ||
7 c | 90 (86) | ||
8 | 95 (90) | ||
9 | 95 (92) | ||
10 | 98 (94) | ||
11 | 94 (90) | ||
12 c | 94 (91) | ||
13 c | 92 (90) | ||
14 c | 90 (88) | ||
15 c | 88 (85) | ||
16 d | 72 (70) | ||
17 d | 73 (70) | ||
18 c | 95 (90) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, B.; Yang, L.; Hei, Y.; Yu, L.; Wen, S.; Ba, L.; Ao, L.; Zhao, Z. Simple Cobalt Nanoparticle-Catalyzed Reductive Amination for Selective Synthesis of a Broad Range of Primary Amines. Molecules 2025, 30, 3089. https://doi.org/10.3390/molecules30153089
Zheng B, Yang L, Hei Y, Yu L, Wen S, Ba L, Ao L, Zhao Z. Simple Cobalt Nanoparticle-Catalyzed Reductive Amination for Selective Synthesis of a Broad Range of Primary Amines. Molecules. 2025; 30(15):3089. https://doi.org/10.3390/molecules30153089
Chicago/Turabian StyleZheng, Bingxiao, Liqin Yang, Yashuang Hei, Ling Yu, Sisi Wen, Lisi Ba, Long Ao, and Zhiju Zhao. 2025. "Simple Cobalt Nanoparticle-Catalyzed Reductive Amination for Selective Synthesis of a Broad Range of Primary Amines" Molecules 30, no. 15: 3089. https://doi.org/10.3390/molecules30153089
APA StyleZheng, B., Yang, L., Hei, Y., Yu, L., Wen, S., Ba, L., Ao, L., & Zhao, Z. (2025). Simple Cobalt Nanoparticle-Catalyzed Reductive Amination for Selective Synthesis of a Broad Range of Primary Amines. Molecules, 30(15), 3089. https://doi.org/10.3390/molecules30153089