Multifaceted Interactions Between Bile Acids, Their Receptors, and MASH: From Molecular Mechanisms to Clinical Therapeutics
Abstract
1. Introduction
2. Methods
3. Biosynthesis and Metabolism of Bile Acids
3.1. Synthesis Pathway of Bile Acids
3.1.1. Classic Pathway (Neutral Pathway)
3.1.2. Alternative Pathway (Acid Pathway)
3.2. Bile Acid Metabolism
4. The Relationship Between Bile Acids and Their Receptors in the Context of MASH
4.1. Bile Acid Receptors
4.2. The Function of Bile Acids and Their Receptors in the MASH Pathway
4.2.1. Regulation of Hepatic Lipid Accumulation and Inflammatory Processes
4.2.2. The Relationship Between Bile Acids and the Progression of Liver Fibrosis
4.2.3. Regulation of Energy Metabolism and Modulation of Insulin Sensitivity
5. Bile Acids Are Anticipated to Serve as a Therapeutic Target for the Management of MASH
5.1. Intervention in the Bile Acid Pathway as a Therapeutic Approach for Managing MASH
5.1.1. Investigation into the Molecular Mechanisms Underlying the Regulation of Bile Acid Synthesis by Pharmaceuticals
5.1.2. Strategies for Drug Research Focusing on Bile Acid Metabolism
5.2. The Clinical Application of Bile Acids and Receptor Modulators in the Treatment of MASH
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BAs | Bile acids |
MASH | Metabolic dysfunction-associated steatohepatitis |
MASLD | Metabolic dysfunction-associated steatotic liver disease |
CA | Cholic acid |
CDCA | Chenodeoxycholic acid |
DCA | Deoxycholic acid |
LCA | Lithocholic acid |
UDCA | Ursodeoxycholic acid |
CYP7A1 | Cholesterol 7 alpha-hydroxylase |
CYP8B1 | Sterol 12α-hydroxylase |
CYP27A1 | Sterol 27-hydroxylase |
CYP7B1 | Oxysterol 7α-hydroxylase |
NF-kB | Nuclear factor kappa B |
ASBT | Apical sodium-dependent bile acid transporter |
BSH | Bile salt hydrolase |
3-sucCA | 3-succinylated cholic acid |
ERK1/2 | Extracellular signal-regulated kinases 1 and 2 |
Gly-MCA | Glycine-β-muricholic acid |
BSEP | Bile salt export pump |
TDCA | Taurochenodeoxycholic acid |
SHP | Small heterodimer partner |
FXR | Farnesoid X receptor |
PXR | Pregnane X receptor |
VDR | Vitamin D receptor |
CAR | Chimeric antigen receptor |
TGR5 | Takeda G protein receptor 5 |
S1PR2 | Sphingosine 1-phosphate receptor 2 |
GLP-1 | Glucagon-like peptide-1 |
HSCs | Hepatic stellate cells |
OCA | Obeticholic acid |
HCC | Hepatocellular carcinoma |
References
- Harrison, S.A.; Allen, A.M.; Dubourg, J.; Noureddin, M.; Alkhouri, N. Challenges and Opportunities in NASH Drug Development. Nat. Med. 2023, 29, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Esler, W.P.; Cohen, D.E. Pharmacologic Inhibition of Lipogenesis for the Treatment of NAFLD. J. Hepatol. 2024, 80, 362–377. [Google Scholar] [CrossRef] [PubMed]
- Shimano, H.; Sato, R. SREBP-Regulated Lipid Metabolism: Convergent Physiology—Divergent Pathophysiology. Nat. Rev. Endocrinol. 2017, 13, 710–730. [Google Scholar] [CrossRef] [PubMed]
- Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The Multiple-Hit Pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD). Metab. Clin. Exp. 2016, 65, 1038–1048. [Google Scholar] [CrossRef]
- Arivazhagan, L.; Delbare, S.; Wilson, R.A.; Manigrasso, M.B.; Zhou, B.; Ruiz, H.H.; Mangar, K.; Higa, R.; Brown, E.; Li, H.; et al. Sex Differences in Murine MASH Induced by a Fructose-Palmitate-Cholesterol-Enriched Diet. JHEP Rep. 2025, 7, 101222. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Mark, H.E.; Anstee, Q.M.; Arab, J.P.; Batterham, R.L.; Castera, L.; Cortez-Pinto, H.; Crespo, J.; Cusi, K.; Dirac, M.A.; et al. Advancing the Global Public Health Agenda for NAFLD: A Consensus Statement. Nat. Rev. Gastroenterol. Hepatol. 2021, 19, 60–78. [Google Scholar] [CrossRef]
- Sheka, A.C.; Adeyi, O.; Thompson, J.; Hameed, B.; Crawford, P.A.; Ikramuddin, S. Nonalcoholic Steatohepatitis: A Review. JAMA 2020, 323, 1175. [Google Scholar] [CrossRef]
- Gallage, S.; Avila, J.E.B.; Ramadori, P.; Focaccia, E.; Rahbari, M.; Ali, A.; Malek, N.P.; Anstee, Q.M.; Heikenwalder, M. A Researcher’s Guide to Preclinical Mouse NASH Models. Nat. Metab. 2022, 4, 1632–1649. [Google Scholar] [CrossRef]
- Borrelli, A.; Bonelli, P.; Tuccillo, F.M.; Goldfine, I.D.; Evans, J.L.; Buonaguro, F.M.; Mancini, A. Role of Gut Microbiota and Oxidative Stress in the Progression of Non-Alcoholic Fatty Liver Disease to Hepatocarcinoma: Current and Innovative Therapeutic Approaches. Redox Biol. 2018, 15, 467–479. [Google Scholar] [CrossRef]
- Dhingra, S.; Mahadik, J.D.; Tarabishy, Y.; May, S.B.; Vierling, J.M. Prevalence and Clinical Significance of Portal Inflammation, Portal Plasma Cells, Interface Hepatitis and Biliary Injury in Liver Biopsies from Patients with Non-Alcoholic Steatohepatitis. Pathology 2022, 54, 686–693. [Google Scholar] [CrossRef]
- Kanwal, F.; Shubrook, J.H.; Younossi, Z.; Natarajan, Y.; Bugianesi, E.; Rinella, M.E.; Harrison, S.A.; Mantzoros, C.; Pfotenhauer, K.; Klein, S.; et al. Preparing for the NASH Epidemic: A Call to Action. Obesity 2021, 29, 1401–1412. [Google Scholar] [CrossRef]
- Rose, J.P.; Morgan, D.A.; Sullivan, A.I.; Fu, X.; Inigo-Vollmer, M.; Burgess, S.C.; Meyerholz, D.K.; Rahmouni, K.; Potthoff, M.J. FGF21 Reverses MASH through Coordinated Actions on the CNS and Liver. Cell Metab. 2025, 37, 1515–1529.e6. [Google Scholar] [CrossRef]
- Shan, X.; Zhao, Z.; Lai, P.; Liu, Y.; Li, B.; Ke, Y.; Jiang, H.; Zhou, Y.; Li, W.; Wang, Q.; et al. RNA Nanotherapeutics with Fibrosis Overexpression and Retention for MASH Treatment. Nat. Commun. 2024, 15, 7623. [Google Scholar] [CrossRef]
- Cheng, Z.; Chen, Y.; Schnabl, B.; Chu, H.; Yang, L. Bile Acid and Nonalcoholic Steatohepatitis: Molecular Insights and Therapeutic Targets. J. Adv. Res. 2024, 59, 173–187. [Google Scholar] [CrossRef]
- Suvarna, R.; Shetty, S.; Pappachan, J.M. Efficacy and Safety of Resmetirom, a Selective Thyroid Hormone Receptor-β Agonist, in the Treatment of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A Systematic Review and Meta-Analysis. Sci. Rep. 2024, 14, 19790. [Google Scholar] [CrossRef] [PubMed]
- Jirapinyo, P.; McCarty, T.R.; Dolan, R.D.; Shah, R.; Thompson, C.C. Effect of Endoscopic Bariatric and Metabolic Therapies on Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2022, 20, 511–524.e1. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Rimal, B.; Jiang, C.; Chiang, J.Y.L.; Patterson, A.D. Bile Acid Metabolism and Signaling, the Microbiota, and Metabolic Disease. Pharmacol. Ther. 2022, 237, 108238. [Google Scholar] [CrossRef] [PubMed]
- Winston, J.A.; Theriot, C.M. Diversification of Host Bile Acids by Members of the Gut Microbiota. Gut Microbes 2020, 11, 158–171. [Google Scholar] [CrossRef]
- Li, T.; Chiang, J.Y.L. Bile Acid Signaling in Metabolic Disease and Drug Therapy. Pharmacol. Rev. 2014, 66, 948–983. [Google Scholar] [CrossRef]
- Deng, F.; Bae, Y.H. Bile Acid Transporter-Mediated Oral Drug Delivery. J. Control. Release 2020, 327, 100–116. [Google Scholar] [CrossRef]
- Song, Y.; Xu, C.; Shao, S.; Liu, J.; Xing, W.; Xu, J.; Qin, C.; Li, C.; Hu, B.; Yi, S.; et al. Thyroid-Stimulating Hormone Regulates Hepatic Bile Acid Homeostasis via SREBP-2/HNF-4α/CYP7A1 Axis. J. Hepatol. 2015, 62, 1171–1179. [Google Scholar] [CrossRef]
- Chen, L.; Jiao, T.; Liu, W.; Luo, Y.; Wang, J.; Guo, X.; Tong, X.; Lin, Z.; Sun, C.; Wang, K.; et al. Hepatic Cytochrome P450 8B1 and Cholic Acid Potentiate Intestinal Epithelial Injury in Colitis by Suppressing Intestinal Stem Cell Renewal. Cell Stem Cell 2022, 29, 1366–1381.e9. [Google Scholar] [CrossRef] [PubMed]
- de Aguiar Vallim, T.Q.; Tarling, E.J.; Ahn, H.; Hagey, L.R.; Romanoski, C.E.; Lee, R.G.; Graham, M.J.; Motohashi, H.; Yamamoto, M.; Edwards, P.A. MAFG Is a Transcriptional Repressor of Bile Acid Synthesis and Metabolism. Cell Metab. 2015, 21, 298–311. [Google Scholar] [CrossRef] [PubMed]
- Del Castillo-Olivares, A.; Gil, G. Suppression of Sterol 12α-Hydroxylase Transcription by the Short Heterodimer Partner: Insights into the Repression Mechanism. Nucleic Acids Res. 2001, 29, 4035–4042. [Google Scholar] [CrossRef]
- Chew, N.W.S.; Ng, C.H.; Truong, E.; Noureddin, M.; Kowdley, K.V. Nonalcoholic Steatohepatitis Drug Development Pipeline: An Update. Semin. Liver Dis. 2022, 42, 379–400. [Google Scholar] [CrossRef]
- Lin, S.; Wang, S.; Wang, P.; Tang, C.; Wang, Z.; Chen, L.; Luo, G.; Chen, H.; Liu, Y.; Feng, B.; et al. Bile Acids and Their Receptors in Regulation of Gut Health and Diseases. Prog. Lipid Res. 2023, 89, 101210. [Google Scholar] [CrossRef]
- Jia, W.; Wei, M.; Rajani, C.; Zheng, X. Targeting the Alternative Bile Acid Synthetic Pathway for Metabolic Diseases. Protein Cell 2020, 12, 411–425. [Google Scholar] [CrossRef]
- Alrehaili, B.D.; Lee, M.; Takahashi, S.; Novak, R.; Rimal, B.; Boehme, S.; Trammell, S.A.J.; Grevengoed, T.J.; Kumar, D.; Alnouti, Y.; et al. Bile Acid Conjugation Deficiency Causes Hypercholanemia, Hyperphagia, Islet Dysfunction, and Gut Dysbiosis in Mice. Hepatol. Commun. 2022, 6, 2765–2780. [Google Scholar] [CrossRef]
- Andress, E.J.; Nicolaou, M.; McGeoghan, F.; Linton, K.J. ABCB4 Missense Mutations D243A, K435T, G535D, I490T, R545C, and S978P Significantly Impair the Lipid Floppase and Likely Predispose to Secondary Pathologies in the Human Population. Cell. Mol. Life Sci. 2017, 74, 2513–2524. [Google Scholar] [CrossRef]
- Zhang, X.; Lau, H.C.-H.; Ha, S.; Liu, C.; Liang, C.; Lee, H.W.; Ng, Q.W.-Y.; Zhao, Y.; Ji, F.; Zhou, Y.; et al. Intestinal TM6SF2 Protects against Metabolic Dysfunction-Associated Steatohepatitis through the Gut–Liver Axis. Nat. Metab. 2025, 7, 102–119. [Google Scholar] [CrossRef]
- Nie, Q.; Luo, X.; Wang, K.; Ding, Y.; Jia, S.; Zhao, Q.; Li, M.; Zhang, J.; Zhuo, Y.; Lin, J.; et al. Gut Symbionts Alleviate MASH through a Secondary Bile Acid Biosynthetic Pathway. Cell 2024, 187, 2717–2734.e33. [Google Scholar] [CrossRef] [PubMed]
- Ridlon, J.M.; Gaskins, H.R. Another Renaissance for Bile Acid Gastrointestinal Microbiology. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 348–364. [Google Scholar] [CrossRef] [PubMed]
- Metry, M.; Dirda, N.D.A.; Raufman, J.-P.; Polli, J.E.; Kao, J.P.Y. Novel Nitroxide-Bile Acid Conjugates Inform Substrate Requirements for Human Bile Acid Transporters. Eur. J. Pharm. Sci. 2023, 180, 106335. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Sun, X.; Oh, S.F.; Wu, M.; Zhang, Y.; Zheng, W.; Geva-Zatorsky, N.; Jupp, R.; Mathis, D.; Benoist, C.; et al. Microbial Bile Acid Metabolites Modulate Gut RORγ+ Regulatory T Cell Homeostasis. Nature 2019, 577, 410–415. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Bonfrate, L.; Baj, J.; Khalil, M.; Garruti, G.; Stellaard, F.; Wang, H.H.; Wang, D.Q.-H.; Portincasa, P. Recent Advances in the Digestive, Metabolic and Therapeutic Effects of Farnesoid X Receptor and Fibroblast Growth Factor 19: From Cholesterol to Bile Acid Signaling. Nutrients 2022, 14, 4950. [Google Scholar] [CrossRef]
- Sudo, K.; Delmas-Eliason, A.; Soucy, S.; Barrack, K.E.; Liu, J.; Balasubramanian, A.; Shu, C.J.; James, M.J.; Hegner, C.L.; Dionne, H.D.; et al. Quantifying Forms and Functions of Enterohepatic Bile Acid Pools in Mice. Cell. Mol. Gastroenterol. Hepatol. 2024, 18, 101392. [Google Scholar] [CrossRef]
- Cebi, M.; Yilmaz, Y. Epithelial Barrier Hypothesis in the Context of Nutrition, Microbial Dysbiosis, and Immune Dysregulation in Metabolic Dysfunction-Associated Steatotic Liver. Front. Immunol. 2025, 16, 1575770. [Google Scholar] [CrossRef]
- Long, C.; Zhou, X.; Xia, F.; Zhou, B. Intestinal Barrier Dysfunction and Gut Microbiota in Non-Alcoholic Fatty Liver Disease: Assessment, Mechanisms, and Therapeutic Considerations. Biology 2024, 13, 243. [Google Scholar] [CrossRef]
- Zöggeler, T.; Kavallar, A.M.; Pollio, A.R.; Aldrian, D.; Decristoforo, C.; Scholl-Bürgi, S.; Müller, T.; Vogel, G.F. Meta-Analysis of Shotgun Sequencing of Gut Microbiota in Obese Children with MASLD or MASH. Gut Microbes 2025, 17, 2508951. [Google Scholar] [CrossRef]
- Deslande, M.; Puig-Castellvi, F.; Castro-Dionicio, I.; Pacheco-Tapia, R.; Raverdy, V.; Caiazzo, R.; Lassailly, G.; Leloire, A.; Andrikopoulos, P.; Kahoul, Y.; et al. Intrahepatic Levels of Microbiome-Derived Hippurate Associates with Improved Metabolic Dysfunction-Associated Steatotic Liver Disease. Mol. Metab. 2025, 92, 102090. [Google Scholar] [CrossRef]
- Steinberg, G.R.; Valvano, C.M.; De Nardo, W.; Watt, M.J. Integrative Metabolism in MASLD and MASH: Pathophysiology and Emerging Mechanisms. J. Hepatol. 2025, 83, 584–595. [Google Scholar] [CrossRef]
- Fiorucci, S.; Distrutti, E.; Carino, A.; Zampella, A.; Biagioli, M. Bile Acids and Their Receptors in Metabolic Disorders. Prog. Lipid Res. 2021, 82, 101094. [Google Scholar] [CrossRef]
- Vaquero, J.; Monte, M.J.; Dominguez, M.; Muntané, J.; Marin, J.J.G. Differential Activation of the Human Farnesoid X Receptor Depends on the Pattern of Expressed Isoforms and the Bile Acid Pool Composition. Biochem. Pharmacol. 2013, 86, 926–939. [Google Scholar] [CrossRef]
- Goodwin, B.; Redinbo, M.R.; Kliewer, S.A. Regulation of CYP3A Gene Transcription by the Pregnane X Receptor. Annu. Rev. Pharmacol. Toxicol. 2002, 42, 1–23. [Google Scholar] [CrossRef]
- Guan, B.; Tong, J.; Hao, H.; Yang, Z.; Chen, K.; Xu, H.; Wang, A. Bile Acid Coordinates Microbiota Homeostasis and Systemic Immunometabolism in Cardiometabolic Diseases. Acta Pharm. Sin. B 2022, 12, 2129–2149. [Google Scholar] [CrossRef] [PubMed]
- Fiorucci, S.; Cipriani, S.; Baldelli, F.; Mencarelli, A. Bile Acid-Activated Receptors in the Treatment of Dyslipidemia and Related Disorders. Prog. Lipid Res. 2010, 49, 171–185. [Google Scholar] [CrossRef]
- Qi, Y.; Duan, G.; Wei, D.; Zhao, C.; Ma, Y. The Bile Acid Membrane Receptor TGR5 in Cancer: Friend or Foe? Molecules 2022, 27, 5292. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.R.; Haeusler, R.A. Bile Acids in Glucose Metabolism and Insulin Signalling—Mechanisms and Research Needs. Nat. Rev. Endocrinol. 2019, 15, 701–712. [Google Scholar] [CrossRef]
- Thibaut, M.M.; Bindels, L.B. Crosstalk between Bile Acid-Activated Receptors and Microbiome in Entero-Hepatic Inflammation. Trends Mol. Med. 2022, 28, 223–236. [Google Scholar] [CrossRef]
- Lee, S.M.; Ahn, Y.M.; Park, S.-H.; Shin, S.; Jung, J. Reshaping the Gut Microbiome and Bile Acid Composition by Gyejibongnyeong-Hwan Ameliorates Western Diet-Induced Dyslipidemia. Biomed. Pharmacother. 2023, 163, 114826. [Google Scholar] [CrossRef]
- Joseph, S.C.; Eugin Simon, S.; Bohm, M.S.; Kim, M.; Pye, M.E.; Simmons, B.W.; Graves, D.G.; Thomas-Gooch, S.M.; Tanveer, U.A.; Holt, J.R.; et al. FXR Agonism with Bile Acid Mimetic Reduces Pre-Clinical Triple-Negative Breast Cancer Burden. Cancers 2024, 16, 1368. [Google Scholar] [CrossRef]
- Iracheta-Vellve, A.; Calenda, C.D.; Petrasek, J.; Ambade, A.; Kodys, K.; Adorini, L.; Szabo, G. FXR and TGR5 Agonists Ameliorate Liver Injury, Steatosis, and Inflammation After Binge or Prolonged Alcohol Feeding in Mice. Hepatol. Commun. 2018, 2, 1379–1391. [Google Scholar] [CrossRef]
- Liu, L.; Panzitt, K.; Racedo, S.; Wagner, M.; Platzer, W.; Zaufel, A.; Theiler-Schwetz, V.; Obermayer-Pietsch, B.; Müller, H.; Höfler, G.; et al. Bile Acids Increase Steroidogenesis in Cholemic Mice and Induce Cortisol Secretion in Adrenocortical H295R Cells via S1 PR 2, ERK and SF -1. Liver Int. 2019, 39, 2112–2123. [Google Scholar] [CrossRef]
- Šarenac, T.M.; Mikov, M. Bile Acid Synthesis: From Nature to the Chemical Modification and Synthesis and Their Applications as Drugs and Nutrients. Front. Pharmacol. 2018, 9, 939. [Google Scholar] [CrossRef]
- Sinal, C.J.; Tohkin, M.; Miyata, M.; Ward, J.M.; Lambert, G.; Gonzalez, F.J. Targeted Disruption of the Nuclear Receptor FXR/BAR Impairs Bile Acid and Lipid Homeostasis. Cell 2000, 102, 731–744. [Google Scholar] [CrossRef] [PubMed]
- Tarling, E.J.; Clifford, B.L.; Cheng, J.; Morand, P.; Cheng, A.; Lester, E.; Sallam, T.; Turner, M.; De Aguiar Vallim, T.Q. RNA-Binding Protein ZFP36L1 Maintains Posttranscriptional Regulation of Bile Acid Metabolism. J. Clin. Investig. 2017, 127, 3741–3754. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Pathak, P.; Boehme, S.; Chiang, J.Y.L. Cholesterol 7α-Hydroxylase Protects the Liver from Inflammation and Fibrosis by Maintaining Cholesterol Homeostasis. J. Lipid Res. 2016, 57, 1831–1844. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-D.; Chen, W.-D.; Yu, D.; Forman, B.M.; Huang, W. The G-Protein-Coupled Bile Acid Receptor, Gpbar1 (TGR5), Negatively Regulates Hepatic Inflammatory Response through Antagonizing Nuclear Factor Kappa Light-Chain Enhancer of Activated B Cells (NF-κB) in Mice. Hepatology 2011, 54, 1421–1432. [Google Scholar] [CrossRef]
- Zhao, T.; Zhong, G.; Wang, Y.; Cao, R.; Song, S.; Li, Y.; Wan, G.; Sun, H.; Huang, M.; Bi, H.; et al. Pregnane X Receptor Activation in Liver Macrophages Protects against Endotoxin-Induced Liver Injury. Adv. Sci. 2024, 11, 2308771. [Google Scholar] [CrossRef]
- Cariello, M.; Piccinin, E.; Garcia-Irigoyen, O.; Sabbà, C.; Moschetta, A. Nuclear Receptor FXR, Bile Acids and Liver Damage: Introducing the Progressive Familial Intrahepatic Cholestasis with FXR Mutations. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 1308–1318. [Google Scholar] [CrossRef]
- Roscam Abbing, R.L.P.; Slijepcevic, D.; Donkers, J.M.; Havinga, R.; Duijst, S.; Paulusma, C.C.; Kuiper, J.; Kuipers, F.; Groen, A.K.; Oude Elferink, R.P.J.; et al. Blocking Sodium-Taurocholate Cotransporting Polypeptide Stimulates Biliary Cholesterol and Phospholipid Secretion in Mice. Hepatology 2019, 71, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Linton, M.F.; Tao, H.; Linton, E.F.; Yancey, P.G. SR-BI: A Multifunctional Receptor in Cholesterol Homeostasis and Atherosclerosis. Trends Endocrinol. Metab. 2017, 28, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Singh, A.; Guo, G.; Young, M.; Liu, J. Activation of FXR by Obeticholic Acid Induces Hepatic Gene Expression of SR-BI through a Novel Mechanism of Transcriptional Synergy with the Nuclear Receptor LXR. Int. J. Mol. Med. 2019, 43, 1927–1938. [Google Scholar] [CrossRef]
- Zhou, J.; Cui, S.; He, Q.; Guo, Y.; Pan, X.; Zhang, P.; Huang, N.; Ge, C.; Wang, G.; Gonzalez, F.J.; et al. SUMOylation Inhibitors Synergize with FXR Agonists in Combating Liver Fibrosis. Nat. Commun. 2020, 11, 240. [Google Scholar] [CrossRef]
- Xie, X.-M.; Zhang, B.-Y.; Feng, S.; Fan, Z.-J.; Wang, G.-Y. Activation of Gut FXR Improves the Metabolism of Bile Acids, Intestinal Barrier, and Microbiota under Cholestatic Condition Caused by GCDCA in Mice. Microbiol. Spectr. 2025, 13, e03150-24. [Google Scholar] [CrossRef]
- Van Nierop, F.S.; Scheltema, M.J.; Eggink, H.M.; Pols, T.W.; Sonne, D.P.; Knop, F.K.; Soeters, M.R. Clinical Relevance of the Bile Acid Receptor TGR5 in Metabolism. Lancet Diabetes Endocrinol. 2017, 5, 224–233. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, T.; Jiang, R.; Zhao, A.; Wu, Q.; Kuang, J.; Sun, D.; Ren, Z.; Li, M.; Zhao, M.; et al. Hyocholic Acid Species Improve Glucose Homeostasis through a Distinct TGR5 and FXR Signaling Mechanism. Cell Metab. 2021, 33, 791–803.e7. [Google Scholar] [CrossRef]
- Wang, W.; Shi, B.; Cong, R.; Hao, M.; Peng, Y.; Yang, H.; Song, J.; Feng, D.; Zhang, N.; Li, D. RING-Finger E3 Ligases Regulatory Network in PI3K/AKT-Mediated Glucose Metabolism. Cell Death Discov. 2022, 8, 372. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, Y.; Chen, Q.; Han, X.; Cai, M.; Hao, L. Puerarin Suppresses the Hepatic Gluconeogenesis via Activation of PI3K/Akt Signaling Pathway in Diabetic Rats and HepG2 Cells. Biomed. Pharmacother. 2021, 137, 111325. [Google Scholar] [CrossRef]
- Vettorazzi, J.F.; Kurauti, M.A.; Soares, G.M.; Borck, P.C.; Ferreira, S.M.; Branco, R.C.S.; Michelone, L.D.S.L.; Boschero, A.C.; Junior, J.M.C.; Carneiro, E.M. Bile Acid TUDCA Improves Insulin Clearance by Increasing the Expression of Insulin-Degrading Enzyme in the Liver of Obese Mice. Sci. Rep. 2017, 7, 14876. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Cai, T.; Cheng, Y.; Bai, J.; Li, M.; Gu, B.; Huang, M.; Fu, W. Postbiotics Prepared Using Lactobacillus Reuteri Ameliorates Ethanol-Induced Liver Injury by Regulating the FXR/SHP/SREBP-1c Axis. Mol. Nutr. Food Res. 2024, 68, 2300927. [Google Scholar] [CrossRef]
- Watanabe, M.; Houten, S.M.; Mataki, C.; Christoffolete, M.A.; Kim, B.W.; Sato, H.; Messaddeq, N.; Harney, J.W.; Ezaki, O.; Kodama, T.; et al. Bile Acids Induce Energy Expenditure by Promoting Intracellular Thyroid Hormone Activation. Nature 2006, 439, 484–489. [Google Scholar] [CrossRef]
- Cao, Y.; Shu, X.; Li, M.; Yu, S.; Li, C.; Ji, G.; Zhang, L. Jiangzhi Granule Attenuates Non-Alcoholic Steatohepatitis through Modulating Bile Acid in Mice Fed High-Fat Vitamin D Deficiency Diet. Biomed. Pharmacother. 2022, 149, 112825. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Gu, X.; Chen, J.; Xie, Y.; Ke, S.; Wu, J.; Golovko, A.; Morpurgo, B.; Yan, C.; Phillips, T.D.; et al. Pregnane X Receptor Regulates the AhR/Cyp1A1 Pathway and Protects Liver Cells from Benzo-[α]-Pyrene-Induced DNA Damage. Toxicol. Lett. 2017, 275, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xue, Y.; Liu, J.; Ren, S.; Xu, J.; Yang, J.; Xing, Y.; Zhang, Z.; Song, R. Saikosaponins and the Deglycosylated Metabolites Exert Liver Meridian Guiding Effect through PXR/CYP3A4 Inhibition. J. Ethnopharmacol. 2021, 279, 114344. [Google Scholar] [CrossRef] [PubMed]
- Meinan, X.; Yimeng, W.; Chao, W.; Tianli, T.; Li, J.; Peng, Y.; Xiangping, N. Response of the Sirtuin/PXR Signaling Pathway in Mugilogobius Chulae Exposed to Environmentally Relevant Concentration Paracetamol. Aquat. Toxicol. 2022, 249, 106222. [Google Scholar] [CrossRef]
- Kittayaruksakul, S.; Sawasvirojwong, S.; Noitem, R.; Pongkorpsakol, P.; Muanprasat, C.; Chatsudthipong, V. Activation of Constitutive Androstane Receptor Inhibits Intestinal CFTR-Mediated Chloride Transport. Biomed. Pharmacother. 2019, 111, 1249–1259. [Google Scholar] [CrossRef]
- Wagner, M.; Halilbasic, E.; Marschall, H.; Zollner, G.; Fickert, P.; Langner, C.; Zatloukal, K.; Denk, H.; Trauner, M. CAR and PXR Agonists Stimulate Hepatic Bile Acid and Bilirubin Detoxification and Elimination Pathways in Mice†. Hepatology 2005, 42, 420–430. [Google Scholar] [CrossRef]
- Tang, Y.; Fan, Y.; Wang, Y.; Wang, D.; Huang, Q.; Chen, T.; Cao, X.; Wen, C.; Shen, X.; Li, J.; et al. A Current Understanding of FXR in NAFLD: The Multifaceted Regulatory Role of FXR and Novel Lead Discovery for Drug Development. Biomed. Pharmacother. 2024, 175, 116658. [Google Scholar] [CrossRef]
- Gillard, J.; Roumain, M.; Picalausa, C.; Thibaut, M.M.; Clerbaux, L.-A.; Tailleux, A.; Staels, B.; Muccioli, G.G.; Bindels, L.B.; Leclercq, I.A. A Gut Microbiota-Independent Mechanism Shapes the Bile Acid Pool in Mice with MASH. JHEP Rep. 2024, 6, 101148. [Google Scholar] [CrossRef]
- Kuang, J.; Wang, J.; Li, Y.; Li, M.; Zhao, M.; Ge, K.; Zheng, D.; Cheung, K.C.P.; Liao, B.; Wang, S.; et al. Hyodeoxycholic Acid Alleviates Non-Alcoholic Fatty Liver Disease through Modulating the Gut-Liver Axis. Cell Metab. 2023, 35, 1752–1766.e8. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, H.; Chen, J.; Wu, Q.; Zhang, W.; Li, D.; Lu, Y.; Chen, Y. Yellow Tea Polysaccharides Protect against Non-Alcoholic Fatty Liver Disease via Regulation of Gut Microbiota and Bile Acid Metabolism in Mice. Phytomedicine 2024, 133, 155919. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Y.; Li, J.; Chavan, H.; Matye, D.; Ni, H.-M.; Chiang, J.Y.L.; Krishnamurthy, P.; Ding, W.-X.; Li, T. Targeting the Enterohepatic Bile Acid Signaling Induces Hepatic Autophagy via a CYP7A1–AKT–mTOR Axis in Mice. Cell. Mol. Gastroenterol. Hepatol. 2017, 3, 245–260. [Google Scholar] [CrossRef]
- Sun, Y.-Y.; Wu, D.-Q.; Yin, N.-N.; Yang, L.; Chen, X.; Li, H.-D.; Li, X.-F.; Huang, C.; Meng, X.-M.; Wang, H.; et al. Arrb2 Causes Hepatic Lipid Metabolism Disorder via AMPK Pathway Based on Metabolomics in Alcoholic Fatty Liver. Clin. Sci. 2021, 135, 1213–1232. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Hou, Y.; Xu, D.; Dai, X.; Luo, J.; Liu, Y.; Huang, Z.; Yang, M.; Chen, J.; Hu, Y.; et al. Hepatic FXR-FGF4 Is Required for Bile Acid Homeostasis via an FGFR4-LRH-1 Signal Node under Cholestatic Stress. Cell Metab. 2025, 37, 104–120.e9. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Talavera, O.; Tailleux, A.; Lefebvre, P.; Staels, B. Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology 2017, 152, 1679–1694.e3. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-Y.; Zhu, L.; Liu, H.-N.; Tseng, Y.-J.; Weng, S.-Q.; Liu, T.-T.; Dong, L.; Shen, X.-Z. The Protective Effect and Mechanism of the FXR Agonist Obeticholic Acid via Targeting Gut Microbiota in Non-Alcoholic Fatty Liver Disease. Drug Des. Dev. Ther. 2019, 13, 2249–2270. [Google Scholar] [CrossRef]
- Xu, Y. Recent Progress on Bile Acid Receptor Modulators for Treatment of Metabolic Diseases. J. Med. Chem. 2016, 59, 6553–6579. [Google Scholar] [CrossRef]
- Jiao, N.; Baker, S.S.; Chapa-Rodriguez, A.; Liu, W.; Nugent, C.A.; Tsompana, M.; Mastrandrea, L.; Buck, M.J.; Baker, R.D.; Genco, R.J.; et al. Suppressed Hepatic Bile Acid Signalling despite Elevated Production of Primary and Secondary Bile Acids in NAFLD. Gut 2017, 67, 1881–1891. [Google Scholar] [CrossRef]
- Deng, Z.; Ouyang, Z.; Mei, S.; Zhang, X.; Li, Q.; Meng, F.; Hu, Y.; Dai, X.; Zhou, S.; Mao, K.; et al. Enhancing NKT Cell-Mediated Immunity against Hepatocellular Carcinoma: Role of XYXD in Promoting Primary Bile Acid Synthesis and Improving Gut Microbiota. J. Ethnopharmacol. 2024, 318, 116945. [Google Scholar] [CrossRef]
- Igarashi, N.; Kasai, K.; Tada, Y.; Kani, K.; Kato, M.; Takano, S.; Goto, K.; Matsuura, Y.; Ichimura-Shimizu, M.; Watanabe, S.; et al. Impacts of Liver Macrophages, Gut Microbiota, and Bile Acid Metabolism on the Differences in iHFC Diet-Induced MASH Progression between TSNO and TSOD Mice. Inflamm. Res. 2024, 73, 1081–1098. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Wang, S.; Dong, B.; Tian, Y. Metabolic Reprogramming of Immune Cells in MASH. Hepatology 2025, 10, 1097. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.; Ma, L.; Yao, H.; Ma, S.; Si, X.; Wang, Y.; Bao, X.; Ma, L.; Chen, F.; Ma, C.; et al. Precise Delivery of Obeticholic Acid via Nanoapproach for Triggering Natural Killer T Cell-Mediated Liver Cancer Immunotherapy. Acta Pharm. Sin. B 2020, 10, 2171–2182. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.-L.; Li, C.-X.; Ma, C.-Y.; Chen, D.; Chen, J.-H.; Xu, W.-X.; Chen, C.-A.; Cheng, F.-F.; Wang, X.-Q. Linking Nonalcoholic Fatty Liver Disease and Brain Disease: Focusing on Bile Acid Signaling. Int. J. Mol. Sci. 2022, 23, 13045. [Google Scholar] [CrossRef]
- Biagioli, M.; Marchianò, S.; Di Giorgio, C.; Roselli, R.; Bordoni, M.; Bellini, R.; Fiorillo, B.; Sepe, V.; Catalanotti, B.; Cassiano, C.; et al. Combinatorial Targeting of G-protein-coupled Bile Acid Receptor 1 and Cysteinyl Leukotriene Receptor 1 Reveals a Mechanistic Role for Bile Acids and Leukotrienes in Drug-induced Liver Injury. Hepatology 2022, 78, 26–44. [Google Scholar] [CrossRef]
- Endo-Umeda, K.; Makishima, M. Liver X Receptors Regulate Cholesterol Metabolism and Immunity in Hepatic Nonparenchymal Cells. Int. J. Mol. Sci. 2019, 20, 5045. [Google Scholar] [CrossRef]
- Xie, G.; Jiang, R.; Wang, X.; Liu, P.; Zhao, A.; Wu, Y.; Huang, F.; Liu, Z.; Rajani, C.; Zheng, X.; et al. Conjugated Secondary 12α-Hydroxylated Bile Acids Promote Liver Fibrogenesis. eBioMedicine 2021, 66, 103290. [Google Scholar] [CrossRef]
- He, B.; Jiang, J.; Shi, Z.; Wu, L.; Yan, J.; Chen, Z.; Luo, M.; Cui, D.; Xu, S.; Yan, M.; et al. Pure Total Flavonoids from Citrus Attenuate Non-Alcoholic Steatohepatitis via Regulating the Gut Microbiota and Bile Acid Metabolism in Mice. Biomed. Pharmacother. 2021, 135, 111183. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Y.; Han, W.; Liang, M.; Xiao, X.; Jiang, X.; Yu, W. Tauroursodeoxycholic Acid Improves Nonalcoholic Fatty Liver Disease by Regulating Gut Microbiota and Bile Acid Metabolism. J. Agric. Food Chem. 2024, 72, 20194–20210. [Google Scholar] [CrossRef]
- Deng, F.; Qin, G.; Chen, Y.; Zhang, X.; Zhu, M.; Hou, M.; Yao, Q.; Gu, W.; Wang, C.; Yang, H.; et al. Multi-Omics Reveals 2-Bromo-4,6-Dinitroaniline (BDNA)-Induced Hepatotoxicity and the Role of the Gut-Liver Axis in Rats. J. Hazard. Mater. 2023, 457, 131760. [Google Scholar] [CrossRef]
- Wu, K.; Liu, Y.; Xia, J.; Liu, J.; Wang, K.; Liang, H.; Xu, F.; Liu, D.; Nie, D.; Tang, X.; et al. Loss of SLC27A5 Activates Hepatic Stellate Cells and Promotes Liver Fibrosis via Unconjugated Cholic Acid. Adv. Sci. 2023, 11, 2304408. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.; Ma, C.; Wang, C.; Zhou, H.; Gong, L.; Zhang, Y.; Li, Y. Forsythiaside A Alleviated Carbon Tetrachloride-Induced Liver Fibrosis by Modulating Gut Microbiota Composition to Increase Short-Chain Fatty Acids and Restoring Bile Acids Metabolism Disorder. Biomed. Pharmacother. 2022, 151, 113185. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Li, Y.; Cai, W.; Bai, X.; Dong, P.; Wang, J. Antarctic Krill Peptide Alleviates Liver Fibrosis via Downregulating the Secondary Bile Acid Mediated NLRP3 Signaling Pathway. Food Funct. 2022, 13, 7740–7749. [Google Scholar] [CrossRef]
- Jiang, Q.; Wang, N.; Lu, S.; Xiong, J.; Yuan, Y.; Liu, J.; Chen, S. Targeting Hepatic Ceruloplasmin Mitigates Nonalcoholic Steatohepatitis by Modulating Bile Acid Metabolism. J. Mol. Cell Biol. 2023, 15, mjad060. [Google Scholar] [CrossRef]
- Deutschmann, K.; Reich, M.; Klindt, C.; Dröge, C.; Spomer, L.; Häussinger, D.; Keitel, V. Bile Acid Receptors in the Biliary Tree: TGR5 in Physiology and Disease. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 1319–1325. [Google Scholar] [CrossRef]
- Mridha, A.R.; Wree, A.; Robertson, A.A.B.; Yeh, M.M.; Johnson, C.D.; Van Rooyen, D.M.; Haczeyni, F.; Teoh, N.C.-H.; Savard, C.; Ioannou, G.N.; et al. NLRP3 Inflammasome Blockade Reduces Liver Inflammation and Fibrosis in Experimental NASH in Mice. J. Hepatol. 2017, 66, 1037–1046. [Google Scholar] [CrossRef]
- Gao, F.; Guan, C.; Cheng, N.; Liu, Y.; Wu, Y.; Shi, B.; Huang, J.; Li, S.; Tong, Y.; Gao, Y.; et al. Design, Synthesis, and Anti-Liver Fibrosis Activity of Novel Non-Steroidal Vitamin D Receptor Agonists Based on Open-Ring Steroid Scaffold. Eur. J. Med. Chem. 2025, 286, 117250. [Google Scholar] [CrossRef]
- Li, T.; Owsley, E.; Matozel, M.; Hsu, P.; Novak, C.M.; Chiang, J.Y.L. Transgenic Expression of Cholesterol 7α-hydroxylase in the Liver Prevents High-fat Diet–Induced Obesity and Insulin Resistance in Mice†. Hepatology 2010, 52, 678–690. [Google Scholar] [CrossRef]
- Ma, K. Farnesoid X Receptor Is Essential for Normal Glucose Homeostasis. J. Clin. Investig. 2006, 116, 1102–1109. [Google Scholar] [CrossRef]
- Preidis, G.A.; Kim, K.H.; Moore, D.D. Nutrient-Sensing Nuclear Receptors PPARα and FXR Control Liver Energy Balance. J. Clin. Investig. 2017, 127, 1193–1201. [Google Scholar] [CrossRef]
- Martinot, E.; Sèdes, L.; Baptissart, M.; Lobaccaro, J.-M.; Caira, F.; Beaudoin, C.; Volle, D.H. Bile Acids and Their Receptors. Mol. Aspects Med. 2017, 56, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Dai, X.; Zhao, L.; Li, J.; Zhu, Y.; He, W.; Guan, X.; Wu, T.; Liu, L.; Song, H.; et al. Quercetin Activates Energy Expenditure to Combat Metabolic Syndrome through Modulating Gut Microbiota-Bile Acids Crosstalk in Mice. Gut Microbes 2024, 16, 2390136. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhuang, T.; Wang, Z.; Wang, X.; Liu, L.; Luo, Y.; Wang, R.; Li, L.; Huang, W.; Wang, Z.; et al. Red Ginseng Extracts Ameliorate High-Fat Diet-Induced Obesity and Insulin Resistance by Activating the Intestinal TGR5-Mediated Bile Acids Signaling Pathway. Phytomedicine 2023, 119, 154982. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.P.; Asgharpour, A.; Mirshahi, F.; Park, S.H.; Liu, S.; Imai, Y.; Nadler, J.L.; Grider, J.R.; Murthy, K.S.; Sanyal, A.J. Activation of Transmembrane Bile Acid Receptor TGR5 Modulates Pancreatic Islet α Cells to Promote Glucose Homeostasis. J. Biol. Chem. 2016, 291, 6626–6640. [Google Scholar] [CrossRef]
- Holst, J.J. The Physiology of Glucagon-like Peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef]
- Pathak, P.; Xie, C.; Nichols, R.G.; Ferrell, J.M.; Boehme, S.; Krausz, K.W.; Patterson, A.D.; Gonzalez, F.J.; Chiang, J.Y.L. Intestine Farnesoid X Receptor Agonist and the Gut Microbiota Activate G-protein Bile Acid Receptor-1 Signaling to Improve Metabolism. Hepatology 2018, 68, 1574–1588. [Google Scholar] [CrossRef]
- Donkers, J.M.; Roscam Abbing, R.L.P.; Van De Graaf, S.F.J. Developments in Bile Salt Based Therapies: A Critical Overview. Biochem. Pharmacol. 2019, 161, 1–13. [Google Scholar] [CrossRef]
- Kakiyama, G.; Rodriguez-Agudo, D.; Pandak, W.M. Mitochondrial Cholesterol Metabolites in a Bile Acid Synthetic Pathway Drive Nonalcoholic Fatty Liver Disease: A Revised “Two-Hit” Hypothesis. Cells 2023, 12, 1434. [Google Scholar] [CrossRef]
- Matye, D.J.; Wang, H.; Luo, W.; Sharp, R.R.; Chen, C.; Gu, L.; Jones, K.L.; Ding, W.-X.; Friedman, J.E.; Li, T. Combined ASBT Inhibitor and FGF15 Treatment Improves Therapeutic Efficacy in Experimental Nonalcoholic Steatohepatitis. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 1001–1019. [Google Scholar] [CrossRef]
- Sun, K.; Zhu, N.; Huang, S.; Qu, H.; Gu, Y.; Qin, L.; Liu, J.; Leng, Y. A New Mechanism of Thyroid Hormone Receptor β Agonists Ameliorating Nonalcoholic Steatohepatitis by Inhibiting Intestinal Lipid Absorption via Remodeling Bile Acid Profiles. Acta Pharmacol. Sin. 2024, 45, 2134–2148. [Google Scholar] [CrossRef]
- Pardue, M.T.; Allen, R.S. Neuroprotective Strategies for Retinal Disease. Prog. Retin. Eye Res. 2018, 65, 50–76. [Google Scholar] [CrossRef]
- Tu, H.; Okamoto, A.Y.; Shan, B. FXR, a Bile Acid Receptor and Biological Sensor. Trends Cardiovasc. Med. 2000, 10, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Jun, D.W.; Yoon, E.L.; Oh, J.H.; Roh, Y.J.; Lee, E.J.; Shin, J.-H.; Nam, Y.-D.; Kim, H.S. Discovery Biomarker to Optimize Obeticholic Acid Treatment for Non-Alcoholic Fatty Liver Disease. Biol. Direct 2023, 18, 50. [Google Scholar] [CrossRef] [PubMed]
- Kouno, T.; Liu, X.; Zhao, H.; Kisseleva, T.; Cable, E.E.; Schnabl, B. Selective PPARδ Agonist Seladelpar Suppresses Bile Acid Synthesis by Reducing Hepatocyte CYP7A1 via the Fibroblast Growth Factor 21 Signaling Pathway. J. Biol. Chem. 2022, 298, 102056. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Li, M.; Wang, B.; Zhang, M.; Rantalainen, M.; Wang, S.; Zhou, H.; Zhang, Y.; Shen, J.; Pang, X.; Zhang, M.; et al. Symbiotic Gut Microbes Modulate Human Metabolic Phenotypes. Proc. Natl. Acad. Sci. USA 2008, 105, 2117–2122. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Sottas, C.; Raul, M.C.; Patel, N.D.; Bijja, J.R.; Ahmed, S.K.; Kapelanski-Lamoureux, A.; Lazaris, A.; Metrakos, P.; et al. The Mitochondrial TSPO Ligand Atriol Mitigates Metabolic-Associated Steatohepatitis by Downregulating CXCL1. Metab. Clin. Exp. 2024, 159, 155942. [Google Scholar] [CrossRef]
- Gopoju, R.; Wang, J.; Pan, X.; Hu, S.; Lin, L.; Clark, A.; Xu, Y.; Yin, L.; Wang, X.; Zhang, Y. Hepatic FOXA3 Overexpression Prevents Western Diet–Induced Obesity and MASH through TGR5. J. Lipid Res. 2024, 65, 100527. [Google Scholar] [CrossRef]
- Li, J.; Liu, M.; Li, Y.; Sun, D.; Shu, Z.; Tan, Q.; Guo, S.; Xie, R.; Gao, L.; Ru, H.; et al. Discovery and Optimization of Non-Bile Acid FXR Agonists as Preclinical Candidates for the Treatment of Nonalcoholic Steatohepatitis. J. Med. Chem. 2020, 63, 12748–12772. [Google Scholar] [CrossRef]
- Neuschwander-Tetri, B.A.; Loomba, R.; Sanyal, A.J.; Lavine, J.E.; Van Natta, M.L.; Abdelmalek, M.F.; Chalasani, N.; Dasarathy, S.; Diehl, A.M.; Hameed, B.; et al. Farnesoid X Nuclear Receptor Ligand Obeticholic Acid for Non-Cirrhotic, Non-Alcoholic Steatohepatitis (FLINT): A Multicentre, Randomised, Placebo-Controlled Trial. Lancet 2015, 385, 956–965. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, H.; Xiao, D.; Wei, H.; Chen, Y. Farnesoid X Receptor (FXR): Structures and Ligands. Comput. Struct. Biotechnol. J. 2021, 19, 2148–2159. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, N.; Xu, Y. Natural Products in the Modulation of Farnesoid X Receptor Against Nonalcoholic Fatty Liver Disease. Am. J. Chin. Med. 2024, 52, 291–314. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, T.; Moschetta, A.; Lee, Y.-K.; Peng, L.; Zhao, G.; Downes, M.; Yu, R.T.; Shelton, J.M.; Richardson, J.A.; Repa, J.J.; et al. Regulation of Antibacterial Defense in the Small Intestine by the Nuclear Bile Acid Receptor. Proc. Natl. Acad. Sci. USA 2006, 103, 3920–3925. [Google Scholar] [CrossRef]
- Molinaro, A.; Wahlström, A.; Marschall, H.-U. Role of Bile Acids in Metabolic Control. Trends Endocrinol. Metab. 2018, 29, 31–41. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Y.; Wang, G.; Hao, H.; Wang, H. FXR Agonists for MASH Therapy: Lessons and Perspectives from Obeticholic Acid. Med. Res. Rev. 2023, 44, 568–586. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Ratziu, V.; Loomba, R.; Rinella, M.; Anstee, Q.M.; Goodman, Z.; Bedossa, P.; Geier, A.; Beckebaum, S.; Newsome, P.N.; et al. Obeticholic Acid for the Treatment of Non-Alcoholic Steatohepatitis: Interim Analysis from a Multicentre, Randomised, Placebo-Controlled Phase 3 Trial. Lancet 2019, 394, 2184–2196. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, Y.; Liu, Y.; Lu, D.; Gao, X.; Krausz, K.W.; Desai, D.; Amin, S.G.; Patterson, A.D.; Gonzalez, F.J.; et al. Glycine-β-muricholic Acid Antagonizes the Intestinal Farnesoid X Receptor–Ceramide Axis and Ameliorates NASH in Mice. Hepatol. Commun. 2022, 6, 3363–3378. [Google Scholar] [CrossRef]
- Massafra, V.; Pellicciari, R.; Gioiello, A.; Van Mil, S.W.C. Progress and Challenges of Selective Farnesoid X Receptor Modulation. Pharmacol. Ther. 2018, 191, 162–177. [Google Scholar] [CrossRef]
- Zhang, L.; Feng, F.; Wang, X.; Liang, H.; Yao, X.; Liu, D. Dose Prediction and Pharmacokinetic Simulation of XZP-5610, a Small Molecule for NASH Therapy, Using Allometric Scaling and Physiologically Based Pharmacokinetic Models. Pharmaceuticals 2024, 17, 369. [Google Scholar] [CrossRef]
- Fleishman, J.S.; Kumar, S. Bile Acid Metabolism and Signaling in Health and Disease: Molecular Mechanisms and Therapeutic Targets. Signal Transduct. Target. Ther. 2024, 9, 97. [Google Scholar] [CrossRef]
- Malhi, H.; Camilleri, M. Modulating Bile Acid Pathways and TGR5 Receptors for Treating Liver and GI Diseases. Curr. Opin. Pharmacol. 2017, 37, 80–86. [Google Scholar] [CrossRef]
- Festa, C.; De Marino, S.; Carino, A.; Sepe, V.; Marchianò, S.; Cipriani, S.; Di Leva, F.S.; Limongelli, V.; Monti, M.C.; Capolupo, A.; et al. Targeting Bile Acid Receptors: Discovery of a Potent and Selective Farnesoid X Receptor Agonist as a New Lead in the Pharmacological Approach to Liver Diseases. Front. Pharmacol. 2017, 8, 162. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Ismail, A.; Francis, H. Bile Acids in Autoimmune Liver Disease: Unveiling the Nexus of Inflammation, Inflammatory Cells, and Treatment Strategies. Cells 2023, 12, 2725. [Google Scholar] [CrossRef] [PubMed]
- Marchianò, S.; Biagioli, M.; Bordoni, M.; Morretta, E.; Di Giorgio, C.; Vellecco, V.; Roselli, R.; Bellini, R.; Massa, C.; Cari, L.; et al. Defective Bile Acid Signaling Promotes Vascular Dysfunction, Supporting a Role for G-Protein Bile Acid Receptor 1/Farnesoid X Receptor Agonism and Statins in the Treatment of Nonalcoholic Fatty Liver Disease. J. Am. Heart Assoc. 2023, 12, e031241. [Google Scholar] [CrossRef] [PubMed]
- Sonne, D.P.; Hansen, M.; Knop, F.K. MECHANISMS IN ENDOCRINOLOGY: Bile Acid Sequestrants in Type 2 Diabetes: Potential Effects on GLP1 Secretion. Eur. J. Endocrinol. 2014, 171, R47–R65. [Google Scholar] [CrossRef]
- Roth, J.D.; Feigh, M.; Veidal, S.S.; Fensholdt, L.K.; Rigbolt, K.T.; Hansen, H.H.; Chen, L.C.; Petitjean, M.; Friley, W.; Vrang, N.; et al. INT-767 Improves Histopathological Features in a Diet-Induced Ob/Ob Mouse Model of Biopsy-Confirmed Non-Alcoholic Steatohepatitis. World J. Gastroenterol. 2018, 24, 195–210. [Google Scholar] [CrossRef]
- Kamaraj, R.; Pavek, P. Novel Antagonists Reveal the Mechanism of PXR Inhibition. Trends Pharmacol. Sci. 2024, 45, 961–963. [Google Scholar] [CrossRef]
- Xue, R.; Su, L.; Lai, S.; Wang, Y.; Zhao, D.; Fan, J.; Chen, W.; Hylemon, P.B.; Zhou, H. Bile Acid Receptors and the Gut–Liver Axis in Nonalcoholic Fatty Liver Disease. Cells 2021, 10, 2806. [Google Scholar] [CrossRef]
- Ji, G.; Si, X.; Dong, S.; Xu, Y.; Li, M.; Yang, B.; Tang, Z.; Fang, X.; Huang, L.; Song, W.; et al. Manipulating Liver Bile Acid Signaling by Nanodelivery of Bile Acid Receptor Modulators for Liver Cancer Immunotherapy. Nano Lett. 2021, 21, 6781–6791. [Google Scholar] [CrossRef]
- Takahashi, S.; Luo, Y.; Ranjit, S.; Xie, C.; Libby, A.E.; Orlicky, D.J.; Dvornikov, A.; Wang, X.X.; Myakala, K.; Jones, B.A.; et al. Bile Acid Sequestration Reverses Liver Injury and Prevents Progression of Nonalcoholic Steatohepatitis in Western Diet–Fed Mice. J. Biol. Chem. 2020, 295, 4733–4747. [Google Scholar] [CrossRef]
- Dixon, E.D.; Claudel, T.; Nardo, A.D.; Riva, A.; Fuchs, C.D.; Mlitz, V.; Busslinger, G.; Scharnagl, H.; Stojakovic, T.; Senéca, J.; et al. Inhibition of ATGL Alleviates MASH via Impaired PPARα Signalling That Favours Hydrophilic Bile Acid Composition in Mice. J. Hepatol. 2025, 82, 658–675. [Google Scholar] [CrossRef]
- Ratziu, V.; Harrison, S.A.; Francque, S.; Bedossa, P.; Lehert, P.; Serfaty, L.; Romero-Gomez, M.; Boursier, J.; Abdelmalek, M.; Caldwell, S.; et al. Elafibranor, an Agonist of the Peroxisome Proliferator−Activated Receptor−α and −δ, Induces Resolution of Nonalcoholic Steatohepatitis Without Fibrosis Worsening. Gastroenterology 2016, 150, 1147–1159.e5. [Google Scholar] [CrossRef]
- Perazzo, H.; Dufour, J. The Therapeutic Landscape of Non-alcoholic Steatohepatitis. Liver Int. 2016, 37, 634–647. [Google Scholar] [CrossRef]
- Harrison, S.A.; Bedossa, P.; Guy, C.D.; Schattenberg, J.M.; Loomba, R.; Taub, R.; Labriola, D.; Moussa, S.E.; Neff, G.W.; Rinella, M.E.; et al. A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. N. Engl. J. Med. 2024, 390, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Baran, B. Non-Alcoholic Fatty Liver Disease: What Has Changed in the Treatment since the Beginning? World J. Gastroenterol. 2014, 20, 14219. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Reyes, M.J.; Mishra, A.; Mehta, R.; Henry, L. Systematic Review with Meta-Analysis: Non-Alcoholic Steatohepatitis—A Case for Personalised Treatment Based on Pathogenic Targets. Aliment. Pharmacol. Ther. 2013, 39, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Mouries, J.; Brescia, P.; Silvestri, A.; Spadoni, I.; Sorribas, M.; Wiest, R.; Mileti, E.; Galbiati, M.; Invernizzi, P.; Adorini, L.; et al. Microbiota-Driven Gut Vascular Barrier Disruption Is a Prerequisite for Non-Alcoholic Steatohepatitis Development. J. Hepatol. 2019, 71, 1216–1228. [Google Scholar] [CrossRef] [PubMed]
- Wattacheril, J.; Issa, D.; Sanyal, A. Nonalcoholic Steatohepatitis (NASH) and Hepatic Fibrosis: Emerging Therapies. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 649–662. [Google Scholar] [CrossRef]
- Arab, J.P.; Karpen, S.J.; Dawson, P.A.; Arrese, M.; Trauner, M. Bile Acids and Nonalcoholic Fatty Liver Disease: Molecular Insights and Therapeutic Perspectives. Hepatology 2017, 65, 350–362. [Google Scholar] [CrossRef]
- Finn, P.D.; Rodriguez, D.; Kohler, J.; Jiang, Z.; Wan, S.; Blanco, E.; King, A.J.; Chen, T.; Bell, N.; Dragoli, D.; et al. Intestinal TGR5 Agonism Improves Hepatic Steatosis and Insulin Sensitivity in Western Diet-Fed Mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 316, G412–G424. [Google Scholar] [CrossRef]
- Shi, Y.; Su, W.; Zhang, L.; Shi, C.; Zhou, J.; Wang, P.; Wang, H.; Shi, X.; Wei, S.; Wang, Q.; et al. TGR5 Regulates Macrophage Inflammation in Nonalcoholic Steatohepatitis by Modulating NLRP3 Inflammasome Activation. Front. Immunol. 2021, 11, 609060. [Google Scholar] [CrossRef]
- Tilg, H.; Byrne, C.D.; Targher, G. NASH Drug Treatment Development: Challenges and Lessons. Lancet Gastroenterol. Hepatol. 2023, 8, 943–954. [Google Scholar] [CrossRef]
- Guaraldi, G.; Maurice, J.B.; Marzolini, C.; Monteith, K.; Milic, J.; Tsochatzis, E.; Bhagani, S.; Morse, C.G.; Price, J.C.; Ingiliz, P.; et al. New Drugs for NASH and HIV Infection: Great Expectations for a Great Need. Hepatology 2020, 71, 1831–1844. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Barroso, E.; Ruart, M.; Peña, L.; Peyman, M.; Aguilar-Recarte, D.; Montori-Grau, M.; Rada, P.; Cugat, C.; Montironi, C.; et al. Elafibranor Upregulates the EMT-Inducer S100A4 via PPARβ/δ. Biomed. Pharmacother. 2023, 167, 115623. [Google Scholar] [CrossRef] [PubMed]
- Jackson, K.G.; Way, G.W.; Zhou, H. Bile Acids and Sphingolipids in Non-Alcoholic Fatty Liver Disease. Chin. Med. J. 2022, 135, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Diehl, A.M. Nonalcoholic Steatohepatitis. Annu. Rev. Med. 2017, 68, 85–98. [Google Scholar] [CrossRef]
- Trauner, M.; Fuchs, C.D. Novel Therapeutic Targets for Cholestatic and Fatty Liver Disease. Gut 2021, 71, 194–209. [Google Scholar] [CrossRef]
- Gonzalez, F.J.; Jiang, C.; Patterson, A.D. An Intestinal Microbiota–Farnesoid X Receptor Axis Modulates Metabolic Disease. Gastroenterology 2016, 151, 845–859. [Google Scholar] [CrossRef]
- Harrison, S.A.; Bashir, M.R.; Lee, K.-J.; Shim-Lopez, J.; Lee, J.; Wagner, B.; Smith, N.D.; Chen, H.C.; Lawitz, E.J. A Structurally Optimized FXR Agonist, MET409, Reduced Liver Fat Content over 12 Weeks in Patients with Non-Alcoholic Steatohepatitis. J. Hepatol. 2021, 75, 25–33. [Google Scholar] [CrossRef]
- Guo, C.; Chen, W.-D.; Wang, Y.-D. TGR5, Not Only a Metabolic Regulator. Front. Physiol. 2016, 7, 646. [Google Scholar] [CrossRef]
- Wang, Y.; Aoki, H.; Yang, J.; Peng, K.; Liu, R.; Li, X.; Qiang, X.; Sun, L.; Gurley, E.C.; Lai, G.; et al. The Role of Sphingosine 1-phosphate Receptor 2 in Bile-acid–Induced Cholangiocyte Proliferation and Cholestasis-induced Liver Injury in Mice. Hepatology 2017, 65, 2005–2018. [Google Scholar] [CrossRef]
- Di Minno, A.; Lupoli, R.; Calcaterra, I.; Poggio, P.; Forte, F.; Spadarella, G.; Ambrosino, P.; Iannuzzo, G.; Di Minno, M.N.D. Efficacy and Safety of Bempedoic Acid in Patients with Hypercholesterolemia: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2020, 9, e016262. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.A.; Taub, R.; Neff, G.W.; Lucas, K.J.; Labriola, D.; Moussa, S.E.; Alkhouri, N.; Bashir, M.R. Resmetirom for Nonalcoholic Fatty Liver Disease: A Randomized, Double-Blind, Placebo-Controlled Phase 3 Trial. Nat. Med. 2023, 29, 2919–2928. [Google Scholar] [CrossRef] [PubMed]
- Truong, J.K.; Li, J.; Li, Q.; Pachura, K.; Rao, A.; Gumber, S.; Fuchs, C.D.; Feranchak, A.P.; Karpen, S.J.; Trauner, M.; et al. Active Enterohepatic Cycling Is Not Required for the Choleretic Actions of 24-norUrsodeoxycholic Acid in Mice. JCI Insight 2023, 8, e149360. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, S. NASH Therapy: Omega 3 Supplementation, Vitamin E, Insulin Sensitizers and Statin Drugs. Clin. Mol. Hepatol. 2017, 23, 103–108. [Google Scholar] [CrossRef]
- Xia, J.; Chen, H.; Wang, X.; Chen, W.; Lin, J.; Xu, F.; Nie, Q.; Ye, C.; Zhong, B.; Zhao, M.; et al. Sphingosine D18:1 Promotes Nonalcoholic Steatohepatitis by Inhibiting Macrophage HIF-2α. Nat. Commun. 2024, 15, 4755. [Google Scholar] [CrossRef]
- Dai, J.-J.; Zhang, Y.-F.; Zhang, Z.-H. Global Trends and Hotspots of Treatment for Nonalcoholic Fatty Liver Disease: A Bibliometric and Visualization Analysis (2010–2023). World J. Gastroenterol. 2023, 29, 5339–5360. [Google Scholar] [CrossRef]
- Yuan, X.; Yang, L.; Gao, T.; Gao, J.; Wang, B.; Liu, C.; Yuan, W. YinChen WuLing Powder Attenuates Non-Alcoholic Steatohepatitis through the Inhibition of the SHP2/PI3K/NLRP3 Pathway. Front. Pharmacol. 2024, 15, 1423903. [Google Scholar] [CrossRef]
- Henriksson, E.; Andersen, B. FGF19 and FGF21 for the Treatment of NASH—Two Sides of the Same Coin? Differential and Overlapping Effects of FGF19 and FGF21 From Mice to Human. Front. Endocrinol. 2020, 11, 601349. [Google Scholar] [CrossRef]
- Oliviero, F.; Klement, W.; Mary, L.; Dauwe, Y.; Lippi, Y.; Naylies, C.; Gayrard, V.; Marchi, N.; Mselli-Lakhal, L. CAR Protects Females from Diet-Induced Steatosis and Associated Metabolic Disorders. Cells 2023, 12, 2218. [Google Scholar] [CrossRef]
- Lee, S.S.; Schroeder, F.C. Steroids as Central Regulators of Organismal Development and Lifespan. PLoS Biol. 2012, 10, e1001307. [Google Scholar] [CrossRef]
- Zhai, Q.; Wu, H.; Zheng, S.; Zhong, T.; Du, C.; Yuan, J.; Peng, J.; Cai, C.; Li, J. Association between Gut Microbiota and NAFLD/NASH: A Bidirectional Two-Sample Mendelian Randomization Study. Front. Cell. Infect. Microbiol. 2023, 13, 1294826. [Google Scholar] [CrossRef]
- Xu, X.; Poulsen, K.L.; Wu, L.; Liu, S.; Miyata, T.; Song, Q.; Wei, Q.; Zhao, C.; Lin, C.; Yang, J. Targeted Therapeutics and Novel Signaling Pathways in Non-Alcohol-Associated Fatty Liver/Steatohepatitis (NAFL/NASH). Signal Transduct. Target. Ther. 2022, 7, 287. [Google Scholar] [CrossRef] [PubMed]
- Takaki, A.; Kawai, D.; Yamamoto, K. Molecular Mechanisms and New Treatment Strategies for Non-Alcoholic Steatohepatitis (NASH). Int. J. Mol. Sci. 2014, 15, 7352–7379. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Deng, L.; Wei, W.; Li, C.; Lu, Y.; Bai, J.; Li, L.; Zhang, H.; Jin, N.; Li, C.; et al. Lactiplantibacillus Plantarum LPJZ-658 Improves Non-Alcoholic Steatohepatitis by Modulating Bile Acid Metabolism and Gut Microbiota in Mice. Int. J. Mol. Sci. 2023, 24, 13997. [Google Scholar] [CrossRef] [PubMed]
- Lindén, D.; Romeo, S. Therapeutic Opportunities for the Treatment of NASH with Genetically Validated Targets. J. Hepatol. 2023, 79, 1056–1064. [Google Scholar] [CrossRef]
- Xu, J.; Xia, Q.; Wu, T.; Shao, Y.; Wang, Y.; Jin, N.; Tian, P.; Wu, L.; Lu, X. Prophylactic Treatment with Bacteroides uniformis and Bifidobacterium bifidum Counteracts Hepatic NK Cell Immune Tolerance in Nonalcoholic Steatohepatitis Induced by High Fat Diet. Gut Microbes 2024, 16, 2302065. [Google Scholar] [CrossRef]
- Bouassida, A.; Chamari, K.; Zaouali, M.; Feki, Y.; Zbidi, A.; Tabka, Z. Review on Leptin and Adiponectin Responses and Adaptations to Acute and Chronic Exercise. Br. J. Sports Med. 2008, 44, 620–630. [Google Scholar] [CrossRef]
- Nascimbeni, F.; Bedossa, P.; Fedchuk, L.; Pais, R.; Charlotte, F.; Lebray, P.; Poynard, T.; Ratziu, V. Clinical Validation of the FLIP Algorithm and the SAF Score in Patients with Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2020, 72, 828–838. [Google Scholar] [CrossRef]
- Fiorucci, S.; Biagioli, M.; Distrutti, E. Future Trends in the Treatment of Non-Alcoholic Steatohepatitis. Pharmacol. Res. 2018, 134, 289–298. [Google Scholar] [CrossRef]
- Muthiah, M.D.; Sanyal, A.J. Current Management of Non-alcoholic Steatohepatitis. Liver Int. 2020, 40, 89–95. [Google Scholar] [CrossRef]
- Naoumov, N.V.; Brees, D.; Loeffler, J.; Chng, E.; Ren, Y.; Lopez, P.; Tai, D.; Lamle, S.; Sanyal, A.J. Digital Pathology with Artificial Intelligence Analyses Provides Greater Insights into Treatment-Induced Fibrosis Regression in NASH. J. Hepatol. 2022, 77, 1399–1409. [Google Scholar] [CrossRef]
- Evangelakos, I.; Heeren, J.; Verkade, E.; Kuipers, F. Role of Bile Acids in Inflammatory Liver Diseases. Semin. Immunopathol. 2021, 43, 577–590. [Google Scholar] [CrossRef]
Function | Effect | Receptor | References |
---|---|---|---|
Maintenance of bile acid homeostasis | Reduction of bile acid synthesis: inhibition of CYP7A1 expression through post-transcriptional mRNA degradation, small heterodimer partner (SHP)-mediated transcriptional inhibition, and the entero-hepatic FGF15/19 signaling pathway, thereby reducing bile acid synthesis | FXR | [55,56] |
Anti-inflammatory | Inhibition of nuclear factor-kappa B (NF-kB): inhibition of the activation of the NF-kB pathway by direct binding to NF-kB components or the regulation of their upstream kinases (e.g., IKBKG and IκBα) | FXR | [57] |
The inhibition of NF-κB activity via cAMP-PKA or AKT signaling pathway reduces the production of proinflammatory factors such as TNF-α and IL-6 | TGR5 | [35,58] | |
Inhibits M1 polarization of macrophages and promotes M2 polarization and directly modulates macrophage immune responses | PXR | [59] | |
Regulates enterohepatic circulation | Upregulation of ASBT expression promotes intestinal reabsorption of bile acids | FXR | [60] |
Inhibition of NTCP expression reduces bile acid hepatic uptake | [61] | ||
Reduces serum HDL cholesterol | Upregulation of SR-BI enhances the efficiency of SR-BI-mediated selective cholesterol uptake by HDL | FXR | [62,63] |
Intervenes in hepatic fibrosis | Inhibits hepatic stellate cell (HSC) activation by directly regulating gene expression in HSCs and indirect mechanisms (such as reducing hepatocyte injury, regulating bile acids, and inflammatory signals) | FXR | [64,65] |
Regulates glucose metabolism | Increases intracellular cAMP level through Gsα protein, promotes calcium influx into L cells, and triggers glucagon-like peptide-1(GLP-1) secretion | TGR5 | [66,67] |
The activation of PI3K/Akt upregulates GLUT4 transport to cell membranes, enhancing glucose uptake by peripheral tissues | FXR | [68,69] | |
Improves insulin sensitivity | Indirectly enhances IDE expression or activity by regulating the S1P metabolic pathway, thereby optimizing insulin clearance and signaling | S1PR2 | [70] |
Inhibition of SREBP-1c by SHP and reduced levels or activity of SREBP-1c helps alleviate insulin resistance caused by lipid oversynthesis and accumulation | FXR | [71] | |
Increases energy consumption | Increased mitochondrial activity via D2-mediated local thyroid hormone production and PGC1α increase | TGR5 | [72] |
Detoxification | Promotes LCA hydroxylation, which converts LCA to less toxic products (e.g., UDCA or MDCA) and enhances conjugation metabolism | VDR | [73] |
CYP3A4 and CYP2B are activated to accelerate the metabolism of xenobiotics and improve the clearance rate of toxic substances. | PXR | [74] | |
Upregulates the inducible phase I enzyme (CYP3A) and upregulates the phase II enzymes (UGT, SULT, and GST), forming a complete detoxification chain of “metabolic-binding-excretion” | [75,76] | ||
After upregulating MRP2 and MRP3, they act as efflux pumps to promote the discharge of toxins, drugs, or endogenous metabolites into the intestinal cavity or blood, reducing their accumulation in the body | CAR | [77,78] |
Category | Compound | Status | Effect | References |
---|---|---|---|---|
FXR regulator | OCA | Phase III | Improves liver fibrosis but may induce skin itching and dyslipidemia | [166] |
Tropifexor | Phase II | The proportional area of collagen is significantly reduced | [167] | |
XZP-5610 | Phase I | Improves liver histology | [139] | |
Gly-MCA | Preclinical | Improves liver lipid accumulation, endoplasmic reticulum stress, and inflammatory response | [168] | |
MET 409 | Phase III | Reduces liver fat content | [169] | |
TGR5 agonist | RDX8940 | Preclinical | Enhances insulin sensitivity | [160] |
INT-777 | Preclinical | Inhibits liver inflammation and fibrosis | [170] | |
S1PR2 inhibitor | JTE-013 | Preclinical | Reduces liver damage and fibrosis | [171] |
Double agonist | INT-767 | Preclinical | Regulates metabolism; anti-inflammatory; anti-fibrosis | [148,161] |
Elafibranor | Phase III | Anti-fibrosis | [164] | |
Bile acid pool regulator | ASBT inhibitor | Preclinical | Lower serum cholesterol | [172] |
Resmetirom | Phase III | Reduces TG and LDL-C | [173] | |
Relieves liver fibrosis | [154] | |||
norUDCA | Phase II | Lower serum ALT | [174] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Zhou, Y.; Xia, L.; Lin, X.; Zhu, Y.; Chen, M.; Wang, J.; Li, Y. Multifaceted Interactions Between Bile Acids, Their Receptors, and MASH: From Molecular Mechanisms to Clinical Therapeutics. Molecules 2025, 30, 3066. https://doi.org/10.3390/molecules30153066
Tang X, Zhou Y, Xia L, Lin X, Zhu Y, Chen M, Wang J, Li Y. Multifaceted Interactions Between Bile Acids, Their Receptors, and MASH: From Molecular Mechanisms to Clinical Therapeutics. Molecules. 2025; 30(15):3066. https://doi.org/10.3390/molecules30153066
Chicago/Turabian StyleTang, Xuan, Yuanjiao Zhou, Li Xia, Xiulian Lin, Yao Zhu, Menghan Chen, Jiayao Wang, and Yamei Li. 2025. "Multifaceted Interactions Between Bile Acids, Their Receptors, and MASH: From Molecular Mechanisms to Clinical Therapeutics" Molecules 30, no. 15: 3066. https://doi.org/10.3390/molecules30153066
APA StyleTang, X., Zhou, Y., Xia, L., Lin, X., Zhu, Y., Chen, M., Wang, J., & Li, Y. (2025). Multifaceted Interactions Between Bile Acids, Their Receptors, and MASH: From Molecular Mechanisms to Clinical Therapeutics. Molecules, 30(15), 3066. https://doi.org/10.3390/molecules30153066