Drug-Resistant Cholangiocarcinoma Cell Lines for Therapeutic Evaluation of Novel Drugs
Abstract
1. Introduction
2. Results
2.1. Development and Characterization of New Resistant Cholangiocarcinoma Cell Lines
2.2. Changes in Transportome in Resistant Cholangiocarcinoma Cell Lines
2.3. Cytostatic Effect of Other Drugs in Resistant Cholangiocarcinoma Cell Lines
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Cell Cultures
4.3. Cytostatic Effect and Cell Proliferation Rate
4.4. Cell Migration and Colony-Formation Assays
4.5. Cell Cycle Assay
4.6. Quantification of Gene Expression
4.7. Tumorigenesis
4.8. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-FU | 5-fluorouracil |
CCA | cholangiocarcinoma |
CR | cisplatin-resistant |
FBS | fetal bovine serum |
FR | 5-fluorouracil-resistant |
IC50 | 50% inhibitory concentration |
qPCR | quantitative PCR |
TLDA | Taqman Low-Density Array |
WT | wild-type |
References
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef]
- Qurashi, M.; Vithayathil, M.; Khan, S.A. Epidemiology of cholangiocarcinoma. Eur. J. Surg. Oncol. 2025, 51, 107064. [Google Scholar] [CrossRef] [PubMed]
- Rimassa, L.; Khan, S.; Groot Koerkamp, B.; Roessler, S.; Andersen, J.B.; Raggi, C.; Lleo, A.; Nault, J.C.; Calderaro, J.; Gabbi, C.; et al. Mapping the landscape of biliary tract cancer in Europe: Challenges and controversies. Lancet Reg. Health Eur. 2025, 50, 101171. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.W. BINGO: Targeted therapy for advanced biliary-tract cancer. Lancet Oncol. 2014, 15, 778–780. [Google Scholar] [CrossRef] [PubMed]
- Lamarca, A.; Barriuso, J.; McNamara, M.G.; Valle, J.W. Molecular targeted therapies: Ready for “prime time” in biliary tract cancer. J. Hepatol. 2020, 73, 170–185. [Google Scholar] [CrossRef]
- Lee, C.L.; Saborowski, A.; Vogel, A. Systemic approaches in biliary tract cancers: A review in the era of multidirectional precision medicine. Expert Opin. Pharmacother. 2024, 25, 2385–2397. [Google Scholar] [CrossRef]
- Ellis, H.; Braconi, C.; Valle, J.W.; Bardeesy, N. Cholangiocarcinoma Targeted Therapies: Mechanisms of Action and Resistance. Am. J. Pathol. 2025, 195, 437–452. [Google Scholar] [CrossRef]
- Oh, D.Y.; Ruth He, A.; Qin, S.; Chen, L.T.; Okusaka, T.; Vogel, A.; Kim, J.W.; Suksombooncharoen, T.; Ah Lee, M.; Kitano, M.; et al. Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer. NEJM Evid. 2022, 1, EVIDoa2200015. [Google Scholar] [CrossRef]
- Kelley, R.K.; Ueno, M.; Yoo, C.; Finn, R.S.; Furuse, J.; Ren, Z.; Yau, T.; Klumpen, H.J.; Chan, S.L.; Ozaka, M.; et al. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023, 401, 1853–1865. [Google Scholar] [CrossRef]
- Lamarca, A.; Palmer, D.H.; Wasan, H.S.; Ross, P.J.; Ma, Y.T.; Arora, A.; Falk, S.; Gillmore, R.; Wadsley, J.; Patel, K.; et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): A phase 3, open-label, randomised, controlled trial. Lancet Oncol. 2021, 22, 690–701. [Google Scholar] [CrossRef]
- Bridgewater, J.; Fletcher, P.; Palmer, D.H.; Malik, H.Z.; Prasad, R.; Mirza, D.; Anthony, A.; Corrie, P.; Falk, S.; Finch-Jones, M.; et al. Long-Term Outcomes and Exploratory Analyses of the Randomized Phase III BILCAP Study. J. Clin. Oncol. 2022, 40, 2048–2057. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL-ILCA Clinical Practice Guidelines on the management of intrahepatic cholangiocarcinoma. J. Hepatol. 2023, 79, 181–208. [Google Scholar] [CrossRef]
- Desert, R.; Goyal, L.; Baumert, T.F. Time for arginine methylation: PRMT5 inhibition to advance cholangiocarcinoma treatment. Gut 2025, 74, 878–880. [Google Scholar] [CrossRef]
- Monte, M.J.; Dominguez, S.; Palomero, M.F.; Macias, R.I.; Marin, J.J. Further evidence of the usefulness of bile acids as molecules for shuttling cytostatic drugs toward liver tumors. J. Hepatol. 1999, 31, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Briz, O.; Macias, R.I.; Vallejo, M.; Silva, A.; Serrano, M.A.; Marin, J.J. Usefulness of liposomes loaded with cytostatic bile acid derivatives to circumvent chemotherapy resistance of enterohepatic tumors. Mol. Pharmacol. 2003, 63, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Lozano, E.; Monte, M.J.; Briz, O.; Hernandez-Hernandez, A.; Banales, J.M.; Marin, J.J.; Macias, R.I. Enhanced antitumour drug delivery to cholangiocarcinoma through the apical sodium-dependent bile acid transporter (ASBT). J. Control. Release 2015, 216, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Galvao, F.H.F.; Traldi, M.C.C.; Araujo, R.S.S.; Stefano, J.T.; D’Albuquerque, L.A.C.; Oliveira, C.P. Preclinical Models of Liver Cancer. Arq. Gastroenterol. 2023, 60, 383–392. [Google Scholar] [CrossRef]
- Calvisi, D.F.; Boulter, L.; Vaquero, J.; Saborowski, A.; Fabris, L.; Rodrigues, P.M.; Coulouarn, C.; Castro, R.E.; Segatto, O.; Raggi, C.; et al. Criteria for preclinical models of cholangiocarcinoma: Scientific and medical relevance. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 462–480. [Google Scholar] [CrossRef]
- Varamo, C.; Peraldo-Neia, C.; Ostano, P.; Basirico, M.; Raggi, C.; Bernabei, P.; Venesio, T.; Berrino, E.; Aglietta, M.; Leone, F.; et al. Establishment and Characterization of a New Intrahepatic Cholangiocarcinoma Cell Line Resistant to Gemcitabine. Cancers 2019, 11, 519. [Google Scholar] [CrossRef]
- Li, J.; Hu, Y.; Zhang, J.; Zhang, W.; Yu, J.; Lu, B. Establishment and characterization of three gemcitabine-resistant human intrahepatic cholangiocarcinoma cell lines. Sci. Rep. 2025, 15, 4813. [Google Scholar] [CrossRef]
- Marin, J.J.; Monte, M.J.; Blazquez, A.G.; Macias, R.I.; Serrano, M.A.; Briz, O. The role of reduced intracellular concentrations of active drugs in the lack of response to anticancer chemotherapy. Acta Pharmacol. Sin. 2014, 35, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Roesch, A.; Fukunaga-Kalabis, M.; Schmidt, E.C.; Zabierowski, S.E.; Brafford, P.A.; Vultur, A.; Basu, D.; Gimotty, P.; Vogt, T.; Herlyn, M. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 2010, 141, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Wang, R.; Huang, C.; Zhong, R.; Jiang, N.; Fu, W.; Mi, N.; Gao, L.; Jin, Y.; Ma, H.; et al. Biological and genetic characterization of a newly established human primary multidrug-resistant distal cholangiocarcinoma cell line, CBC3T-6. Sci. Rep. 2024, 14, 29661. [Google Scholar] [CrossRef] [PubMed]
- Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer 2005, 5, 275–284. [Google Scholar] [CrossRef]
- Sarin, N.; Engel, F.; Kalayda, G.V.; Mannewitz, M.; Cinatl, J., Jr.; Rothweiler, F.; Michaelis, M.; Saafan, H.; Ritter, C.A.; Jaehde, U.; et al. Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest. PLoS ONE 2017, 12, e0181081. [Google Scholar] [CrossRef]
- Lee, D.; Jeong, H.S.; Hwang, S.Y.; Lee, Y.G.; Kang, Y.J. ABCB1 confers resistance to carboplatin by accumulating stem-like cells in the G2/M phase of the cell cycle in p53(null) ovarian cancer. Cell Death Discov. 2025, 11, 132. [Google Scholar] [CrossRef]
- Santos-de-Frutos, K.; Djouder, N. When dormancy fuels tumour relapse. Commun. Biol. 2021, 4, 747. [Google Scholar] [CrossRef]
- Nagai, K.; Nagasawa, K.; Koma, M.; Hotta, A.; Fujimoto, S. Cytidine is a novel substrate for wild-type concentrative nucleoside transporter 2. Biochem. Biophys. Res. Commun. 2006, 347, 439–443. [Google Scholar] [CrossRef]
- Yokoo, S.; Yonezawa, A.; Masuda, S.; Fukatsu, A.; Katsura, T.; Inui, K. Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent-induced nephrotoxicity. Biochem. Pharmacol. 2007, 74, 477–487. [Google Scholar] [CrossRef]
- Chen, H.H.; Yan, J.J.; Chen, W.C.; Kuo, M.T.; Lai, Y.H.; Lai, W.W.; Liu, H.S.; Su, W.C. Predictive and prognostic value of human copper transporter 1 (hCtr1) in patients with stage III non-small-cell lung cancer receiving first-line platinum-based doublet chemotherapy. Lung Cancer 2012, 75, 228–234. [Google Scholar] [CrossRef]
- Kim, E.S.; Tang, X.; Peterson, D.R.; Kilari, D.; Chow, C.W.; Fujimoto, J.; Kalhor, N.; Swisher, S.G.; Stewart, D.J.; Wistuba, I.I.; et al. Copper transporter CTR1 expression and tissue platinum concentration in non-small cell lung cancer. Lung Cancer 2014, 85, 88–93. [Google Scholar] [CrossRef]
- Asensio, M.; Briz, O.; Herraez, E.; Perez-Silva, L.; Espinosa-Escudero, R.; Bueno-Sacristan, D.; Peleteiro-Vigil, A.; Hammer, H.; Potz, O.; Kadioglu, O.; et al. Sensitizing cholangiocarcinoma to chemotherapy by inhibition of the drug-export pump MRP3. Biomed. Pharmacother. 2024, 180, 117533. [Google Scholar] [CrossRef]
- Dawson, P.A. Role of the intestinal bile acid transporters in bile acid and drug disposition. In Drug Transporters; Part of the Book Series: Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 169–203. [Google Scholar] [CrossRef]
- Cadamuro, M.; Brivio, S.; Spirli, C.; Joplin, R.E.; Strazzabosco, M.; Fabris, L. Autocrine and Paracrine Mechanisms Promoting Chemoresistance in Cholangiocarcinoma. Int. J. Mol. Sci. 2017, 18, 149. [Google Scholar] [CrossRef]
- Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013, 13, 714–726. [Google Scholar] [CrossRef]
IC50 Value | |||||
---|---|---|---|---|---|
Drug | EGI-1 WT | EGI-1 CR | RR | EGI-1 FR | RR |
Cisplatin (µM) | 12.9 ± 3.6 | 47.3 ± 3.2 ª | 3.7 | 9.3 ± 1.1 | 0.7 |
5-FU (µM) | 11.0 ± 3.2 | >30 ª | >3 | >30 ª | >3 |
Gemcitabine (µM) | 7.5 ± 3.4 | 12.0 ± 0.3 | 1.6 | 14.6 ± 1.5 ª | 1.9 |
Oxaliplatin (µM) | 13.9 ± 2.5 | 24.5 ± 2.1 ª | 1.8 | 20.0 ± 0.1 | 1.4 |
Paclitaxel (nM) | 7.7 ± 0.8 | 8.3 ± 1.1 | 1.1 | 12.1 ± 1.3 | 1.6 |
Irinotecan (µM) | 4.5 ± 0.6 | 5.8 ± 1.1 | 1.3 | 44.9 ± 5.8 ª | 10 |
Bamet-UD2 (µM) | 163 ± 22 | 262 ± 39 | 1.8 | 205 ± 42 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Calvo, K.; Lozano, E.; Briz, O.; Cives-Losada, C.; Marin, J.J.G.; Macias, R.I.R. Drug-Resistant Cholangiocarcinoma Cell Lines for Therapeutic Evaluation of Novel Drugs. Molecules 2025, 30, 3053. https://doi.org/10.3390/molecules30143053
Delgado-Calvo K, Lozano E, Briz O, Cives-Losada C, Marin JJG, Macias RIR. Drug-Resistant Cholangiocarcinoma Cell Lines for Therapeutic Evaluation of Novel Drugs. Molecules. 2025; 30(14):3053. https://doi.org/10.3390/molecules30143053
Chicago/Turabian StyleDelgado-Calvo, Kevin, Elisa Lozano, Oscar Briz, Candela Cives-Losada, Jose J. G. Marin, and Rocio I. R. Macias. 2025. "Drug-Resistant Cholangiocarcinoma Cell Lines for Therapeutic Evaluation of Novel Drugs" Molecules 30, no. 14: 3053. https://doi.org/10.3390/molecules30143053
APA StyleDelgado-Calvo, K., Lozano, E., Briz, O., Cives-Losada, C., Marin, J. J. G., & Macias, R. I. R. (2025). Drug-Resistant Cholangiocarcinoma Cell Lines for Therapeutic Evaluation of Novel Drugs. Molecules, 30(14), 3053. https://doi.org/10.3390/molecules30143053