The Effect of Osmotic Dehydration Conditions on the Magnesium Content in Beetroot (Beta vulgaris L.)
Abstract
1. Introduction
2. Results and Discussion
2.1. Magnesium Content in Dehydrated Beetroot Flesh (First Stage)
2.2. Magnesium Content in Dehydrated Beetroot Flesh (Second Stage)
2.3. Antioxidant Activity and Proximate Composition of Dehydrated Beetroot
2.4. Texture Profile Analysis (TPA)
3. Materials and Methods
3.1. Sample Collection
3.2. Chemicals and Reagents
3.3. Osmotic Dehydration Procedure
3.4. Determination of Magnesium Content
3.5. Extract Preparation for Antioxidant Activity Analysis
3.6. Antioxidant Activity Analysis
3.7. Food Composition Analysis
3.8. Texture Profile Analysis (TPA)
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Workinger, J.L.; Doyle, R.P.; Bortz, J. Challenges in the diagnosis of magnesium status. Nutrients 2018, 10, 1202. [Google Scholar] [CrossRef] [PubMed]
- Schutten, J.C.; Joosten, M.M.; de Borst, M.H.; Bakker, S.J.L. Magnesium and blood pressure: A physiology-based approach. Adv. Chronic Kidney Dis. 2018, 25, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Rooney, M.R.; Alonso, A.; Folsom, A.R.; Michos, E.D.; Rebholz, C.M.; Misialek, J.R.; Chen, L.Y.; Dudley, S.; Lutsey, P.L. Serum magnesium and the incidence of coronary artery disease over a median 27 years of follow-up in the Atherosclerosis Risk in Communities (ARIC) Study and a meta-analysis. Am. J. Clin. Nutr. 2020, 111, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.M.; Lubitz, S.A.; Sullivan, L.M.; Sun, J.X.; Levy, D.; Vasan, R.S.; Magnani, J.W.; Ellinor, P.T.; Benjamin, E.J.; Wang, T.J. Low serum magnesium and the development of atrial fibrillation in the community: The Framingham Heart Study. Circulation 2013, 127, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Morán, M.; Simental-Mendía, L.E.; Zambrano-Galván, G.; Guerrero-Romero, F. The role of magnesium in type 2 diabetes: A brief based-clinical review. Magnes. Res. 2011, 24, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Zheng, X.; Ma, Z.-T.; Lv, J.-Y.; Jiang, W.-J.; Liu, M.-Y. Association of circulating magnesium levels in patients with Alzheimer’s disease from 1991 to 2021: A systematic review and meta-analysis. Front. Aging Neurosci. 2022, 13, 799824. [Google Scholar] [CrossRef] [PubMed]
- Cheungpasitporn, W.; Thongprayoon, C.; Mao, M.A.; Srivali, N.; Ungprasert, P.; Varothai, N.; Sanguankeo, A.; Kittanamongkolchai, W.; Erickson, S.B. Hypomagnesaemia linked to depression: A systematic review and meta-analysis. Intern. Med. J. 2015, 45, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Tang, M.; Wei, X.; Peng, Y. Association between magnesium deficiency score and sleep quality in adults: A population-based cross-sectional study. J. Affect. Disord. 2024, 358, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, L.J.; Veronese, N.; Ciriminna, S.; Pérez-Albela, J.L.; Vásquez-López, V.F.; Rodas-Regalado, S.; Di Bella, G.; Parisi, A.; Tagliaferri, F.; Barbagallo, M. Association between serum magnesium and fractures: A systematic review and meta-analysis of observational studies. Nutrients 2023, 15, 1304. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.H. Magnesium deficiency and increased inflammation: Current perspectives. J. Inflamm. Res. 2018, 11, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Li, H.; Zhang, X.; Gao, J.; Ma, R.; Ma, L.; Ma, J. Effects of Magnesium Imbalance on Root Growth and Nutrient Absorption in Different Genotypes of Vegetable Crops. Plants 2023, 12, 3518. [Google Scholar] [CrossRef] [PubMed]
- Ishfaq, M.; Wang, Y.; Yan, M.; Wang, Z.; Wu, L.; Li, C.; Li, X. Physiological Essence of Magnesium in Plants and Its Widespread Deficiency in the Farming System of China. Front. Plant Sci. 2022, 13, 802274. [Google Scholar] [CrossRef] [PubMed]
- González-Pérez, A.; Wagh, A.; Sittisuanjik, S.; Salehi, F. Food fortification potential of osmotic dehydration and the impact of osmo-combined techniques on bioactive component saturation in fruits and vegetables. Braz. J. Food Technol. 2024, 27, e202302823. [Google Scholar] [CrossRef]
- Asghari, A.; Zongo, P.A.; Osse, E.F.; Aghajanzadeh, S.; Raghavan, V.; Khalloufi, S. Review of osmotic dehydration: Promising technologies for enhancing products’ attributes, opportunities, and challenges for the food industries. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13346. [Google Scholar] [CrossRef] [PubMed]
- Mari, A.; Parisouli, D.N.; Krokida, M. Exploring osmotic dehydration for food preservation: Methods, modelling, and modern applications. Foods 2024, 13, 2783. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, J.; Zhang, L.; Liu, S.; Li, C. Effects of osmotic dehydration on mass transfer of tender coconut kernel. Foods 2024, 13, 2188. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Bi, J.; Lyu, M.; Lyu, J. Insight into the effect of osmosis agents on macro- and micro-texture, water distribution, and thermal stability of instant controlled pressure drop drying peach chips. Food Chem. 2024, 440, 138236. [Google Scholar] [CrossRef] [PubMed]
- Pezo, L.; Lončar, B.; Filipović, V.; Šovljanski, O.; Travičić, V.; Filipović, J.; Pezo, M.; Jovanović, A.; Aćimović, M. Osmotic dehydration model for sweet potato varieties in sugar beet molasses using the Peleg model and fitting absorption data using the Guggenheim-Anderson-de Boer model. Foods 2024, 13, 1658. [Google Scholar] [CrossRef] [PubMed]
- Abrahão, F.R.; Corrêa, J.L.G. Osmotic dehydration: More than water loss and solid gain. Crit. Rev. Food Sci. Nutr. 2023, 63, 2970–2989. [Google Scholar] [CrossRef] [PubMed]
- Kaur, D.; Singh, M.; Zalpouri, R.; Kaur, P.; Gill, R.S. Enhancing physicochemical properties of papaya through osmotic dehydration with various natural sweeteners. Sci. Rep. 2024, 14, 23797. [Google Scholar] [CrossRef] [PubMed]
- Nagy, D.U.; Sándor-Bajusz, K.A.; Bódy, B.; Decsi, T.; Van Harsselaar, J.; Theis, S.; Lohner, S. Effect of chicory-derived inulin-type fructans on abundance of Bifidobacterium and on bowel function: A systematic review with meta-analyses. Crit. Rev. Food Sci. Nutr. 2023, 63, 12018–12035. [Google Scholar] [CrossRef] [PubMed]
- Coudray, C.; Rambeau, M.; Feillet-Coudray, C.; Tressol, J.C.; Demigné, C.; Gueux, E.; Mazur, A.; Rayssiguier, Y. Dietary inulin intake and age can significantly affect intestinal absorption of calcium and magnesium in rats: A stable isotope approach. Nutr. J. 2005, 4, 29. [Google Scholar] [CrossRef] [PubMed]
- Coudray, C.; Feillet-Coudray, C.; Gueux, E.; Mazur, A.; Rayssiguier, Y. Dietary inulin intake and age can affect intestinal absorption of zinc and copper in rats. J. Nutr. 2006, 136, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Bakirhan, H.; Karabudak, E. Effects of inulin on calcium metabolism and bone health. Int. J. Vitam. Nutr. Res. 2023, 93, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, H.; Huang, H.; Zhang, C.; Zuo, H.-X.; Xu, P.; Niu, Y.-M.; Wu, S.-S. Inulin-type fructans supplementation improves glycemic control for the prediabetes and type 2 diabetes populations: Results from a GRADE-assessed systematic review and dose-response meta-analysis of 33 randomized controlled trials. J. Transl. Med. 2019, 17, 410. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, P.; Xu, L. Assessing the effects of inulin-type fructan intake on body weight, blood glucose, and lipid profile: A systematic review and meta-analysis of randomized controlled trials. Food Sci. Nutr. 2021, 9, 4598–4616. [Google Scholar] [CrossRef] [PubMed]
- Faghihimani, Z.; Namazi, N.; Ghaffari, S.; Rezaei Kelishadi, M.; Sharifi, S.; Nattagh-Eshtivani, E.; Akbarzadeh, M.; Moravejolahkami, A.R.; Khorvash, F.; Roshanravan, N.; et al. Effects of inulin type-carbohydrates on blood pressure: A systematic review and meta-analysis. Int. J. Food Prop. 2021, 24, 129–139. [Google Scholar] [CrossRef]
- Ziaei, R.; Shahshahan, Z.; Ghasemi-Tehrani, H.; Heidari, Z.; Ghiasvand, R. Effects of inulin-type fructans with different degrees of polymerization on inflammation, oxidative stress and endothelial dysfunction in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Clin. Endocrinol. 2022, 97, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Zhang, B.; Liu, X.; Jin, R.; Zhu, W. Effects of chicory inulin on serum metabolites of uric acid, lipids, glucose, and abdominal fat deposition in quails induced by purine-rich diets. J. Med. Food 2014, 17, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, K.K.; Saag, M.; Isotupa, K.P.; Olak, J.; Nõmmela, R.; Söderling, E.; Mäkinen, P.-L. Similarity of the effects of erythritol and xylitol on some risk factors of dental caries. Caries Res. 2005, 39, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, Z.A.; Smith, G.; Palm, L.; Motwani, K.; Butterfield, J.; Archer, C.; Henderson, R.; Heldermon, C.; Gautam, S.; Brantly, M.L. An erythritol-sweetened beverage induces satiety and suppresses ghrelin compared to aspartame in healthy non-obese subjects: A pilot study. Cureus 2020, 12, e11409. [Google Scholar] [CrossRef] [PubMed]
- Zongo, A.P.; Khalloufi, S.; Ratti, C. Sugar profiles modulation of mangoes during osmotic dehydration in agave syrup solutions. J. Food Sci. 2023, 88, 228–243. [Google Scholar] [CrossRef] [PubMed]
- Özkan-Karabacak, A.; Özcan-Sinir, G.; Çopur, A.E.; Bayizit, M. Effect of osmotic dehydration pretreatment on the drying characteristics and quality properties of semi-dried (intermediate) kumquat (Citrus japonica) slices by vacuum dryer. Foods 2022, 11, 2139. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.; Pulissery, S.K.; Sankalpa, K.B.; Lal, A.M.N.; Warrier, A.S.; Mahanti, N.K.; Kothakota, A. Optimization and modeling of vacuum impregnation of pineapple rings and comparison with osmotic dehydration. J. Food Sci. 2024, 89, 494–512. [Google Scholar] [CrossRef] [PubMed]
- Cichowska, J.; Witrowa-Rajchert, D.; Stasiak-Różańska, L.; Figiel, A. Ultrasound-assisted osmotic dehydration of apples in polyols and dihydroxyacetone (DHA) solutions. Molecules 2019, 24, 3429. [Google Scholar] [CrossRef] [PubMed]
- Cichowska, J.; Żubernik, J.; Czyżewski, J.; Kowalska, H.; Witrowa-Rajchert, D. Efficiency of osmotic dehydration of apples in polyols solutions. Molecules 2018, 23, 446. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, H.; Trusinska, M.; Rybak, K.; Wiktor, A.; Witrowa-Rajchert, D.; Nowacka, M. Shaping the properties of osmo-dehydrated strawberries in fruit juice concentrates. Appl. Sci. 2023, 13, 2728. [Google Scholar] [CrossRef]
- Kroehnke, J.; Szadzińska, J.; Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Musielak, G.; Mierzwa, D. Osmotic dehydration and convective drying of kiwifruit (Actinidia deliciosa)—The influence of ultrasound on process kinetics and product quality. Ultrason. Sonochem. 2021, 71, 105377. [Google Scholar] [CrossRef] [PubMed]
- Abrahão, F.R.; Corrêa, J.L.G.; Sousa, A.d.B.M.; Silveira, P.G.; Cunha, R.N. Effect of ultrasound and osmotic dehydration as pretreatments on the infrared drying of banana slices. Food Technol. Biotechnol. 2024, 62, 384–396. [Google Scholar] [CrossRef] [PubMed]
- Chandra, A.; Kumar, S.; Tarafdar, A.; Nema, P.K. Ultrasonic and osmotic pretreatments followed by convective and vacuum drying of papaya slices. J. Sci. Food Agric. 2021, 101, 2264–2272. [Google Scholar] [CrossRef] [PubMed]
- Ignaczak, A.; Salamon, A.; Kowalska, J.; Marzec, A.; Kowalska, H. Influence of pre-treatment and drying methods on the quality of dried carrot properties as snacks. Molecules 2023, 28, 6407. [Google Scholar] [CrossRef] [PubMed]
- Kulczyński, B.; Suliburska, J.; Gramza-Michałowska, A.; Sidor, A.; Kowalczewski, P.Ł.; Brzozowska, A. The effect of osmotic dehydration conditions on the potassium content in beetroot (Beta vulgaris L.). Molecules 2024, 29, 5509. [Google Scholar] [CrossRef] [PubMed]
- Kulczyński, B.; Suliburska, J.; Rybarczyk, M.; Gramza-Michałowska, A. The effect of osmotic dehydration conditions on the calcium content in plant matrices. Food Chem. 2021, 343, 128519. [Google Scholar] [CrossRef] [PubMed]
- Silva, K.S.; Fernandes, M.A.; Mauro, M.A. Effect of calcium on the osmotic dehydration kinetics and quality of pineapple. J. Food Eng. 2014, 134, 37–44. [Google Scholar] [CrossRef]
- Mauro, M.A.; Dellarosa, N.; Tylewicz, U.; Tappi, S.; Laghi, L.; Rocculi, P.; Rosa, M.D. Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions. Food Chem. 2016, 195, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.M.; Carmello-Guerreiro, S.M.; Bolini, H.M.A.; Cunha, R.L.; Hubinger, M.D. Effect of calcium salts on the texture, structure and sensory acceptance of osmotically dehydrated guavas. J. Sci. Food Agric. 2007, 87, 1149–1156. [Google Scholar] [CrossRef]
- Vijay, S.; Vikraman, S.; Rose Mary, P.; Chauhan, A.S.; Kapoor, M. Osmotic infusion of Lactiplantibacillus plantarum and Lacticaseibacillus casei in cut pineapple matrix: Optimization, survival under gastrointestinal stress, and storage stability studies. J. Food Process. Preserv. 2020, 45, e15132. [Google Scholar] [CrossRef]
- Nagai, L.Y.; Santos, A.B.; Faria, F.A.; Boscolo, M.; Mauro, M.A. Osmotic dehydration of mango with ascorbic acid impregnation: Influence of process variables. J. Food Process. Preserv. 2014, 38, 384–393. [Google Scholar] [CrossRef]
- Galus, S.; Rybak, K.; Dadan, M.; Witrowa-Rajchert, D.; Nowacka, M. The Effect of the Use of Unconventional Solutions for Osmotic Dehydration on Selected Properties of Fresh-Cut Oranges. Foods 2025, 14, 468. [Google Scholar] [CrossRef] [PubMed]
- Wojtyś, A.; Pietrzyk, S.; Bogacz, S.; Witkowicz, R. Osmotic Dehydration of Japanese Quince (Chaenomeles japonica) Fruits in Erythritol Solutions: Impact of Processing Conditions on the Kinetic Parameters and on Physicochemical and Antioxidant Properties of the Fruits. Molecules 2024, 29, 5524. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Ramírez, J.; Barragán-Iglesias, J.; Ramírez-Palma, A.J.; Méndez-Lagunas, L.L. Effect of calcium and osmotic pretreatments on mass transfer and texture parameters during processing of chilacayote (Cucurbita ficifolia Bouché). J. Food Process. Preserv. 2023, 47, e3873662. [Google Scholar] [CrossRef]
- Lech, K.; Michalska, A.; Wojdyło, A.; Nowicka, P.; Figiel, A. The Influence of the Osmotic Dehydration Process on Physicochemical Properties of Osmotic Solution. Molecules 2017, 22, 2246. [Google Scholar] [CrossRef] [PubMed]
- Nićetin, M.; Pezo, L.; Pergal, M.; Lončar, B.; Filipović, V.; Knežević, V.; Demir, H.; Filipović, J.; Manojlović, D. Celery Root Phenols Content, Antioxidant Capacities and Their Correlations after Osmotic Dehydration in Molasses. Foods 2022, 11, 1945. [Google Scholar] [CrossRef] [PubMed]
- Yazidi, R.; Yeddes, W.; Rybak, K.; Witrowa-Rajchert, D.; Aidi Wannes, W.; Hammami, M.; Hessini, K.; Saidani Tounsi, M.; Nowacka, M. Osmotic Dehydration of Orange Fruits in Sucrose and Prickly Pear Molasses Solutions: Mass Transfer and Quality of Dehydrated Products. Pol. J. Food Nutr. Sci. 2024, 74, 340–349. [Google Scholar] [CrossRef]
- Devic, E.; Guyot, S.; Daudin, J.-D.; Bonazzi, C. Effect of temperature and cultivar on polyphenol retention and mass transfer during osmotic dehydration of apples. J. Agric. Food Chem. 2010, 58, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.; Xin, T.B.; Kamilah, H.; Ariffin, F. Effects of osmotic dehydration treatment on volatile compound (Myristicin) content and antioxidants property of nutmeg (Myristica fragrans) pericarp. J. Food Sci. Technol. 2018, 55, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Wiktor, A.; Chadzynska, M.; Rybak, K.; Dadan, M.; Witrowa-Rajchert, D.; Nowacka, M. The influence of polyols on the process kinetics and bioactive substance content in osmotic dehydrated organic strawberries. Molecules 2022, 27, 1376. [Google Scholar] [CrossRef] [PubMed]
- Dutra, T.A.; Fragoso, M.B.T.; Wanderley, T.M.; Bezerra, A.R.; Bueno, N.B.; de Oliveira, A.C.M. Diet’s total antioxidant capacity and women’s health: Systematic review and meta-analysis. Br. J. Nutr. 2025, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zujko, M.E.; Waśkiewicz, A.; Witkowska, A.M.; Cicha-Mikołajczyk, A.; Zujko, K.; Drygas, W. Dietary total antioxidant capacity—A new indicator of healthy diet quality in cardiovascular diseases: A Polish cross-sectional study. Nutrients 2022, 14, 3219. [Google Scholar] [CrossRef] [PubMed]
- Ha, K.; Liao, L.M.; Sinha, R.; Chun, O.K. Dietary total antioxidant capacity, a diet quality index predicting mortality risk in US adults: Evidence from the NIH-AARP Diet and Health Study. Antioxidants 2023, 12, 1086. [Google Scholar] [CrossRef] [PubMed]
- Suliburska, J.; Krejpcio, Z. Evaluation of the content and bioaccessibility of iron, zinc, calcium, and magnesium from groats, rice, leguminous grains, and nuts. J. Food Sci. Technol. 2014, 51, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Rajagukguk, Y.V.; Arnold, M.; Sidor, A.; Kulczyński, B.; Brzozowska, A.; Schmidt, M.; Gramza-Michałowska, A. Antioxidant activity, probiotic survivability, and sensory properties of a phenolic-rich pulse snack bar enriched with Lactiplantibacillus plantarum. Foods 2022, 11, 309. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis: Official Method for Protein; Method No. 920.87; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- PN-EN ISO 3947; Starches, Native or Modified—Determination of Total Fat Content. International Organization for Standardization: Geneva, Switzerland, 2001.
- Dziedzic, K.; Górecka, D.; Kucharska, M.; Przybylska, B. Influence of technological process during buckwheat groats production on dietary fibre content and sorption of bile acids. Food Res. Int. 2012, 47, 279–283. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Walkowiak, K.; Masewicz, Ł.; Bartczak, O.; Lewandowicz, J.; Kubiak, P.; Baranowska, H.M. Gluten-Free Bread with Cricket Powder-Mechanical Properties and Molecular Water Dynamics in Dough and Ready Product. Foods 2019, 8, 240. [Google Scholar] [CrossRef] [PubMed]
Osmotically Active Substance | Magnesium Oxide | Magnesium Citrate | Magnesium Chloride |
---|---|---|---|
Water | 105.40 ± 2.56 aA | 87.31 ± 7.23 aB | 144.81 ± 11.89 aC |
IS25 | 303.25 ± 7.71 bA | 335.75 ± 6.92 bB | 399.37 ± 5.03 bC |
IS50 | 520.41 ± 11.23 cA | 577.10 ± 7.51 cB | 683.96 ± 10.77 cC |
XS25 | 255.90 ± 4.76 dA | 309.96 ± 12.76 dB | 327.36 ± 8.77 dC |
XS50 | 470.75 ± 7.52 eA | 569.82 ± 6.39 cB | 604.78 ± 10.74 eC |
ES25 | 401.72 ± 10.82 fA | 499.95 ± 7.63 eB | 479.58 ± 9.69 fC |
ES50 | 585.52 ± 9.51 gA | 612.05 ± 5.15 fB | 668.38 ± 5.67 cC |
SS25 | 282.19 ± 8.91 bA | 456.41 ± 9.61 gB | 475.87 ± 4.55 fC |
SS50 | 477.99 ± 10.33 eA | 497.62 ± 11.44 eB | 589.81 ± 7.08 eC |
Combinations of Factors | F | df | p | η2 |
---|---|---|---|---|
Chemical form of magnesium | 1062.69 | 2.54 | 0.000 | 0.98 |
Osmotically active substance | 3225.46 | 8.54 | 0.000 | 1.00 |
Chemical form of magnesium × Osmotically active substance | 47.93 | 16.54 | 0.000 | 0.93 |
Osmotically Active Substance | Magnesium Oxide | Magnesium Citrate | Magnesium Chloride |
---|---|---|---|
Water | 1803.54 ± 43.76 aA | 1658.47 ± 137.32 aB | 2030.05 ± 166.69 aC |
IS25 | 1609.32 ± 75.04 abA | 1128.28 ± 51.04 bB | 1234.1 ± 75.43 bC |
IS50 | 1269.33 ± 71.11 eA | 1635.79 ± 24.26 aB | 1820.78 ± 10.89 cC |
XS25 | 979.22 ± 49.32 cA | 867.89 ± 35.71 cB | 1006.71 ± 129.07 dA |
XS50 | 976.9 ± 43.83 cA | 931.08 ± 29.03 cdB | 1043.34 ± 17.65 bdC |
ES25 | 1670.03 ± 83.83 adA | 1379.47 ± 39.32 eB | 1585.52 ± 37.53 eC |
ES50 | 1508.8 ± 56.03 bdA | 1273.69 ± 80.01 beB | 1821.89 ± 55.88 cC |
SS25 | 1912.16 ± 76.26 aA | 1693.3 ± 35.66 aB | 1056.93 ± 58.66 bdC |
SS50 | 2260.42 ± 95.56 fA | 1077.65 ± 17.21 bdB | 1201.22 ± 14.42 bC |
Time/Temperature | IS50 | ES50 | |||
---|---|---|---|---|---|
Magnesium Chloride 2.5% | Magnesium Chloride 5.0% | Magnesium Chloride 2.5% | Magnesium Chloride 5.0% | ||
60 min | 30 °C | 194.93 ± 8.69 aAxX | 416.33 ± 4.82 aBxX | 156.57 ± 7.13 bAxX | 458.11 ± 10.34 bBxX |
50 °C | 181.60 ± 6.00 aAxY | 430.34 ± 9.91 aBxY | 178.85 ± 5.83 aAxY | 478.62 ± 7.13 bBxY | |
120 min | 30 °C | 278.43 ± 5.32 aAyX | 641.40 ± 7.30 aByX | 321.71 ± 9.16 bAyX | 595.95 ± 7.38 bByX |
50 °C | 301.88 ± 4.47 aAyY | 664.59 ± 12.57 aByY | 339.12 ± 4.86 bAyY | 644.58 ± 8.37 bByY | |
180 min | 30 °C | 319.10 ± 4.66 azxX | 672.45 ± 6.88 aBzX | 355.92 ± 10.68 bAzX | 663.31 ± 7.62 aBzX |
50 °C | 326.64 ± 7.5.0 aAzxX | 655.52 ± 7.51 aByY | 329.61 ± 7.78 bAyY | 678.91 ± 6.94 bBzY |
Combinations of Factors | F | df | p | η2 |
---|---|---|---|---|
Osmotically active substance | 29.23 | 1.48 | 0.000 | 0.38 |
Magnesium concentration | 28,965.34 | 1.48 | 0.000 | 1.00 |
Process time | 4179.19 | 2.48 | 0.000 | 0.99 |
Process temperature | 38.84 | 1.48 | 0.000 | 0.45 |
Osmotically active substance × Magnesium concentration | 3.41 | 1.48 | 0.071 | 0.07 |
Osmotically active substance × Process time | 2.83 | 2.48 | 0.069 | 0.11 |
Osmotically active substance × Process temperature | 7.60 | 1.48 | 0.008 | 0.14 |
Magnesium concentration × Process time | 133.63 | 2.48 | 0.000 | 0.85 |
Magnesium concentration × Process temperature | 11.48 | 1.48 | 0.001 | 0.19 |
Process time × Process temperature | 27.75 | 2.48 | 0.000 | 0.54 |
Osmotically active substance × Magnesium concentration × Process time | 121.57 | 2.48 | 0.000 | 0.84 |
Osmotically active substance × Magnesium concentration × Process temperature | 9.92 | 1.48 | 0.003 | 0.17 |
Osmotically active substance × Process time × Process temperature | 2.97 | 2.48 | 0.061 | 0.11 |
Magnesium concentration × Process time × Process temperature | 0.29 | 2.48 | 0.748 | 0.01 |
Osmotically active substance × Magnesium concentration × Process time × Process temperature | 14.69 | 2.48 | 0.000 | 0.38 |
Time and Temperature | IS50 | ES50 | |||
---|---|---|---|---|---|
Magnesium Chloride 2.5% | Magnesium Chloride 5.0% | Magnesium Chloride 2.5% | Magnesium Chloride 5.0% | ||
60 min | 30 °C | 13.04 ± 0.58 aAxX | 13.92 ± 0.16 aBxX | 10.47 ± 0.48 bAxX | 15.32 ± 0.35 bBxX |
50 °C | 12.15 ± 0.40 aAxY | 14.39 ± 0.33 aBxX | 11.96 ± 0.39 aAxY | 16.01 ± 0.24 bBxY | |
120 min | 30 °C | 18.62 ± 0.36 aAyX | 21.45 ± 0.24 aByX | 21.52 ± 0.61 bAyX | 19.93 ± 0.25 bByX |
50 °C | 20.19 ± 0.30 aAyY | 22.23 ± 0.42 aByY | 22.68 ± 0.33 bAyY | 21.56 ± 0.28 bByY | |
180 min | 30 °C | 21.34 ± 0.31 aAzX | 22.49 ± 0.23 aBzX | 23.81 ± 0.71 bAzX | 22.18 ± 0.25 aBzX |
50 °C | 21.85 ± 0.50 aAzX | 21.92 ± 0.25 aByX | 22.05 ± 0.52 aAyY | 22.71 ± 0.23 bBzX |
Time and Temperature | IS50 | ES50 | |||
---|---|---|---|---|---|
Magnesium Chloride 2.5% | Magnesium Chloride 5.0% | Magnesium Chloride 2.5% | Magnesium Chloride 5.0% | ||
60 min | 30 °C | 479.53 ± 21.39 aAxX | 1265.63 ± 14.67 aAxX | 288.09 ± 13.12 bAxyX | 875 ± 19.75 bBxX |
50 °C | 473.99 ± 15.66 aAxX | 1170.52 ± 26.97 aBxY | 284.37 ± 9.27 bAxX | 1033.83 ± 15.4 bBxY | |
120 min | 30 °C | 643.18 ± 12.29 aAyX | 1590.68 ± 18.1 aByX | 692.65 ± 19.72 bAyX | 1358.76 ± 16.83 bByX |
50 °C | 646.03 ± 9.56 aAyX | 1322.54 ± 25.02 aByY | 586.68 ± 8.41 bAyY | 1379.41 ± 17.91 bByX | |
180 min | 30 °C | 650.96 ± 9.51 aAyX | 1519.75 ± 15.54 aBzX | 722.51 ± 21.67 bAyX | 1386.31 ± 15.93 bByX |
50 °C | 604.29 ± 13.87 aAzY | 1586.36 ± 18.18 aBzY | 547.15 ± 12.92 bAzY | 1167.73 ± 11.93 bBzY |
Protein Content (g/100 g) | Fat Content (g/100 g) | Dietary Fiber Content (g/100 g) | |
---|---|---|---|
A1 | 1.21 ± 0.15 a | 0.09 ± 0.01 a | 1.57 ± 0.13 a |
A2 | 6.34 ± 0.15 b | 0.55 ± 0.04 b | 5.81 ± 0.18 c |
B1 | 1.65 ± 0.07 a | 0.10 ± 0.02 a | 1.51 ± 0.09 a |
B2 | 8.06 ± 0.28 b | 0.79 ± 0.04 b | 6.26 ± 0.28 b |
C1 | 1.43 ± 0.05 a | 0.15 ± 0.02 a | 1.44 ± 0.07 a |
C2 | 7.34 ± 0.14 b | 0.79 ± 0.03 b | 6.38 ± 0.10 b |
D1 | 1.65 ± 0.04 a | 0.16 ± 0.01 a | 1.67 ± 0.14 a |
D2 | 8.27 ± 0.12 b | 0.83 ± 0.04 b | 6.84 ± 0.16 b |
E1 | 2.14 ± 0.18 a | 0.42 ± 0.02 a | 2.15 ± 0.13 b |
E2 | 9.56 ± 0.41 c | 1.70 ± 0.08 c | 13.01 ± 0.36 c |
Hardness (N) | Adhesiveness (N × s) | Springiness (%) | Cohesiveness | Gumminess | Chewiness | Resilience | |
---|---|---|---|---|---|---|---|
S1 | 87.0 ± 19.0 | −14.40 ± 6.67 | 0.41 ± 0.03 | 0.28 ± 0.09 | 2520 ± 468 | 1256 ± 149 | 0.19 ± 0.07 |
S2 | 302.2 ± 40.1 | −14.01 ± 0.29 | 0.52 ± 0.05 | 0.46 ± 0.14 | 18,738 ± 2386 | 11,751 ± 1833 | 0.32 ± 0.12 |
S3 | 83.8 ± 8.8 | −17.59 ± 1.57 | 0.46 ± 0.06 | 0.36 ± 0.10 | 3087 ± 627 | 1781 ± 655 | 0.25 ± 0.08 |
S4 | 104.1 ± 36.3 | −16.80 ± 2.39 | 0.31 ± 0.04 | 0.31 ± 0.04 | 3121 ± 774 | 1435 ± 408 | 0.22 ± 0.04 |
S5 | 126.0 ± 22.4 | −14.82 ± 9.18 | 0.44 ± 0.08 | 0.29 ± 0.04 | 3694 ± 1006 | 1844 ± 505 | 0.20 ± 0.03 |
S6 | 147.2 ± 52.9 | −16.59 ± 7.04 | 0.48 ± 0.05 | 0.40 ± 0.08 | 5358 ± 924 | 2380 ± 327 | 0.29 ± 0.06 |
S7 | 95.9 ± 19.6 | −17.66 ± 5.04 | 0.40 ± 0.02 | 0.37 ± 0.10 | 3109 ± 1114 | 1706 ± 600 | 0.26 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulczyński, B.; Suliburska, J.; Gramza-Michałowska, A.; Sidor, A.; Kowalczewski, P.Ł.; Brzozowska, A. The Effect of Osmotic Dehydration Conditions on the Magnesium Content in Beetroot (Beta vulgaris L.). Molecules 2025, 30, 3051. https://doi.org/10.3390/molecules30143051
Kulczyński B, Suliburska J, Gramza-Michałowska A, Sidor A, Kowalczewski PŁ, Brzozowska A. The Effect of Osmotic Dehydration Conditions on the Magnesium Content in Beetroot (Beta vulgaris L.). Molecules. 2025; 30(14):3051. https://doi.org/10.3390/molecules30143051
Chicago/Turabian StyleKulczyński, Bartosz, Joanna Suliburska, Anna Gramza-Michałowska, Andrzej Sidor, Przemysław Łukasz Kowalczewski, and Anna Brzozowska. 2025. "The Effect of Osmotic Dehydration Conditions on the Magnesium Content in Beetroot (Beta vulgaris L.)" Molecules 30, no. 14: 3051. https://doi.org/10.3390/molecules30143051
APA StyleKulczyński, B., Suliburska, J., Gramza-Michałowska, A., Sidor, A., Kowalczewski, P. Ł., & Brzozowska, A. (2025). The Effect of Osmotic Dehydration Conditions on the Magnesium Content in Beetroot (Beta vulgaris L.). Molecules, 30(14), 3051. https://doi.org/10.3390/molecules30143051