RNA-Seq Analysis of MCF-7 Breast Cancer Cells Treated with Methyl Gallate Isolated from the Rhizomes of Nymphaea Odorata L. Shows Upregulation of Apoptosis, Autophagy, and Unfolded Protein Canonical Pathways
Abstract
1. Introduction
2. Results
2.1. MeNO Extract Reduced the Viability and Proliferation of Breast Cancer Cells and Induced Apoptosis
2.2. Methyl Gallate Is Identified as the Active Compound in N. odorata Fraction N4
2.3. MeG Alters the Expression of Genes Involved in Apoptosis and Tumor Suppression in MCF-7 Cells
2.4. Transcriptomic Profiling Using RNA-Seq Shows That Methyl Gallate (MeG) Treatment of MCF-7 Breast Cancer Cells Significantly Alters Gene Transcription
2.5. Canonical Pathways Impacted in MCF-7 Breast Cancer Cells Treated with MeG
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Extraction
4.2. Column Chromatography and Bioassay-Guided Fractionation
4.3. Cell Culture Maintenance and Treatment
4.4. CellTiter-Glo® Viability Assay
4.5. ApoToxGlo™ Triplex Assays (Apoptosis), Caspase-Glo®3/7, and Caspase-Glo®8
4.6. Flow Cytometry
4.7. RNA Isolation, Purification, and Quantification
4.8. Quantitative Polymerase Chain Reaction
4.9. RNA-Seq Library Preparation, Validation, and Quantification
4.10. Bioinformatics, Statistical Analysis, and Database Annotation
4.11. Ingenuity® Pathway Analysis (IPA)
4.12. Data Sharing and Availability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATF 4/6 | Activating transcription factors |
GEO | Gene Expression Omnibus repository |
IRE1α | Inositol-requiring enzyme 1α |
MeG | Methyl gallate |
PERK | Pancreatic endoplasmic reticulum kinase |
TRIM | Tripartite motif containing 28 |
UPR | Unfolded protein response |
References
- Muhlberg, H. Complete Guide to Water Plants; E. P. Publishing Ltd.: Saltdean, UK, 1982; ISBN 0-7158-0789-7. [Google Scholar]
- Bown, D. Encyclopaedia of Herbs and Their Uses; Dorling Kindersley: London, UK, 1995; ISBN 0-7513-020-31. [Google Scholar]
- Woods, K.; Hilu, K.W.; Wiersema, J.; Borsch, T. Pattern of variation and systematics of Nymphaea odorata: I. Evidence from morphology and inter-simple sequence repeats (ISSRs). Syst. Bot. 2005, 30, 471–480. [Google Scholar] [CrossRef]
- Foster, S.; Duke, J.A. A Field Guide to Medicinal Plants. Eastern and Central N. America; Houghton Mifflin Co.: Boston, MA, USA, 1990; ISBN 0395467225. [Google Scholar]
- Zhang, Z.; Elsohly, H.N.; Cong, L.X.; Khan, S.I.; Broedel, S.E.; Rauli, R.E.; Cihlar, R.L.; Burandt, C.; Walker, L.A. Phenolic compounds from Nymphaea odorata. J. Nat. Prod. 2003, 66, 548–550. [Google Scholar] [CrossRef] [PubMed]
- Shirly, N.H.; Chandler, R. Herbal remedies of the maritime Indians: Phytosterols and triterpenes of 67 plants. J. Ethnopharmacol. 1984, 10, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Abelti, A.L.; Teka, T.A.; Bultosa, G. Review on edible water lilies and lotus: Future food, nutrition and their health benefits. Appl. Food Res. 2023, 3, 100264. [Google Scholar] [CrossRef]
- Grieve, A. Modern Herbal; Penguin: London, UK, 1984. [Google Scholar]
- Singh, M.; Jain, A.P. A review on the genus Nymphaea: Multi-potential medicinal plant. Asian J. Pharm. Ed. Res. 2017, 6, 1–9. [Google Scholar]
- N’guessan, B.B.; Asiamah, A.D.; Arthur, N.K.; Frimpong-Manso, S.; Amoateng, P.; Amponsah, S.K.; Kukuia, K.E.; Sarkodie, J.A.; Opuni, K.F.; Asiedu-Gyekye, I.J.; et al. Ethanolic extract of Nymphaea lotus L. (Nymphaeaceae) leaves exhibits in vitro antioxidant, in vivo anti-inflammatory and cytotoxic activities on Jurkat and MCF-7 cancer cell lines. BMC Complement. Med. Ther. 2021, 21, 22. [Google Scholar] [CrossRef] [PubMed]
- Sowemimo, A.A.; Fakoya, F.A.; Awopetu, I.; Omobuwajo, O.R.; Adesanya, S.A. Toxicity and mutagenic activity of some selected Nigerian plants. J. Ethnopharmacol. 2007, 113, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Kanabar, P.; Los, N.; Abrevia, Z.; Cline, M.; Patel, S.; Lawal, T.O.; Mahady, G.B. Vitamin A, D2 and D3 combinations induced apoptosis and autophagy in breast cancer cells and altered gene expression in the endoplasmic reticulum stress, unfolded protein response and estrogen signaling canonical pathways. FFHD 2023, 13, 135–155. [Google Scholar] [CrossRef]
- Liu, J.; Burdette, J.E.; Sun, Y.; Deng, S.; Schlecht, S.M.; Zheng, W.; Nikolic, D.; Mahady, G.B.; van Breemen, R.B.; Fong, H.H.; et al. Isolation of linoleic acid as an estrogenic compound from the fruits of Vitex agnus-castus L. (chaste-berry). Phytomedicine 2004, 11, 18–23. [Google Scholar] [CrossRef]
- Lawal, T.O.; Patel, S.; Raut, N.; Mahady, G.B. Extracts of Anogeissus leiocarpus and Dillenia indica inhibit the growth of MCF-7 breast cancer and COV434 granulosa tumor cells by inducing apoptosis and autophagy. Curr. Bioact. Compd. 2021, 17, 35–48. [Google Scholar] [CrossRef]
- NIH Primer BLAST. Available online: https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?GROUP_TARGET=on (accessed on 15 June 2023).
- Arbieva, Z.; Cabada-Aguirre, P.; Garay Beunrostro, K.D.; Kanabar, P.N.; Lawal, T.O.; Lopez, A.M.; Los, N.S.; Maienschein-Cline, M.; Ostos Mendoza, K.C.; Patel, S.M.; et al. Combination of vitamins A, D2 and D3 reduce tumor-load and alter the expression of miRNAs that regulate genes involved with apoptosis, tumor suppression, and the epithelial-mesenchymal transition in HCT-116 colon cancer cells. Funct. Foods Health Dis. 2022, 12, 216–241. [Google Scholar]
- Liu, Y.; Bodmer, W. Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. Proc. Natl. Acad. Sci. USA 2006, 103, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Solomon, H.; Dinowitz, N.; Pateras, I.; Cooks, T.; Shetzer, Y.; Molchadsky, A.; Charni, M.; Rabani, S.; Koifman, G.; Tarcic, O.; et al. Mutant p53 gain of function underlies high expression levels of colorectal cancer stem cells markers. Oncogene 2018, 37, 1669–1684. [Google Scholar] [CrossRef] [PubMed]
- Kanabar, P.; Los, N.S.; Lawal, T.O.; Patel, S.; Maienshein-Cline, M.; Arbieva, Z.; Mahady, G.B. Transcriptomic analysis reveals that combinations of vitamins A, D2 and D3 have synergistic effects in HCT-116 colon cancer cells by altering the expression of genes involved in multiple canonical pathways including apoptosis, regulation of the epithelial mesenchymal transition and immunity. Funct. Foods Health Dis. 2021, 11, 154–178. [Google Scholar]
- Gondane, A.; Itkonen, H.M. Revealing the history and mystery of RNA-Seq. Curr. Issues Mol. Biol. 2023, 45, 1860–1874. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. FeatureCounts: An efficient general-purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, D.J.; Chen, Y.; Smyth, G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012, 40, 4288–4297. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Kramer, A.; Green, J.; Pollard, J.; Tugendrich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014, 30, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, C.; Alam, A.; Murtuja, G.; Hedayetullah, M. Assessment of in vitro antioxidant and cytotoxic potentials of ethanol extract of Nymphaea nauchali. J. Drug Deliv. Ther. 2002, 12, 43–47. [Google Scholar] [CrossRef]
- Selvakumari, E.; Shantha, S.; Purushoth, P.T.; Sreenathkumar, C. Antiproliferative activity of ethanolic flower extract from Nymphaea pubescens Willd against human cervical and breast carcinoma in vitro. Int. Res. J. Pharm. 2012, 3, 124–125. [Google Scholar]
- Cudalbeanu, M.; Furdui, B.; Barbu, C.; Iancu, V.; Marques, A.V.; Dinica, R.M. Antifungal, antitumoral and antioxidant potential of the Danube delta Nymphaea alba extracts. Antibiotics 2019, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Al-Harbi, L.N.; Subash-Babu, P.; Binobead, M.A.; Alhussain, M.H.; AlSedairy, S.A.; Aloud, A.A.; Alshatwi, A.A. Potential metabolite nymphayol isolated from water lily (Nymphaea stellata) flower inhibits MCF-7 human breast cancer cell growth via upregulation of Cdkn2a, pRb2, p53 and downregulation of PCNA mRNA expressions. Metabolites 2020, 10, 280. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Huang, Q.; Zou, L.; Wei, P.; Lu, J.; Zhang, Y. Methyl gallate: Review of pharmacological activity. Pharmacol. Res. 2023, 194, 106849. [Google Scholar] [CrossRef] [PubMed]
- Marquina, S.; Bonilla-Barbosa, J.; Alvarez, L. Comparative phytochemical analysis of four Mexican Nymphaea species. Phytochemistry 2005, 66, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Bakr, R.; Wasfi, R.; Swilam, N.; Sallam, I.E. Characterization of the bioactive constituents of Nymphaea alba rhizomes and evaluation of anti-biofilm as well as antioxidant and cytotoxic properties. J. Med. Plant Res. 2016, 10, 390–401. [Google Scholar]
- Raja, M.K.; Sethiya, N.K.; Mishra, S.H. A comprehensive review on Nymphaea stellata: A traditionally used bitter. J. Adv. Pharm. Technol. Res. 2010, 1, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Spence, S.K. Bioassay-Directed Isolation of the Allelopathic Constituents of the Aquatic Plant Nymphaea odorata. Ph.D. Thesis, The University of Southern Mississippi, Hattiesburg, MS, USA, 1997. [Google Scholar]
- Choi, J.; Choi, J.Y.; Jang, H.; Jang, Y.; Song, J.; Kim, G.; Seol, J.W. Methyl gallate suppresses canine mammary gland tumors by inducing apoptosis and anti-angiogenesis. Anticancer Res. 2024, 44, 4317–4326. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Chang, Y.J.; Wei, P.L.; Hung, C.S.; Wang, W. Methyl gallate, gallic acid-derived compound, inhibits cell proliferation through increasing ROS production and apoptosis in hepatocellular carcinoma cells. PLoS ONE 2021, 16, e0248521. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Lee, H.J.; Kwon, Y.J.; Lee, J.H.; Kim, J.; Shin, M.K.; Kim, S.H.; Bae, H. Methyl gallate exhibits potent antitumor Activities by inhibiting tumor infiltration of CD4+CD25+ regulatory T cells. J. Immunol. 2010, 185, 6698–6705. [Google Scholar] [CrossRef] [PubMed]
- Park, J.K.; Yoo, M.J.; Jang, H.; Park, S.Y.; Choi, J.; Seol, J.W. Methyl gallate suppresses tumor development by increasing activation of caspase 3 and disrupting tumor angiogenesis in melanoma. Evid. Based Complement. Altern. Med. 2022, 2022, 6295910. [Google Scholar] [CrossRef] [PubMed]
- Yazan, R.; Fadzelly, A.B.M.; Azlen-Che, R.; Kartinee, K.N.; Johnson, S.; Yuan-Han, T.; Abdulmannan, F.; Mohammed, S.E. Methyl gallate isolated from Mangifera pajang kernel induces proliferation inhibition and apoptosis in MCF-7 breast cancer cells via oxidative stress. Asian Pac. J. Trop. Biomed. 2022, 12, 175–184. [Google Scholar] [CrossRef]
- Kim, T.W.; Paveen, S.; Lee, Y.H.; Lee, Y.S. Comparison of cytotoxic effects of pentagalloyl-glucose, gallic Acid, and its derivatives against human cancer MCF-7 and MDA MB-231 Cells. Bull. Korean Chem. Soc. 2014, 35, 987. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, H.; Qing, G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct. Target. Ther. 2018, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, K.O.; Ricci, M.S.; Miyashita, T.; Dicker, D.T.; Jin, Z.; Reed, J.C.; El-Deiry, W.S. Bax is a transcriptional target and mediator of c-myc-induced apoptosis. Cancer Res. 2000, 60, 6318–6325. [Google Scholar] [PubMed]
- Haupt, S.; Berger, M.; Goldberg, Z.; Haupt, Y. Apoptosis: The p53 network. J. Cell Sci. 2003, 116, 4077–4085. [Google Scholar] [CrossRef] [PubMed]
- Wawryk-Gawda, E.; Chylińska-Wrzos, P.; Lis-Sochocka, M.; Chłapek, K.; Bulak, K.; Jędrych, M.; Jodłowska-Jędrych, B. P53 protein in proliferation, repair and apoptosis of cells. Protoplasma 2014, 251, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Hussar, P. Apoptosis regulators Bcl-2 and caspase-3. Encyclopedia 2022, 2, 1624–1636. [Google Scholar] [CrossRef]
- Saponaro, C.; Gammaldi, N.; Cavallo, V.; Ramírez-Morales, M.A.; Zito, F.A.; Sonnessa, M.; Vari, F.; Serra, I.; De Summa, S.; Giudetti, A.M.; et al. Insight into the Regulation of NDRG1 Expression. Int. J. Mol. Sci. 2025, 26, 3582. [Google Scholar] [CrossRef] [PubMed]
- Corazzari, M.; Gagliardi, M.; Fimia, G.M.; Piacentini, M. Endoplasmic reticulum stress, unfolded protein response, and cancer cell fate. Front. Oncol. 2017, 7, 78. [Google Scholar] [CrossRef] [PubMed]
- Ohoka, N.; Yoshii, S.; Hattori, T.; Onozaki, K.; Hayashi, H. TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J. 2005, 24, 1243–1255. [Google Scholar] [CrossRef] [PubMed]
- Verfaillie, T.; Salazar, M.; Velasco, G.; Agostinis, P. Linking ER stress to autophagy: Potential implications for cancer therapy. Int. J. Cell Biol. 2010, 2010, 930509. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Cheng, J.; Zhou, B.; Zhu, L.; Khan, M.A.; He, T.; Zhou, S.; He, J.; Lu, X.; Chen, H.; et al. Tripartite motif containing 28 (TRIM28) promotes breast cancer metastasis by stabilizing TWIST1 protein. Sci. Rep. 2016, 6, 29822. [Google Scholar] [CrossRef] [PubMed]
- Bunch, H.; Calderwood, S.K. TRIM28 as a novel transcriptional elongation factor. BMC Mol. Biol. 2015, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Lyengar, S.; Farnham, P. KAP1 protein: An enigmatic master regulator of the genome. J. Biol. Chem. 2011, 286, 26267–26276. [Google Scholar] [CrossRef] [PubMed]
- Addison, J.B.; Koontz, C.; Fugett, J.H.; Creighton, C.J.; Chen, D.; Farrugia, M.K.; Padon, R.R.; Voronkova, M.A.; McLaughlin, S.L.; Livengood, R.H.; et al. KAP1 promotes proliferation and metastatic progression of breast cancer cells. Cancer Res. 2015, 75, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Raut, N.; Ren, Z.T.; Lawal, T.O.; Lee, S.M.; Mahady, G.B. Cyanidin and Peonidin-3-O-glucoside reduce human osteoblast apoptosis and inhibit RANKL-induced bone loss in transgenic medaka. Phytother. Res. 2021, 35, 6255–6269. [Google Scholar]
- Mahady, G.B.; Raut, N.; Ren, Z.T.; Lawal, T.O.; Lee, S.M.; Salamon, I. Elderberry extracts increase rat L6 myocyte proliferation, reduce apoptosis and act as HDAC1/SIRT1 agonists in vitro. FASEB 2020, 34, 3. [Google Scholar] [CrossRef]
Extract/Compound | Breast Cancer Cell Lines and IC50 (μg/mL) | ||
---|---|---|---|
MCF-7 | T47-D:A18 | SKBr3 | |
MeNO | 14.1 | 25.6 | 38.5 |
MeG | 8.6 | 16.4 | 19.1 |
5FU | 1.37 | 2.1 | 8.5 |
Sr. No. | Fraction | % Viability | Sr. No. | Fraction | % Viability | ||
---|---|---|---|---|---|---|---|
100 µg/mL | 50 µg/mL | 100 µg/mL | 50 µg/mL | ||||
1 | N1 | 96.23 | 111.12 | 10 | N12 | 85.18 | 95.67 |
2 | N4 | 1.81 | 1.95 | 11 | N13 | 95.12 | 81.75 |
3 | N5 | 1.73 | 2.44 | 12 | N14 | 13.34 | 96.99 |
4 | N6 | 1.97 | 3.11 | 13 | N15 | 2.44 | 11.38 |
5 | N7 | 4.10 | 4.31 | 14 | N16 | 1.97 | 10.88 |
6 | N8 | 3.51 | 32.58 | 15 | N17 | 0.47 | 24.19 |
7 | N9 | 5.43 | 7.14 | 16 | N18 | 28.58 | 98.69 |
8 | N10 | 2.50 | 50.24 | 17 | N19 | 78.55 | 99.02 |
9 | N11 | 2.95 | 101.48 | 18 | N20 | 63.74 | 67.94 |
Gene Abbreviation | ENSEMBL CODE | Log2FC |
---|---|---|
KLHDC7B | ENSG00000130487 | 8.02 |
INHBE | ENSG00000139269 | 7.93 |
NLRP1 | ENSG00000091592 | 7.35 |
AC0063725 | ENSG00000043355 | 7.24 |
BEX5 | ENSG00000184515 | 7.22 |
INFLR1 | ENSG00000185436 | 7.13 |
SERPINA3 | ENST00000555820 | 6.99 |
CX3CL1 | ENST00000555820 | 6.79 |
DIO2 | ENST00000555844 | 6.79 |
CYBRD1 | ENST00000027015 | 6.72 |
Gene Abbreviation | ENSEMBL CODE | Log2FC |
---|---|---|
LSP1 | ENSG00000130592 | −6.0 |
REG4 | ENSG00000134193 | −5.61 |
RPL17P15 | ENSG00000229326 | −5.32 |
APLN | ENSG00000134817 | −4.59 |
GAB3 | ENSG00000160219 | −4.37 |
RAB5C-AS1 | ENSG00000267658 | −4.17 |
RP11-90B92 | ENSG00000219928 | −4.1 |
MT4 | ENSG00000102891 | −3.96 |
IGHA1 | ENSG00000211895 | −3.94 |
MEIOB | ENSG00000162039 | −3.77 |
Forward Primer Sequence (5′ to 3′) | Reverse Primer Sequence (5′ to 3′): |
---|---|
Bcl-2: ′CGCATCAGGAAGGCTAGAGT′ | ′AGCTTCCAGACATTCGGAGA′ |
Bax: ′TGCCAGCAAACTGGTGCTCA′ | ′GCACTCCCGCCACAAAGATG′ |
β-actin: ′TGACGTGGACATCCGCAAAG′ | ′CTGGAAGGTGGACAGCGAGG′ |
p53: ′AAGTCTGTGACTTGCACGTACTCC′ | ′GTCATGTGCTGTGACTGCTTGRTAG′. |
PTEN: ′CCGAAAGGTTTTGCTACCATTCT′ | ′GTCATGTGCTGTGACTGCTTGRTAG′ |
Casp 7: ′AGGAGGGACGAACACGTCT′ | ′CAAAGAAGGTTGCCCCAATCT′ |
BIM: ′ATGTCTGACTCTGACTCTCG′ | ′CCTTGTGGCTCTGTCTGTAG′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raut, N.A.; Kanabar, P.N.; Maienschein-Cline, M.; Los, N.S.; Arbieva, Z.; Lawal, T.O.; Patel, S.; Mahady, G.B. RNA-Seq Analysis of MCF-7 Breast Cancer Cells Treated with Methyl Gallate Isolated from the Rhizomes of Nymphaea Odorata L. Shows Upregulation of Apoptosis, Autophagy, and Unfolded Protein Canonical Pathways. Molecules 2025, 30, 3022. https://doi.org/10.3390/molecules30143022
Raut NA, Kanabar PN, Maienschein-Cline M, Los NS, Arbieva Z, Lawal TO, Patel S, Mahady GB. RNA-Seq Analysis of MCF-7 Breast Cancer Cells Treated with Methyl Gallate Isolated from the Rhizomes of Nymphaea Odorata L. Shows Upregulation of Apoptosis, Autophagy, and Unfolded Protein Canonical Pathways. Molecules. 2025; 30(14):3022. https://doi.org/10.3390/molecules30143022
Chicago/Turabian StyleRaut, Nishikant A., Pinal N. Kanabar, Mark Maienschein-Cline, Nina S. Los, Zarema Arbieva, Temitope O. Lawal, Shitalben Patel, and Gail B. Mahady. 2025. "RNA-Seq Analysis of MCF-7 Breast Cancer Cells Treated with Methyl Gallate Isolated from the Rhizomes of Nymphaea Odorata L. Shows Upregulation of Apoptosis, Autophagy, and Unfolded Protein Canonical Pathways" Molecules 30, no. 14: 3022. https://doi.org/10.3390/molecules30143022
APA StyleRaut, N. A., Kanabar, P. N., Maienschein-Cline, M., Los, N. S., Arbieva, Z., Lawal, T. O., Patel, S., & Mahady, G. B. (2025). RNA-Seq Analysis of MCF-7 Breast Cancer Cells Treated with Methyl Gallate Isolated from the Rhizomes of Nymphaea Odorata L. Shows Upregulation of Apoptosis, Autophagy, and Unfolded Protein Canonical Pathways. Molecules, 30(14), 3022. https://doi.org/10.3390/molecules30143022