A Sensitive and Accurate Electrochemical Sensor Based on Biomass-Derived Porous Carbon for the Detection of Ascorbic Acid
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of DWGS-HCPCs
2.2. Electrochemical Evaluation of DWGS-HCPC/GCE
2.3. Electrochemical Catalysis and Detection of Ascorbic Acid (AA) at DWGS-HCPC/GCE
2.4. Real Samples
2.5. Electrochemical Behavior of the Coexistence of AA, DA and UA at DWGS-HCPC/GCE
3. Materials and Methods
3.1. Chemicals
3.2. Apparatus
3.3. Synthesis of the Three-Dimensional Honeycomb-like Porous Carbons Derived from Discarded Walnut (Green) Husks (DWGH-HCPCs)
3.4. Biosensors Preparation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hussein, A.Z.M. Spectrophotometric Determination of Ascorbic acid in Aqueous Solutions and in Pharmaceuticals formulations. Al-Nahrain J. Sci. 2013, 16, 65–71. [Google Scholar] [CrossRef]
- Motsaathebe, P.C.; Fayemi, O.E. Electrochemical Detection of Ascorbic Acid in Oranges at MWCNT-AONP Nanocomposite Fabricated Electrode. Nanomaterials 2022, 12, 645. [Google Scholar] [CrossRef]
- Muslim Mohabis, R.; Fazeli, F.; Amini, I.; Azizkhani, V. An overview of recent advances in the detection of ascorbic acid by electrochemical techniques. J. Electrochem. Sci. Eng. 2022, 12, 1081–1098. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Z.; Tuo, X.; Huang, H.; Huang, J.; Li, L.; Yu, X.J. Sea-urchin-structured NiCo2O4 decorated nitrogen-doped graphene for enhanced electrochemical detection of ascorbic acid. Solid State Sci. 2022, 133, 107000. [Google Scholar] [CrossRef]
- Qu, C.; Li, H.; Zhou, S.; Li, G.; Wang, C.; Snyders, R.; Bittencourt, C.; Li, W. Bi2S3/rGO composite based electrochemical sensor for ascorbic acid detection. Chemosensors 2021, 9, 190. [Google Scholar] [CrossRef]
- Rossato, J.H.; Oliveira, M.E.; Lopes, B.V.; Gallo, B.B.; La Rosa, A.B.; Piva, E.; Barba, D.; Rosei, F.; Carreno, N.L.; Escote, M.T. A flexible electrochemical biosensor based on NdNiO3 nanotubes for ascorbic acid detection. ACS Appl. Nano Mater. 2022, 5, 3394–3405. [Google Scholar] [CrossRef]
- Zuo, X.; Zhang, H.; Li, N. An electrochemical biosensor for determination of ascorbic acid by cobalt (II) phthalocyanine–multi-walled carbon nanotubes modified glassy carbon electrode. Sens. Actuators B Chem. 2012, 161, 1074–1079. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific opinion on dietary reference values for vitamin C. EFSA J. 2013, 11, 3418. [Google Scholar] [CrossRef]
- Guo, X.; Yue, G.; Huang, J.; Liu, C.; Zeng, Q.; Wang, L. Label-free simultaneous analysis of Fe (III) and ascorbic acid using fluorescence switching of ultrathin graphitic carbon nitride nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 26118–26127. [Google Scholar] [CrossRef]
- Razmi, H.; Bahadori, Y. Chicken feet yellow membrane/over-oxidized carbon paste electrodes: A novel electrochemical platform for determination of vitamin C. Microchem. J. 2021, 168, 106442. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Serban, A.I.; Fafaneata, C. Electrochemical methods for ascorbic acid determination. Electrochim. Acta 2014, 121, 443–460. [Google Scholar] [CrossRef]
- Moon, K.M.; Kwon, E.-B.; Lee, B.; Kim, C.Y. Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules 2020, 25, 2754. [Google Scholar] [CrossRef]
- Meng, H.; Yang, D.; Tu, Y.; Yan, J. Turn-on fluorescence detection of ascorbic acid with gold nanolcusters. Talanta 2017, 165, 346–350. [Google Scholar] [CrossRef]
- Miyazawa, T.; Matsumoto, A.; Miyahara, Y. Determination of cellular vitamin C dynamics by HPLC-DAD. Analyst 2019, 144, 3483–3487. [Google Scholar] [CrossRef] [PubMed]
- Versari, A.; Mattioli, A.; Parpinello, G.P.; Galassi, S. Rapid analysis of ascorbic and isoascorbic acids in fruit juice by capillary electrophoresis. Food Control 2004, 15, 355–358. [Google Scholar] [CrossRef]
- Da Silva, T.; Aguiar-Oliveira, E.; Mazalli, M.R.; Kamimura, E.S.; Maldonado, R.R. Comparison between titrimetric and spectrophotometric methods for quantification of vitamin C. Food Chem. 2017, 224, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Guo, J.; Wang, N.; Ge, Z.; Wen, J.; Hua, S.; Zhou, L.; Xu, C.; Li, T. Metal-organic framework derived in-situ 3D porous CuS@ carbon octahedron for enhanced electrochemical detection of ascorbic acid. Microchem. J. 2024, 197, 109806. [Google Scholar] [CrossRef]
- Silva, F.O. Total ascorbic acid determination in fresh squeezed orange juice by gas chromatography. Food Control 2005, 16, 55–58. [Google Scholar] [CrossRef]
- Habibi, B.; Jahanbakhshi, M.; Pournaghi-Azar, M.H. Differential pulse voltammetric simultaneous determination of acetaminophen and ascorbic acid using single-walled carbon nanotube-modified carbon–ceramic electrode. Anal. Biochem. 2011, 411, 167–175. [Google Scholar] [CrossRef]
- López-Pastor, J.-A.; Martínez-Sánchez, A.; Aznar-Poveda, J.; García-Sánchez, A.-J.; García-Haro, J.; Aguayo, E. Quick and cost-effective estimation of vitamin C in multifruit juices using voltammetric methods. Sensors 2020, 20, 676. [Google Scholar] [CrossRef]
- Younis, S.; Liaqat, F.; Jabeen, A.; Ahmed, S. An effective sensing platform composed of polyindole based ternary nanocomposites for electrochemical detection of ascorbic acid. Mater. Chem. Phys. 2024, 316, 129113. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, P.; Gao, B.; Yuan, M.; Yu, J.; Wang, Z.; Chen, X. Self-reduction of bimetallic nanoparticles on flexible MXene-graphene electrodes for simultaneous detection of ascorbic acid, dopamine, and uric acid. Microchem. J. 2023, 185, 108177. [Google Scholar] [CrossRef]
- Song, J.; Huang, M.; Lin, X.; Li, S.F.Y.; Jiang, N.; Liu, Y.; Guo, H.; Li, Y. Novel Fe-based metal–organic framework (MOF) modified carbon nanofiber as a highly selective and sensitive electrochemical sensor for tetracycline detection. Chem. Eng. J. 2022, 427, 130913. [Google Scholar] [CrossRef]
- Ferrag, C.; Noroozifar, M.; Kerman, K. Ultralight 3D Graphene Oxide Aerogel Decorated with Pd–Fe Nanoparticles for the Simultaneous Detection of Eight Biomolecules. ACS Appl. Mater. Interfaces 2023, 15, 27502–27514. [Google Scholar] [CrossRef]
- Hei, Y.; Li, X.; Zhou, X.; Liu, J.; Hassan, M.; Zhang, S.; Yang, Y.; Bo, X.; Wang, H.-L.; Zhou, M.J. Cost-effective synthesis of three-dimensional nitrogen-doped nanostructured carbons with hierarchical architectures from the biomass of sea-tangle for the amperometric determination of ascorbic acid. Anal. Chim. Acta 2018, 1029, 15–23. [Google Scholar] [CrossRef]
- Alshatteri, A.H.; Ali, G.K.; Omer, K.M. Enhanced peroxidase-mimic catalytic activity via cerium doping of strontium-based metal–organic frameworks with design of a smartphone-based sensor for on-site salivary total antioxidant capacity detection in lung cancer patients. ACS Appl. Mater. Interfaces 2023, 15, 21239–21251. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Shin, H. Hierarchical Porous Carbon Electrodes with Sponge-Like Edge Structures for the Sensitive Electrochemical Detection of Heavy Metals. Sensors 2021, 21, 1346. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, T.; Li, L.; Tang, Y.; Qin, Q.; Wu, C. Heteroatoms doped yolk-shell hierarchically porous carbon derived from ZIF-8 for electrochemical sensing. Carbon 2021, 183, 291–300. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Zahed, M.A.; Sharifuzzaman, M.; Reza, M.S.; Hui, X.; Sharma, S.; Shin, Y.D.; Park, J.Y. A hybridized nano-porous carbon reinforced 3D graphene-based epidermal patch for precise sweat glucose and lactate analysis. Biosens. Bioelectron. 2023, 219, 114846. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Q.; Chen, S.; Xu, F.; Chen, S.; Jia, J.; Tan, H.; Hou, H.; Song, Y. Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials. Anal. Chem. 2014, 86, 1414–1421. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, G.; Li, F.; Liu, Y.; Guo, M.; Zhou, L.; Liu, R.; Komarneni, S. 3D interconnected honeycomb-like ginkgo nut-derived porous carbon decorated with β-cyclodextrin for ultrasensitive detection of methyl parathion. Sens. Actuators B Chem. 2023, 380, 133309. [Google Scholar] [CrossRef]
- Onfray, C.; Thiam, A.J.M. Biomass-derived carbon-based electrodes for electrochemical sensing: A review. Micromachines 2023, 14, 1688. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, H.; Huang, S.; Lan, J.; Li, H.; Yue, H. Biomass-derived carbon materials for electrochemical sensing: Recent advances and future perspectives. Crit. Rev. Anal. Chem. 2024, 1–26. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Sun, M.; Sha, T.; Bo, X.; Zhou, M. Amperometric sensing of ascorbic acid by using a glassy carbon electrode modified with mesoporous carbon nanorods. Microchim. Acta 2018, 185, 474. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xu, Y.; Liu, M.; Jiang, P.; Guo, X.; Gan, T.; Wu, C.; Wu, K. Rapid room-temperature synthesis of disposable Co nanoparticles modified 3D N-doped porous carbon electrode device for efficient electrochemical detection of veterinary drug and pesticide residue. Carbon 2024, 219, 118806. [Google Scholar] [CrossRef]
- Wang, M.; Guo, H.; Peng, L.; Hui, Y.; Yan, R.; Yang, W. A novel electrochemical sensor based on N, P-doped porous carbon materials derived from covalent organic frameworks for highly sensitive determination of 4-aminophenol and acetaminophen. New J. Chem. 2025, 49, 2660–2664. [Google Scholar] [CrossRef]
- Liu, A.; Chen, X.; Xu, W.; Duan, X.; Shi, J.; Li, X. Porous Carbon in Durian Shell Doped with Heteroatoms and Its Electrochemical Properties Research. JOM 2024, 76, 7259–7268. [Google Scholar] [CrossRef]
- Genc, A.A.; Bouali, W.; Buğday, N.; Yaşar, S.; Erk, N. Synthesis of cobalt selenide composite material: A novel platform of the electrochemical sensor for sensitive determination of Upadacitinib. Electrochim. Acta 2024, 487, 144164. [Google Scholar] [CrossRef]
- Zhang, B.; Ren, G.; Ran, L.; Liu, M.; Geng, P.; Yi, W. Green synthesis of biomass-derived porous carbon for electrochemical detection of heavy metal ions: Methods, properties, and applications. J. Environ. Chem. Eng. 2024, 12, 113903. [Google Scholar] [CrossRef]
- Tolstoguzov, D.; Shtin, S.; Smolyakova, K.; Matveev, K.; Khasanova, G.; Bezhin, V.; Zhanakhova, A.; Chernukha, A.; Galimov, D.; Nekorysnova, N.S.; et al. K3[Fe(CN)6] and K4[Fe(CN)6] Redox Couple as an Indicator of Electrode Activity. Rev. Adv. Chem. 2024, 14, 229–242. [Google Scholar] [CrossRef]
- Nicholson, R.S. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Anal. Chem. 1965, 37, 1351–1355. [Google Scholar] [CrossRef]
- Randles, J.E.B. The determination of kinetic parameters of redox reactions from current-potential curves. Can. J. Chem. 1959, 37, 238–246. [Google Scholar] [CrossRef]
- Dai, J.; Huang, J.H.; Xiong, Y.Q.; Gao, L.F. Electrochemical sensing platform for ascorbic acid detection based on porous carbon derived from kudzu root residues. Chem. Sel. 2024, 9, e202402313. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Xu, J.; Wen, Y. Electropolymerized molecularly imprinted polypyrrole decorated with black phosphorene quantum dots onto poly(3,4-ethylenedioxythiophene) nanorods and its voltammetric sensing of vitamin C. J. Electroanal. Chem. 2018, 814, 153–160. [Google Scholar] [CrossRef]
- Zhai, Y.; Wang, D.; Liu, H.; Zeng, Y.; Yin, Z.; Li, L. Electrochemical Molecular Imprinted Sensors Based on Electrospun Nanofiber and Determination of Ascorbic Acid. Anal. Sci. 2015, 31, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yuan, R.; Chai, Y.; Li, W.; Zhong, X.; Zhong, H. Simultaneous voltammetric determination for DA, AA and NO2− based on graphene/poly-cyclodextrin/MWCNTs nanocomposite platform. Biosens. Bioelectron. 2011, 26, 3977–3980. [Google Scholar] [CrossRef]
- Zhang, W.; Chai, Y.; Yuan, R.; Chen, S.; Han, J.; Yuan, D. Facile synthesis of graphene hybrid tube-like structure for simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan. Anal. Chim. Acta 2012, 756, 7–12. [Google Scholar] [CrossRef]
- Abdelwahab, A.A.; Elseman, A.M.; Alotaibi, N.F.; Nassar, A.M. Simultaneous voltammetric determination of ascorbic acid, dopamine, acetaminophen and tryptophan based on hybrid trimetallic nanoparticles-capped electropretreated graphene. Microchem. J. 2020, 156, 104927. [Google Scholar] [CrossRef]
- Gutiérrez, A.; Ramírez-Ledesma, M.G.; Rivas, G.A.; Luna-Bárcenas, G.; Escalona-Villalpando, R.A.; Ledesma-García, J. Development of an electrochemical sensor for the quantification of ascorbic acid and acetaminophen in pharmaceutical samples. J. Pharm. Biomed. Anal. 2024, 249, 116334. [Google Scholar] [CrossRef]
- Huang, L.; Qin, S.; Yang, K.; Xu, Y.; Wu, X.; Lin, Z.; Wang, Y. Dual signal AA detection based on fluorescence and local surface plasmon resonance absorption technology. Spectrochim. Acta A 2024, 306, 123570. [Google Scholar] [CrossRef]
- Dodevska, T.; Hadzhiev, D.; Shterev, I. A review on electrochemical microsensors for ascorbic acid detection: Clinical, pharmaceutical, and food safety applications. Micromachines 2022, 14, 41. [Google Scholar] [CrossRef]
Sensors | Method | Linear Range (μM) | LOD (μM) | Samples | Reference |
---|---|---|---|---|---|
PPy-BPQDs-MIPs/PEDOTNRs/GCE 1 | DPV | 10–4000 | 3.3 | Soft drinks | [44] |
CA/MWCNTs/PVP/GCE 2 | DPV | 10–100 | 3 | Chewable tables of vitamin C | [45] |
MWCNT/poly-CD/GR/GCE 3 | DPV | 5–480 | 1.65 | Human urine | [46] |
Perylenetetracarboxylic acid/Gr/GCE 4 | DPV | 20–420 | 5.6 | / | [47] |
EPGrO/(Au/Ag/Pd)NPs/GCE 5 | DPV | 5–650 | 0.24 | Human blood serum | [48] |
MWCNT-polyArg/GCE 6 | DPV | 6–70 | 0.95 | Bayaspirin C Effervescent | [49] |
DWGS-HCPC/GCE | Amperometry | 10–1040 1040–3380 | 0.26 | Soft drinks | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hei, Y.; Ba, L.; Shi, X.; Guo, H.; Wen, S.; Zheng, B.; Gu, W.; Zhao, Z. A Sensitive and Accurate Electrochemical Sensor Based on Biomass-Derived Porous Carbon for the Detection of Ascorbic Acid. Molecules 2025, 30, 2980. https://doi.org/10.3390/molecules30142980
Hei Y, Ba L, Shi X, Guo H, Wen S, Zheng B, Gu W, Zhao Z. A Sensitive and Accurate Electrochemical Sensor Based on Biomass-Derived Porous Carbon for the Detection of Ascorbic Acid. Molecules. 2025; 30(14):2980. https://doi.org/10.3390/molecules30142980
Chicago/Turabian StyleHei, Yashuang, Lisi Ba, Xingwei Shi, Huanhuan Guo, Sisi Wen, Bingxiao Zheng, Wenjie Gu, and Zhiju Zhao. 2025. "A Sensitive and Accurate Electrochemical Sensor Based on Biomass-Derived Porous Carbon for the Detection of Ascorbic Acid" Molecules 30, no. 14: 2980. https://doi.org/10.3390/molecules30142980
APA StyleHei, Y., Ba, L., Shi, X., Guo, H., Wen, S., Zheng, B., Gu, W., & Zhao, Z. (2025). A Sensitive and Accurate Electrochemical Sensor Based on Biomass-Derived Porous Carbon for the Detection of Ascorbic Acid. Molecules, 30(14), 2980. https://doi.org/10.3390/molecules30142980