Boosting AMPs’ Power: From Structural Engineering to Nanotechnology-Based Delivery
Abstract
1. Introduction
2. AMPs’ Drawbacks and Challenges
3. Structural Engineering Strategies for AMPs
3.1. Bioinformatic Methods for AMP Design
3.2. Improving AMPs’ Physicochemical Properties
3.3. Chemical Approaches for Engineering AMPs
4. Biophysical Techniques for Studying AMPs Mode of Action
5. AMPs Conjugation Strategy
5.1. Metal Chelator–AMP Conjugates
5.2. Antibiotic-AMPs Conjugates
5.3. AMPs’ Conjugation to Drug Delivery Tools
6. Preclinical and Clinical Studies on Engineered AMPs
7. Future Perspectives and Research Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- León-Buitimea, A.; Garza-Cárdenas, C.R.; Garza-Cervantes, J.A.; Lerma-Escalera, J.A.; Morones-Ramírez, J.R. The Demand for New Antibiotics: Antimicrobial Peptides, Nanoparticles, and Combinatorial Therapies as Future Strategies in Antibacterial Agent Design. Front. Microbiol. 2020, 11, 1669. [Google Scholar] [CrossRef] [PubMed]
- Erdem Büyükkiraz, M.; Kesmen, Z. Antimicrobial Peptides (AMPs): A Promising Class of Antimicrobial Compounds. J. Appl. Microbiol. 2022, 132, 1573–1596. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, P.; Appiah Danso, S.; Hung, A.; Dekiwadia, C.; Pradhan, N.; Strachan, J.; McDonald, B.; Firipis, K.; White, J.F.; Aburto-Medina, A.; et al. Rational Design of Potent Ultrashort Antimicrobial Peptides with Programmable Assembly into Nanostructured Hydrogels. Front. Chem. 2022, 10, 1009468. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, R.; Bellavita, R.; Falanga, A. The Outstanding Chemodiversity of Marine-Derived Talaromyces. Biomolecules 2023, 13, 1021. [Google Scholar] [CrossRef] [PubMed]
- Vasquez-Moscoso, C.A.; Merlano, J.; Gálvez, A.; Almeida, D. Antimicrobial Peptides (AMPs) from Microalgae as an Alternative to Conventional Antibiotics in Aquaculture. Prep. Biochem. Biotechnol. 2025, 55, 26–35. Available online: https://www.tandfonline.com/doi/abs/10.1080/10826068.2024.2365357 (accessed on 26 November 2024). [CrossRef] [PubMed]
- Adnan, S.B.; Maarof, M.; Fauzi, M.B.; Md Fadilah, N.I. Antimicrobial Peptides in Wound Healing and Skin Regeneration: Dual Roles in Immunity and Microbial Defense. Int. J. Mol. Sci. 2025, 26, 5920. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Ma, X.; Peng, F.; Wen, J.; Allahou, L.W.; Williams, G.R.; Knowles, J.C.; Poma, A. Advances in Antimicrobial Peptides: From Mechanistic Insights to Chemical Modifications. Biotechnol. Adv. 2025, 81, 108570. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Z.; Yang, P.; Lei, J.; Zhao, J. Biological Function of Antimicrobial Peptides on Suppressing Pathogens and Improving Host Immunity. Antibiotics 2023, 12, 1037. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Xu, L.; Dong, C. Antimicrobial Peptides: An Overview of Their Structure, Function andMechanism of Action. Protein Pept. Lett. 2022, 29, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Talapko, J.; Meštrović, T.; Juzbašić, M.; Tomas, M.; Erić, S.; Horvat Aleksijević, L.; Bekić, S.; Schwarz, D.; Matić, S.; Neuberg, M.; et al. Antimicrobial Peptides—Mechanisms of Action, Antimicrobial Effects and Clinical Applications. Antibiotics 2022, 11, 1417. [Google Scholar] [CrossRef] [PubMed]
- Kabelka, I.; Vácha, R. Advances in Molecular Understanding of α-Helical Membrane-Active Peptides. Acc. Chem. Res. 2021, 54, 2196–2204. [Google Scholar] [CrossRef] [PubMed]
- Pandidan, S.; Mechler, A. Latest Developments on the Mechanism of Action of Membrane Disrupting Peptides. Biophysics Reports 2021, 7, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Kondrashov, O.V.; Akimov, S.A. The Possibility of Pore Formation in Lipid Membranes by Several Molecules of Amphipathic Peptides. Biochem. Mosc. Suppl. Ser. Membr. Cell Biol. 2022, 16, 338–350. [Google Scholar] [CrossRef]
- Yao, L.; Liu, Q.; Lei, Z.; Sun, T. Development and Challenges of Antimicrobial Peptide Delivery Strategies in Bacterial Therapy: A Review. Int. J. Biol. Macromol. 2023, 253, 126819. [Google Scholar] [CrossRef] [PubMed]
- Leitgeb, B.; Szekeres, A.; Manczinger, L.; Vágvölgyi, C.; Kredics, L. The History of Alamethicin: A Review of the Most Extensively Studied Peptaibol. Chem. Biodivers. 2007, 4, 1027–1051. [Google Scholar] [CrossRef] [PubMed]
- Bechinger, B. Structure and Functions of Channel-Forming Peptides: Magainins, Cecropins, Melittin and Alamethicin. J. Membr. Biol. 1997, 156, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Lu, T.K. Development and Challenges of Antimicrobial Peptides for Therapeutic Applications. Antibiotics 2020, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, J.; Kamau, P.M.; Thuku, R.C.; Lai, R. Design Methods for Antimicrobial Peptides with Improved Performance. Zool. Res. 2023, 44, 1095–1114. [Google Scholar] [CrossRef] [PubMed]
- Priya, S.; Tripathi, G.; Singh, D.B.; Jain, P.; Kumar, A. Machine Learning Approaches and Their Applications in Drug Discovery and Design. Chem. Biol. Drug Des. 2022, 100, 136–153. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Wu, H.; Chen, Z.; Hu, J.; Pan, J.; Kong, J.; Lin, T. The Global Research of Artificial Intelligence on Prostate Cancer: A 22-Year Bibliometric Analysis. Front. Oncol. 2022, 12, 843735. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Zhou, H.; Tang, Y.; Liu, Z.; Su, L.; Guo, J.; Pathak, J.L.; Wu, L. Dynamic Visualization of Computer-Aided Peptide Design for Cancer Therapeutics. Drug Des. Devel. Ther. 2025, 19, 1043–1065. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Cai, J.; Zhang, B.; Wang, Y.; Wong, D.F.; Siu, S.W.I. Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning. Antibiot. Basel Switz. 2022, 11, 1451. [Google Scholar] [CrossRef] [PubMed]
- Keyvanpour, M.R.; Shirzad, M.B. An Analysis of QSAR Research Based on Machine Learning Concepts. Curr. Drug Discov. Technol. 2021, 18, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-T.; Yang, L.-Y.; Lin, C.-Y.; Wang, C.-T.; Lai, C.-W.; Ko, C.-F.; Shih, Y.-H.; Chen, S.-H. Intelligent De Novo Design of Novel Antimicrobial Peptides against Antibiotic-Resistant Bacteria Strains. Int. J. Mol. Sci. 2023, 24, 6788. [Google Scholar] [CrossRef] [PubMed]
- Tucs, A.; Tran, D.P.; Yumoto, A.; Ito, Y.; Uzawa, T.; Tsuda, K. Generating Ampicillin-Level Antimicrobial Peptides with Activity-Aware Generative Adversarial Networks. ACS Omega 2020, 5, 22847–22851. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Bellavita, R.; Braccia, S.; Galdiero, S. Hydrophobicity: The Door to Drug Delivery. J. Pept. Sci. Off. Publ. Eur. Pept. Soc. 2024, 30, e3558. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.M.; Edwards, M.A.; Li, J.; Yip, C.M.; Deber, C.M. Roles of Hydrophobicity and Charge Distribution of Cationic Antimicrobial Peptides in Peptide-Membrane Interactions. J. Biol. Chem. 2012, 287, 7738–7745. [Google Scholar] [CrossRef] [PubMed]
- Makwana, K.M.; Mahalakshmi, R. Implications of Aromatic–Aromatic Interactions: From Protein Structures to Peptide Models. Protein Sci. 2015, 24, 1920–1933. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhang, X.; Yuan, Y.; Bao, Y.; Xiong, M. Role and Modulation of the Secondary Structure of Antimicrobial Peptides to Improve Selectivity. Biomater. Sci. 2020, 8, 6858–6866. [Google Scholar] [CrossRef] [PubMed]
- Bellavita, R.; Vollaro, A.; Catania, M.R.; Merlino, F.; De Martino, L.; Nocera, F.P.; DellaGreca, M.; Lembo, F.; Grieco, P.; Buommino, E. Novel Antimicrobial Peptide from Temporin L in The Treatment of Staphylococcus pseudintermedius and Malassezia pachydermatis in Polymicrobial Inter-Kingdom Infection. Antibiotics 2020, 9, 530. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, A.C.; Mangoni, M.L.; Rufo, A.; Luzi, C.; Barra, D.; Zhao, H.; Kinnunen, P.K.J.; Bozzi, A.; Di Giulio, A.; Simmaco, M. Temporin L: Antimicrobial, Haemolytic and Cytotoxic Activities, and Effects on Membrane Permeabilization in Lipid Vesicles. Biochem. J. 2002, 368, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Bellavita, R.; Falanga, A.; Merlino, F.; D’Auria, G.; Molfetta, N.; Saviano, A.; Maione, F.; Galdiero, U.; Catania, M.R.; Galdiero, S.; et al. Unveiling the Mechanism of Action of Acylated Temporin L Analogues against Multidrug-Resistant Candida Albicans. J. Enzyme Inhib. Med. Chem. 2023, 38, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Roscetto, E.; Bellavita, R.; Paolillo, R.; Merlino, F.; Molfetta, N.; Grieco, P.; Buommino, E.; Catania, M.R. Antimicrobial Activity of a Lipidated Temporin L Analogue against Carbapenemase-Producing Klebsiella Pneumoniae Clinical Isolates. Antibiotics 2021, 10, 1312. [Google Scholar] [CrossRef] [PubMed]
- Bellavita, R.; Raucci, F.; Merlino, F.; Piccolo, M.; Ferraro, M.G.; Irace, C.; Santamaria, R.; Iqbal, A.J.; Novellino, E.; Grieco, P.; et al. Temporin L-Derived Peptide as a Regulator of the Acute Inflammatory Response in Zymosan-Induced Peritonitis. Biomed. Pharmacother. Biomed. Pharmacother. 2020, 123, 109788. [Google Scholar] [CrossRef] [PubMed]
- Zelezetsky, I.; Pag, U.; Sahl, H.-G.; Tossi, A. Tuning the Biological Properties of Amphipathic Alpha-Helical Antimicrobial Peptides: Rational Use of Minimal Amino Acid Substitutions. Peptides 2005, 26, 2368–2376. [Google Scholar] [CrossRef] [PubMed]
- Giangaspero, A.; Sandri, L.; Tossi, A. Amphipathic Alpha Helical Antimicrobial Peptides. Eur. J. Biochem. 2001, 268, 5589–5600. [Google Scholar] [CrossRef] [PubMed]
- Edwards, I.A.; Henriques, S.T.; Blaskovich, M.A.T.; Elliott, A.G.; Cooper, M.A. Investigations into the Membrane Activity of Arenicin Antimicrobial Peptide AA139. Biochim. Biophys. Acta Gen. Subj. 2022, 1866, 130156. [Google Scholar] [CrossRef] [PubMed]
- Scudiero, O.; Nigro, E.; Cantisani, M.; Colavita, I.; Leone, M.; Mercurio, F.A.; Galdiero, M.; Pessi, A.; Daniele, A.; Salvatore, F.; et al. Design and Activity of a Cyclic Mini-β-Defensin Analog: A Novel Antimicrobial Tool. Int. J. Nanomed. 2015, 10, 6523–6539. [Google Scholar] [CrossRef]
- Gesualdo, C.; Balta, C.; Platania, C.B.M.; Trotta, M.C.; Herman, H.; Gharbia, S.; Rosu, M.; Petrillo, F.; Giunta, S.; Della Corte, A.; et al. Fingolimod and Diabetic Retinopathy: A Drug Repurposing Study. Front. Pharmacol. 2021, 12, 718902. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules 2018, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Dennison, S.R.; Morton, L.H.G.; Phoenix, D.A. Effect of Amidation on the Antimicrobial Peptide Aurein 2.5 from Australian Southern Bell Frogs. Protein Pept. Lett. 2012, 19, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Dennison, S.R.; Phoenix, D.A. Influence of C-Terminal Amidation on the Efficacy of Modelin-5. Biochemistry 2011, 50, 1514–1523. [Google Scholar] [CrossRef] [PubMed]
- Mardirossian, M.; Rubini, M.; Adamo, M.F.A.; Scocchi, M.; Saviano, M.; Tossi, A.; Gennaro, R.; Caporale, A. Natural and Synthetic Halogenated Amino Acids-Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics. Mol. Basel Switz. 2021, 26, 7401. [Google Scholar] [CrossRef] [PubMed]
- Buommino, E.; Carotenuto, A.; Antignano, I.; Bellavita, R.; Casciaro, B.; Loffredo, M.R.; Merlino, F.; Novellino, E.; Mangoni, M.L.; Nocera, F.P.; et al. The Outcomes of Decorated Prolines in the Discovery of Antimicrobial Peptides from Temporin-L. ChemMedChem 2019, 14, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Müller, K.; Faeh, C.; Diederich, F. Fluorine in Pharmaceuticals: Looking beyond Intuition. Science 2007, 317, 1881–1886. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Zhang, Y.; Wang, J.; Peng, J.; Zhao, P.; Zhang, L.; Yao, H.; Ni, J.; Wang, K. The Effect of Halogenation on the Antimicrobial Activity, Antibiofilm Activity, Cytotoxicity and Proteolytic Stability of the Antimicrobial Peptide Jelleine-I. Peptides 2019, 112, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Chen, M.-T.; Stedman, F.; Hernandez, J.; Kumble, G.; Kang, X.; Zhang, C.; Tang, G.; Reed, I.; Daugherty, I.Q.; et al. Cyclization of Two Antimicrobial Peptides Improves Their Activity. ACS Omega 2025, 10, 9728–9740. [Google Scholar] [CrossRef] [PubMed]
- Bellavita, R.; Braccia, S.; Galdiero, S.; Falanga, A. Glycosylation and Lipidation Strategies: Approaches for Improving Antimicrobial Peptide Efficacy. Pharmaceuticals 2023, 16, 439. [Google Scholar] [CrossRef] [PubMed]
- Húmpola, M.V.; Rey, M.C.; Carballeira, N.M.; Simonetta, A.C.; Tonarelli, G.G. Biological and Structural Effects of the Conjugation of an Antimicrobial Decapeptide with Saturated, Unsaturated, Methoxylated and Branched Fatty Acids. J. Pept. Sci. Off. Publ. Eur. Pept. Soc. 2017, 23, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, V.; Feio, M.J.; Bastos, M. Role of Lipids in the Interaction of Antimicrobial Peptides with Membranes. Prog. Lipid Res. 2012, 51, 149–177. [Google Scholar] [CrossRef] [PubMed]
- Swana, K.W.; Nagarajan, R.; Camesano, T.A. Atomic Force Microscopy to Characterize Antimicrobial Peptide-Induced Defects in Model Supported Lipid Bilayers. Microorganisms 2021, 9, 1975. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.L.H.; Wang, H.; Siaw, T.A.; Chapman, M.R.; Waring, A.J.; Kindt, J.T.; Lee, K.Y.C. Mechanism of Structural Transformations Induced by Antimicrobial Peptides in Lipid Membranes. Biochim. Biophys. Acta 2012, 1818, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Mani, R.; Waring, A.J.; Hong, M. Conformation, Dynamics, and Insertion of a Noncysteine-Containing Protegrin-1 Analogue in Lipid Membranes from Solid-State NMR Spectroscopy. ChemBioChem Eur. J. Chem. Biol. 2007, 8, 1877–1884. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.A.; Genard, B.; Zito, F.; Tremblay, R.; Warschawski, D.E.; Marcotte, I. Identification of Lipid and Saccharide Constituents of Whole Microalgal Cells by 13C Solid-State NMR. Biochim. Biophys. Acta BBA—Biomembr. 2015, 1848, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Yousif, A.M.; Ingangi, V.; Merlino, F.; Brancaccio, D.; Minopoli, M.; Bellavita, R.; Novellino, E.; Carriero, M.V.; Carotenuto, A.; Grieco, P. Urokinase Receptor Derived Peptides as Potent Inhibitors of the Formyl Peptide Receptor Type 1-Triggered Cell Migration. Eur. J. Med. Chem. 2018, 143, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Epand, R.M.; Epand, R.F. Liposomes as Models for Antimicrobial Peptides. In Methods in Enzymology; Liposomes, Part B; Academic Press: Cambridge, MA, USA, 2003; Volume 372, pp. 124–133. [Google Scholar]
- Tallmadge, D.H.; Huebner, J.S.; Borkman, R.F. Acrylamide Quenching of Tryptophan Photochemistry and Photophysics. Photochem. Photobiol. 1989, 49, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Bolen, E.J.; Holloway, P.W. Quenching of Tryptophan Fluorescence by Brominated Phospholipid. Biochemistry 1990, 29, 9638–9643. [Google Scholar] [CrossRef] [PubMed]
- Rusakov, K.; El-Turabi, A.; Reimer, L.; Jensen, P.H.; Hanczyc, P. Thioflavin T—A Reporter of Microviscosity in Protein Aggregation Process: The Study Case of α-Synuclein. J. Phys. Chem. Lett. 2024, 15, 6685–6690. [Google Scholar] [CrossRef] [PubMed]
- Bellavita, R.; Buommino, E.; Casciaro, B.; Merlino, F.; Cappiello, F.; Marigliano, N.; Saviano, A.; Maione, F.; Santangelo, R.; Mangoni, M.L.; et al. Synthetic Amphipathic β-Sheet Temporin-Derived Peptide with Dual Antibacterial and Anti-Inflammatory Activities. Antibiot. Basel Switz. 2022, 11, 1285. [Google Scholar] [CrossRef] [PubMed]
- Amaro, M.; Reina, F.; Hof, M.; Eggeling, C.; Sezgin, E. Laurdan and Di-4-ANEPPDHQ Probe Different Properties of the Membrane. J. Phys. Appl. Phys. 2017, 50, 134004. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, J.; Vazquez-Reyes, S.; Sun, J. A Fluorescence Dequenching-Based Liposome Leakage Assay to Measure Membrane Permeabilization by Pore-Forming Proteins. Bio-Protoc. 2021, 11, e4025. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.; Aguilar, M.-I. Surface Plasmon Resonance Spectroscopy for Studying the Membrane Binding of Antimicrobial Peptides. Methods Mol. Biol. Clifton NJ 2010, 627, 213–223. [Google Scholar] [CrossRef]
- Abraham, T.; Lewis, R.N.A.H.; Hodges, R.S.; McElhaney, R.N. Isothermal Titration Calorimetry Studies of the Binding of a Rationally Designed Analogue of the Antimicrobial Peptide Gramicidin s to Phospholipid Bilayer Membranes. Biochemistry 2005, 44, 2103–2112. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, S.P.; Chen, J.-Y. Conjugation of Antimicrobial Peptides to Enhance Therapeutic Efficacy. Eur. J. Med. Chem. 2023, 259, 115680. [Google Scholar] [CrossRef] [PubMed]
- Maiti, B.K.; Govil, N.; Kundu, T.; Moura, J.J.G. Designed Metal-ATCUN Derivatives: Redox- and Non-Redox-Based Applications Relevant for Chemistry, Biology, and Medicine. iScience 2020, 23, 101792. [Google Scholar] [CrossRef] [PubMed]
- Marinova, P.; Tamahkyarova, K. Synthesis and Biological Activities of Some Metal Complexes of Peptides: A Review. BioTech 2024, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Donaghy, C.; Javellana, J.G.; Hong, Y.-J.; Djoko, K.; Angeles-Boza, A.M. The Synergy between Zinc and Antimicrobial Peptides: An Insight into Unique Bioinorganic Interactions. Molecules 2023, 28, 2156. [Google Scholar] [CrossRef] [PubMed]
- Duay, S.S.; Sharma, G.; Prabhakar, R.; Angeles-Boza, A.M.; May, E.R. Molecular Dynamics Investigation into the Effect of Zinc(II) on the Structure and Membrane Interactions of the Antimicrobial Peptide Clavanin A. J. Phys. Chem. B 2019, 123, 3163–3176. [Google Scholar] [CrossRef] [PubMed]
- Bellavita, R.; Leone, L.; Maione, A.; Falcigno, L.; D’Auria, G.; Merlino, F.; Grieco, P.; Nastri, F.; Galdiero, E.; Lombardi, A.; et al. Synthesis of Temporin L Hydroxamate-Based Peptides and Evaluation of Their Coordination Properties with Iron(III ). Dalton Trans. 2023, 52, 3954–3963. [Google Scholar] [CrossRef] [PubMed]
- Correnti, C.; Strong, R.K. Mammalian Siderophores, Siderophore-Binding Lipocalins, and the Labile Iron Pool. J. Biol. Chem. 2012, 287, 13524–13531. [Google Scholar] [CrossRef] [PubMed]
- Bellavita, R.; Casciaro, B.; Nocerino, V.; Palladino, S.; Loffredo, M.R.; Dardano, P.; De Stefano, L.; Falcigno, L.; D’Auria, G.; Galdiero, S.; et al. Myxinidin-Analogs Able to Sequester Fe(III): Metal-Based Gun to Combat Pseudomonas Aeruginosa Biofilm. J. Inorg. Biochem. 2025, 263, 112774. [Google Scholar] [CrossRef] [PubMed]
- Bellavita, R.; Braccia, S.; Imbò, L.E.; Grieco, P.; Galdiero, S.; D’Auria, G.; Falanga, A.; Falcigno, L. Exploring Fe(III) Coordination and Membrane Interaction of a Siderophore-Peptide Conjugate: Enhancing Synergistically the Antimicrobial Activity. J. Inorg. Biochem. 2024, 259, 112658. [Google Scholar] [CrossRef] [PubMed]
- Del Genio, V.; Bellavita, R.; Falanga, A.; Hervé-Aubert, K.; Chourpa, I.; Galdiero, S. Peptides to Overcome the Limitations of Current Anticancer and Antimicrobial Nanotherapies. Pharmaceutics 2022, 14, 1235. [Google Scholar] [CrossRef] [PubMed]
- Kalimuthu, K.; Srinivasan, N.R.; Govindarajan, G. Antibiotic-Peptide Conjugation Against Multi-Drug Resistant Pathogens: A Comprehensive Review for Therapeutics and Drug Delivery Strategies. Int. J. Pept. Res. Ther. 2023, 29, 91. [Google Scholar] [CrossRef]
- David, A.A.; Park, S.E.; Parang, K.; Tiwari, R.K. Antibiotics-Peptide Conjugates Against Multidrug-Resistant Bacterial Pathogens. Curr. Top. Med. Chem. 2018, 18, 1926–1936. [Google Scholar] [CrossRef] [PubMed]
- Jelinkova, P.; Splichal, Z.; Jimenez, A.M.J.; Haddad, Y.; Mazumdar, A.; Sur, V.P.; Milosavljevic, V.; Kopel, P.; Buchtelova, H.; Guran, R.; et al. Novel Vancomycin-Peptide Conjugate as Potent Antibacterial Agent against Vancomycin-Resistant Staphylococcus Aureus. Infect. Drug Resist. 2018, 11, 1807–1817. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, C.; Chen, D.; Madrid, K.; Peng, S.; Dong, X.; Zhang, M.; Gu, Y. Bacteria-Targeting Conjugates Based on Antimicrobial Peptide for Bacteria Diagnosis and Therapy. Mol. Pharm. 2015, 12, 2505–2516. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-J.; Nam, S.H.; Lee, B.-J. Engineering Approaches for the Development of Antimicrobial Peptide-Based Antibiotics. Antibiot. Basel Switz. 2022, 11, 1338. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; O’Brien-Simpson, N.M.; Holden, J.A.; Otvos, L.; Reynolds, E.C.; Separovic, F.; Hossain, M.A.; Wade, J.D. Covalent Conjugation of Cationic Antimicrobial Peptides with a β-Lactam Antibiotic Core. Pept. Sci. 2018, 110, e24059. [Google Scholar] [CrossRef]
- Duong, L.; Gross, S.P.; Siryaporn, A. Developing Antimicrobial Synergy with AMPs. Front. Med. Technol. 2021, 3, 640981. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, I.; Said, D.G.; Nubile, M.; Mastropasqua, L.; Dua, H.S. Cathelicidin-Derived Synthetic Peptide Improves Therapeutic Potential of Vancomycin Against Pseudomonas Aeruginosa. Front. Microbiol. 2019, 10, 2190. [Google Scholar] [CrossRef] [PubMed]
- Chernysh, S.; Gordya, N.; Tulin, D.; Yakovlev, A. Biofilm Infections between Scylla and Charybdis: Interplay of Host Antimicrobial Peptides and Antibiotics. Infect. Drug Resist. 2018, 11, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhong, C.; Yao, J.; Zhang, J.; Zhang, T.; Li, B.; Gou, S.; Ni, J. Antimicrobial Peptides–Antibiotics Combination: An Effective Strategy Targeting Drug-Resistant Gram-Negative Bacteria. Pept. Sci. 2022, 114, e24261. [Google Scholar] [CrossRef]
- Zheng, S.; Tu, Y.; Li, B.; Qu, G.; Li, A.; Peng, X.; Li, S.; Shao, C. Antimicrobial Peptide Biological Activity, Delivery Systems and Clinical Translation Status and Challenges. J. Transl. Med. 2025, 23, 292. [Google Scholar] [CrossRef] [PubMed]
- Aghamiri, S.; Zandsalimi, F.; Raee, P.; Abdollahifar, M.-A.; Tan, S.C.; Low, T.Y.; Najafi, S.; Ashrafizadeh, M.; Zarrabi, A.; Ghanbarian, H.; et al. Antimicrobial Peptides as Potential Therapeutics for Breast Cancer. Pharmacol. Res. 2021, 171, 105777. [Google Scholar] [CrossRef] [PubMed]
- Saini, J.; Kaur, P.; Malik, N.; Lakhawat, S.S.; Sharma, P.K. Antimicrobial Peptides: A Promising Tool to Combat Multidrug Resistance in SARS CoV2 Era. Microbiol. Res. 2022, 265, 127206. [Google Scholar] [CrossRef] [PubMed]
- de Alteriis, E.; Maselli, V.; Falanga, A.; Galdiero, S.; Di Lella, F.M.; Gesuele, R.; Guida, M.; Galdiero, E. Efficiency of Gold Nanoparticles Coated with the Antimicrobial Peptide Indolicidin against Biofilm Formation and Development of Candida Spp. Clinical Isolates. Infect. Drug Resist. 2018, 11, 915–925. [Google Scholar] [CrossRef] [PubMed]
- de Alteriis, E.; Falanga, A.; Galdiero, S.; Guida, M.; Maselli, V.; Galdiero, E. Genotoxicity of Gold Nanoparticles Functionalized with Indolicidin towards Saccharomyces Cerevisiae. J. Environ. Sci. China 2018, 66, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xu, W.; Chen, W.; Li, B.; Li, G.; Deng, H.; Zhang, L.; Shao, C.; Shan, A. Self-Assembling Peptide with Dual Function of Cell Penetration and Antibacterial as a Nano Weapon to Combat Intracellular Bacteria. Sci. Adv. 2025, 11, eads3844. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, J.A.; Burholt, S.; Hamley, I.W. Peptide Hormones and Lipopeptides: From Self-Assembly to Therapeutic Applications. J. Pept. Sci. 2017, 23, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Branco, M.C.; Schneider, J.P. Self-Assembling Materials for Therapeutic Delivery. Acta Biomater. 2009, 5, 817–831. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.; Hartgerink, J.D.; Young, S. Self-Assembling Peptides as Immunomodulatory Biomaterials. Front. Bioeng. Biotechnol. 2023, 11, 1139782. [Google Scholar] [CrossRef] [PubMed]
- Sinha, N.J.; Langenstein, M.G.; Pochan, D.J.; Kloxin, C.J.; Saven, J.G. Peptide Design and Self-Assembly into Targeted Nanostructure and Functional Materials. Chem. Rev. 2021, 121, 13915–13935. [Google Scholar] [CrossRef] [PubMed]
- Bellavita, R.; Braccia, S.; Falanga, A.; Galdiero, S. An Overview of Supramolecular Platforms Boosting Drug Delivery. Bioinorg. Chem. Appl. 2023, 2023, 8608428. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Su, R.; Wang, Y.; Qi, W. Antimicrobial Therapy Based on Self-Assembling Peptides. J. Mater. Chem. B 2024, 12, 5061–5075. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Wang, Z.; Wang, Q.; Yang, C.; Liu, J. Self-Assembled Peptide-Based Nanoprobes for Disease Theranostics and Disease-Related Molecular Imaging. Small Methods 2020, 4, 1900403. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, R.; Wang, H.; Jiang, X.; Wang, H.; Yan, S.; Yin, J.; Luan, S. Bacterial Activation of Surface-Tethered Antimicrobial Peptides for the Facile Construction of a Surface with Self-Defense. Appl. Surf. Sci. 2019, 497, 143480. [Google Scholar] [CrossRef]
- Zou, P.; Chen, W.-T.; Sun, T.; Gao, Y.; Li, L.-L.; Wang, H. Recent Advances: Peptides and Self-Assembled Peptide-Nanosystems for Antimicrobial Therapy and Diagnosis. Biomater. Sci. 2020, 8, 4975–4996. [Google Scholar] [CrossRef] [PubMed]
- Agapakis, C.M.; Boyle, P.M.; Silver, P.A. Natural Strategies for the Spatial Optimization of Metabolism in Synthetic Biology. Nat. Chem. Biol. 2012, 8, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Matsui, H. Peptide-Based Nanotubes and Their Applications in Bionanotechnology. Adv. Mater. 2005, 17, 2037–2050. [Google Scholar] [CrossRef] [PubMed]
- Petrov, A.; Audette, G.F. Peptide and Protein-Based Nanotubes for Nanobiotechnology. WIREs Nanomed. Nanobiotechnol. 2012, 4, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhu, P.; Li, J. Self-Assembly and Application of Diphenylalanine-Based Nanostructures. Chem. Soc. Rev. 2010, 39, 1877–1890. [Google Scholar] [CrossRef] [PubMed]
- Schnaider, L.; Brahmachari, S.; Schmidt, N.W.; Mensa, B.; Shaham-Niv, S.; Bychenko, D.; Adler-Abramovich, L.; Shimon, L.J.W.; Kolusheva, S.; DeGrado, W.F.; et al. Self-Assembling Dipeptide Antibacterial Nanostructures with Membrane Disrupting Activity. Nat. Commun. 2017, 8, 1365. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, L.; Shi, Y.; Falanga, A.; Galdiero, E.; de Alteriis, E.; Franci, G.; Chourpa, I.; Azevedo, H.S.; Galdiero, S. Enhancing the Potency of Antimicrobial Peptides through Molecular Engineering and Self-Assembly. Biomacromolecules 2019, 20, 1362–1374. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xia, W.; Zhang, M.; Wu, R.; Song, X.; Hao, Y.; Feng, Y.; Zhang, L.; Li, D.; Kang, W.; et al. Engineering of Antimicrobial Peptide Fibrils with Feedback Degradation of Bacterial-Secreted Enzymes. Chem. Sci. 2023, 14, 10914–10924. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Zhou, T.; Zhang, J.; Xu, J.; Guo, X.; Hu, H.; Zhang, X.; Hu, M.; Li, J.; Yang, W.; et al. Enhanced Cell Selectivity of Hybrid Peptides with Potential Antimicrobial Activity and Immunomodulatory Effect. Biochim. Biophys. Acta BBA—Gen. Subj. 2020, 1864, 129532. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhang, L.; Zhang, R.; Koci, M.; Si, D.; Ahmad, B.; Cheng, J.; Wang, J.; Aihemaiti, M.; Zhang, M. Frontiers | A Novel Cecropin-LL37 Hybrid Peptide Protects Mice Against EHEC Infection-Mediated Changes in Gut Microbiota, Intestinal Inflammation, and Impairment of Mucosal Barrier Functions. Available online: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2020.01361/full (accessed on 26 November 2024).
- Lim, J.Y.; Yeong, K.Y. Nature-Derived Peptides as Promising Antiparasitic Agents against Neglected Tropical Diseases. Int. J. Pept. Res. Ther. 2024, 30, 49. [Google Scholar] [CrossRef]
- Tornesello, A.L.; Borrelli, A.; Buonaguro, L.; Buonaguro, F.M.; Tornesello, M.L. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules 2020, 25, 2850. [Google Scholar] [CrossRef] [PubMed]
- Guryanova, S.V.; Ovchinnikova, T.V. Immunomodulatory and Allergenic Properties of Antimicrobial Peptides. Int. J. Mol. Sci. 2022, 23, 2499. [Google Scholar] [CrossRef] [PubMed]
- Clinical Evaluation of the S. Mutans STAMP, C16G2, in the Oral Cavity IADR Abstract Archives. Available online: https://iadr.abstractarchives.com/abstract/15iags-2100542/clinical-evaluation-of-the-s-mutans-stamp-c16g2-in-the-oral-cavity (accessed on 27 November 2024).
- Wei, Y.; Li, Y.; Li, X.; Zhao, Y.; Xu, J.; Wang, H.; Rong, X.; Xiong, J.; Chen, X.; Luo, G.; et al. Peceleganan Spray for the Treatment of Skin Wound Infections: A Randomized Clinical Trial. JAMA Netw. Open 2024, 7, e2415310. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yang, M. Antimicrobial Peptides: From Design to Clinical Application. Antibiotics 2022, 11, 349. [Google Scholar] [CrossRef] [PubMed]
- ProteLight Pharma Innovative Drug Peceleganan Spray (Antimicrobial Peptide PL-5) Received FDA Approval for Phase II Clinical Trials in the United States_Jiangsu ProteLight Pharmaceutical & Biotechnology Co., Ltd. Available online: https://en.protelight.com/news_detail/5.html (accessed on 27 November 2024).
- Namburu, J.R.; Rajendra Sanosh, A.B.; Poosarla, C.S.; Manthapuri, S.; Pinnaka, M.; Baddam, V.R.R. Streptococcus M Utans-Specific Antimicrobial Peptide C16G2-Mediated Caries Prevention: A Review. Front. Dent. 2022, 19, 17. [Google Scholar] [CrossRef]
- Landa, A.; Jiménez, L.; Willms, K.; Jiménez-García, L.F.; Lara-Martínez, R.; Robert, L.; Cirioni, O.; Barańska-Rybak, W.; Kamysz, W. Antimicrobial Peptides (Temporin A and Iseganan IB-367): Effect on the Cysticerci of Taenia Crassiceps. Mol. Biochem. Parasitol. 2009, 164, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Roca-Pinilla, R.; Lisowski, L.; Arís, A.; Garcia-Fruitós, E. The Future of Recombinant Host Defense Peptides. Microb. Cell Factories 2022, 21, 267. [Google Scholar] [CrossRef] [PubMed]
- Sustainable Large-Scale Production of Antimicrobial Peptides Developed by Mk2 Biotechnologies, WACKER, and TUM. Available online: https://chemxplore.com/news/mk2-biotechnologies-wacker-tum-large-scale-production-antimicrobial-peptides-sustainable-fermentation (accessed on 27 November 2024).
- Verma, D.P.; Tripathi, A.K.; Thakur, A.K. Innovative Strategies and Methodologies in Antimicrobial Peptide Design. J. Funct. Biomater. 2024, 15, 320. [Google Scholar] [CrossRef] [PubMed]
Modification Type | Improved Properties | Antimicrobial Spectrum | Toxicity Profile |
---|---|---|---|
D-amino acid substitution | Protease resistance, structural stability | Broad spectrum | Reduced toxicity due to stability |
β-amino acid incorporation | Protease resistance without loss activity | Broad spectrum | Low toxicity |
Retro-inverso peptides | Protease resistance, increased half-life | Broad spectrum | Improved selectivity |
Cyclization | Structural rigidity and stability | Broad spectrum | Lower toxicity |
Lipidation | Improved membrane interaction and insertion | Broad spectrum including Candida spp. | Cytotoxicity due to reduced selectivity and strong aggregation propensity |
AMP | Source | Clinical Phase | Efficacy Outcome | Limitations |
---|---|---|---|---|
C16G2 | Synthetic AMP | Phase II | Completed Phase 2; Effective in caries prevention | Limited to dental use; systemic effect unknown |
hLF1-11 | Human lactoferrin fragment | Phase II | Promising in neutropenic infections | Moderate bioavailability; risk of degradation |
Brilacidin | Synthetic AMP | Phase II | Antimicrobial and anti-inflammatory effects | Under investigation |
Omiganan | Synthetic AMP | Phase III | Strong efficacy; promising for catheter/wound infections | Limited systemic application |
Peceleganan | Hybrid AMP | Phase III (China) | Effective in wound infections such as diabetic foot ulcers | Potential cytotoxic effect due to melittin-derived segment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajayi, O.E.; Bellavita, R.; Imbò, L.E.; Palladino, S.; Braccia, S.; Falanga, A.; Galdiero, S. Boosting AMPs’ Power: From Structural Engineering to Nanotechnology-Based Delivery. Molecules 2025, 30, 2979. https://doi.org/10.3390/molecules30142979
Ajayi OE, Bellavita R, Imbò LE, Palladino S, Braccia S, Falanga A, Galdiero S. Boosting AMPs’ Power: From Structural Engineering to Nanotechnology-Based Delivery. Molecules. 2025; 30(14):2979. https://doi.org/10.3390/molecules30142979
Chicago/Turabian StyleAjayi, Oluwasegun Eric, Rosa Bellavita, Lorenzo Emiliano Imbò, Sara Palladino, Simone Braccia, Annarita Falanga, and Stefania Galdiero. 2025. "Boosting AMPs’ Power: From Structural Engineering to Nanotechnology-Based Delivery" Molecules 30, no. 14: 2979. https://doi.org/10.3390/molecules30142979
APA StyleAjayi, O. E., Bellavita, R., Imbò, L. E., Palladino, S., Braccia, S., Falanga, A., & Galdiero, S. (2025). Boosting AMPs’ Power: From Structural Engineering to Nanotechnology-Based Delivery. Molecules, 30(14), 2979. https://doi.org/10.3390/molecules30142979