Observation of a Relationship Between Orbital-Specific Molecular Similarity Index and Toxicity of Methylcarbamate Derivatives
Abstract
1. Introduction
2. Materials and Methods
2.1. Methylcarbamate Derivatives and Their Toxicity
2.2. Definition of MSI and OS-MSI
2.3. Theoretical Calculations
3. Results and Discussion
3.1. Conformers and Rotamers of Solvated Methylcarbamate Derivatives
3.2. Molecular Orbitals of Solvated Methylcarbamate Derivatives
3.3. MSI and OS-MSI of Solvated Methylcarbamate Derivatives
3.4. OS-MSI and Drug Reaction Mechansim
4. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eckert, H.; Bajorath, J. Molecular similarity analysis in virtual screening: Foundations, limitations and novel approaches. Drug Discov. Today 2007, 12, 225–233. [Google Scholar] [CrossRef]
- Wermuth, C.G. Similarity in drugs: Reflections on analogue design. Drug Discov. Today 2006, 11, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Carbó, R. Molecular Similarity and Reactivity: From Quantum Chemical to Phenomenological Approaches; Springer Science & Business Media: Berlin, Germany, 1995; Volume 14. [Google Scholar]
- Carbó, R.; Leyda, L.; Arnau, M. How similar is a molecule to another? An electron density measure of similarity between two molecular structures. Int. J. Quantum Chem. 1980, 17, 1185–1189. [Google Scholar] [CrossRef]
- Hodgkin, E.E.; Richards, W.G. Molecular similarity based on electrostatic potential and electric field. Int. J. Quantum Chem. 1987, 32, 105–110. [Google Scholar] [CrossRef]
- Usharani, D.; Lai, W.; Li, C.; Chen, H.; Danovich, D.; Shaik, S. A tutorial for understanding chemical reactivity through the valence bond approach. Chem. Sov. Rev. 2014, 43, 4968–4988. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.L.; Allan, N.L. A novel approach to molecular similarity. J. Comp-Aided Mol Des. 1989, 3, 253–259. [Google Scholar] [CrossRef]
- Watanabe, N.; Chen, X.J.; Takahashi, M. Interference Effects on (e, 2e) Electron Momentum Profiles of CF4. Phys. Rev. Lett. 2012, 108, 173201. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M. Looking at Molecular Orbitals in Three-Dimensional Form: From Dream to Reality. Bull. Chem. Soc. Jpn. 2009, 82, 751–777. [Google Scholar] [CrossRef]
- Cooper, D.L.; Mort, K.A.; Allan, N.L.; Kinchington, D.; McGuigan, C. Molecular Similarity of Anti-HIV Phospholipids. J. Am. Chem. Soc. 1993, 115, 12615–12616. [Google Scholar] [CrossRef]
- Measures, P.T.; Mort, K.A.; Cooper, D.L.; Allan, N.L. A quantum molecular similarity approach to anti-HIV activity. J. Mol. Struct. (THEOCHEM) 1998, 423, 113–123. [Google Scholar] [CrossRef]
- Measures, P.T.; Mort, K.A.; Allan, N.L.; Cooper, D.L. Applications of momentum-space similarity. J. Comp.-Aided Mol. Des. 1995, 9, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Matošević, A.; Bosak, A. Carbamate group as structural motif in drugs: A review of carbamate derivatives used as therapeutic agents. Arch. Ind. Hyg. Toxicol. 2020, 71, 285–299. [Google Scholar] [CrossRef]
- Vandekar, M.; Pleština, R.; Wilhelm, K. Toxicity of carbamates for mammals. Bull. World Health Organ. 1971, 44, 241–249. [Google Scholar] [PubMed]
- Metcalf, R.L. Structure-Activity relationships for insecticidal carbamates. Bull. World Health Organ. 1971, 44, 43–78. [Google Scholar]
- Fukuto, T.R. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Perspect. 1990, 87, 245–254. [Google Scholar] [CrossRef]
- Quinn, D.M. Acetylcholinesterase: Enzyme Structure, Reaction Dynamics, and Virtual Transition States. Chem. Rev. 1987, 87, 955–979. [Google Scholar] [CrossRef]
- Fukui, K.; Yonezawa, T.; Shingu, H. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. J. Chem. Phys. 1952, 20, 722–725. [Google Scholar] [CrossRef]
- Gabelica, V. Nucleic Acids in The Gas Phase; Springer Nature: London, UK, 2014. [Google Scholar]
- Ning, Z.H.; Long, S.; Zhou, Y.Y.; Peng, Z.Y.; Sun, Y.N.; Chen, S.W.; Su, L.M.; Zhao, Y.H. Effect of exposure routes on the relationships of lethal toxicity to rats from oral, intravenous, intraperitoneal and intramuscular routes. Regul. Toxicol. Pharmacol. 2015, 73, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision 16.A.03; Wallingford CT. Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Cook, J.P.D.; Brion, C.E. Binary (e, 2e) spectroscopy and momentum-space chemistry of CO2. Chem. Phys. 1982, 69, 339–356. [Google Scholar] [CrossRef]
- Mennucci, B. Polarizable continuum model. WIREs Comput. Mol. Sci. 2012, 2, 386–404. [Google Scholar] [CrossRef]
- Refinetti, R.; Ma, H.; Satinoff, E. Body temperature rhythms, cold tolerance, and fever in young and old rats of both genders. Exp. Gerontol. 1990, 25, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Kydd, R.A.; Rauk, A. The equilibrium geometry of methyl carbamate. J. Mol. Struct. 1981, 77, 227–238. [Google Scholar] [CrossRef]
- Takahashi, M.; Otsuka, K.; Udagawa, Y. Electron momentum spectroscopy study of furan. Chem. Phys. 1998, 277, 375–387. [Google Scholar] [CrossRef]
- Stowasser, R.; Hoffmann, R. What Do the Kohn−Sham Orbitals and Eigenvalues Mean? J. Am. Chem. Soc. 1999, 121, 3414–3420. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23, 1833–1840. [Google Scholar] [CrossRef]
- Ertural, C.; Steinberg, S.; Dronskowski, R. Development of a robust tool to extract Mulliken and Löwdin charges from plane waves and its application to solid-state materials. RSC Adv. 2019, 9, 29821–29830. [Google Scholar] [CrossRef]
- Seyoum, A.; Asres, K.; El-Fiky, F.K. Structure–radical scavenging activity relationships of flavonoids. Phytochemistry 2006, 67, 2058–2070. [Google Scholar] [CrossRef]
- Leopoldini, M.; Pitarch, I.P.; Russo, N.; Toscano, M. Structure, Conformation, and Electronic Properties of Apigenin, Luteolin, and Taxifolin Antioxidants. A First Principle Theoretical Study. J. Phys. Chem. A 2004, 108, 92–96. [Google Scholar] [CrossRef]
- Mayr, L.M.; Bojanic, D. Novel trends in high throughput screening. Curr. Opin. Pharmacol. 2009, 9, 580–588. [Google Scholar] [CrossRef]
- Muratov, E.N.; Bajorath, J.; Sheridan, R.P.; Tetko, I.V.; Filimonov, D.; Poroikov, V.; Oprea, T.I.; Baskin, I.I.; Varnerk, A.; Roitberg, A.; et al. QSAR without borders. Chem. Soc. Rev. 2020, 49, 3525–3564. [Google Scholar] [CrossRef]
- Kaijser, P.; Smith, V.H., Jr. Evaluation of momentum distributions and Compton profiles for atomic and molecular systems. Adv. Quantum Chem. 1977, 10, 37–76. [Google Scholar]
Derivatives | LD50 (mol/kg) (a) | ||
---|---|---|---|
Intravenous (b) | Intraperitoneal (b) | Oral (b) | |
phenyl | 9.00 × 10−5 | 2.36 × 10−3 | 3.57 × 10−3 |
m-isopropylphenyl | 1.63 × 10−5 | 7.35 × 10−5 | 2.03 × 10−4 |
m-cym-5-yl | 2.56 × 10−5 | 1.31 × 10−4 | 6.03 × 10−4 |
o-isopropoxyphenyl | 5.07 × 10−5 | 1.43 × 10−4 | 4.78 × 10−4 |
4-benzotheinyl | 1.20 × 10−4 | 1.97 × 10−4 | 1.62 × 10−3 |
3,5-diisopropylphenyl | 1.26 × 10−4 | 1.13 × 10−3 | 4.25 × 10−3 |
1-naphtyl | 2.08 × 10−4 | 9.94 × 10−4 | 1.24 × 10−3 |
o-isopropylphenyl | 3.42 × 10−4 | 7.35 × 10−4 | 1.94 × 10−3 |
phenyl | ||||||||||
28.7° | 58.7° | 88.7° | 125.6° | 148.7° | 208.7° | 234.4° | 268.7° | 301.3° | 328.7° | |
weight | 4.9% | 15.1% | 9.6% | 16.1% | 4.3% | 4.3% | 15.8% | 9.6% | 15.3% | 5.0% |
m-isopropylphenyl | ||||||||||
31.4° | 61.4° | 91.4° | 125.2° | 151.4° | 211.4° | 234.8° | 271.4° | 298.6° | 321.4° | |
weight | 5.2% | 14.6% | 9.7% | 16.7% | 4.2% | 4.2% | 16.7% | 10.7% | 11.4% | 6.7% |
m-cym-5-yl | ||||||||||
36.5° | 66.5° | 96.5° | 115.4° | 146.5° | 216.5° | 239.1° | 266.5° | 293.5° | 326.5° | |
weight | 6.8% | 16.6% | 4.2% | 14.8% | 7.6% | 6.4% | 14.3% | 7.2% | 15.4% | 6.8% |
o-isopropoxyphenyl | ||||||||||
64.4° | 74.4° | 84.4° | 94.4° | 124.4° | 235.6° | 265.6° | 275.6° | 285.6° | 295.6° | |
weight | 0.0% | 28.4% | 15.7% | 0.0% | 6.1% | 6.0% | 0.0% | 16.9% | 26.9% | 0.0% |
4-benzothienyl | ||||||||||
64.6° | 84.6° | 104.4° | 125.4° | 154.6° | 204.6° | 234.6° | 254.6° | 274.6° | 294.6° | |
weight | 1.9% | 17.9% | 1.0% | 22.8% | 6.3% | 6.2% | 23.3% | 0.2% | 18.1% | 2.3% |
3,5-diisopropylphenyl | ||||||||||
33.7° | 63.7° | 93.7° | 120.6° | 143.7° | 213.7° | 239.4° | 273.7° | 296.3° | 323.7° | |
weight | 6.0% | 15.5% | 8.5% | 13.0% | 7.1% | 6.0% | 15.6% | 9.0% | 12.5% | 6.9% |
1-naphthyl | ||||||||||
42.4° | 92.4° | 117.6° | 142.4° | 162.4° | 192.4° | 212.4° | 242.4° | 272.4° | 302.4° | |
weight | 0.0% | 19.8% | 14.7% | 14.3% | 0.0% | 0.0% | 12.3% | 21.0% | 17.8% | 0.0% |
o-isopropylphenyl | ||||||||||
62.2° | 72.2° | 92.2° | 112.2° | 142.2° | 207.8° | 237.8° | 267.8° | 287.8° | 297.8° | |
weight | 0.0% | 0.0% | 34.7% | 7.5% | 6.8% | 3.0% | 10.3% | 36.0% | 0.0% | 0.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, S.; Onitsuka, Y.; Nagao, S.; Takahashi, M. Observation of a Relationship Between Orbital-Specific Molecular Similarity Index and Toxicity of Methylcarbamate Derivatives. Molecules 2025, 30, 2947. https://doi.org/10.3390/molecules30142947
Long S, Onitsuka Y, Nagao S, Takahashi M. Observation of a Relationship Between Orbital-Specific Molecular Similarity Index and Toxicity of Methylcarbamate Derivatives. Molecules. 2025; 30(14):2947. https://doi.org/10.3390/molecules30142947
Chicago/Turabian StyleLong, Sihan, Yuuki Onitsuka, Soichiro Nagao, and Masahiko Takahashi. 2025. "Observation of a Relationship Between Orbital-Specific Molecular Similarity Index and Toxicity of Methylcarbamate Derivatives" Molecules 30, no. 14: 2947. https://doi.org/10.3390/molecules30142947
APA StyleLong, S., Onitsuka, Y., Nagao, S., & Takahashi, M. (2025). Observation of a Relationship Between Orbital-Specific Molecular Similarity Index and Toxicity of Methylcarbamate Derivatives. Molecules, 30(14), 2947. https://doi.org/10.3390/molecules30142947