Multifaceted Applications of Zerumbone-Loaded Metal–Organic Framework-5: Anticancer, Antibacterial, Antifungal, DNA-Binding, and Free Radical Scavenging Potentials
Abstract
1. Introduction
2. Results
2.1. Characterization of the MOF-5 and ZER@MOF-5
2.2. Energy-Dispersive X-Ray Spectroscopy
2.3. Analysis of FTIR Spectroscopy
2.4. Antimicrobial Activity
2.5. Interactions of pBR322 Plasmid DNA with the ZER@MOF-5
2.6. HindIII and BamHI Digestion
2.7. Free Radical Scavenging Activity
2.8. Anticancer Activity
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Preparation of MOF-5
4.3. Preparation of the ZER@MOF-5
4.4. Characterization of MOF-5 and ZER@MOF-5
4.5. Determination of Antimicrobial Activity
4.6. Determination of the DNA Interaction
4.7. Restriction Enzyme Digestion
4.8. Determination of Free Radical Scavenging Activity
4.9. Cell Culture
4.10. Cytotoxicity Assay
4.11. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhu, G.; Liu, Y.; Wang, X. Polypyrrole nanoparticles loaded with doxorubicin for pH-responsive combinational photothermal-chemotherapy of cancer cells. AIP Adv. 2023, 13, 115318. [Google Scholar] [CrossRef]
- Yusuf, K.; Sampath, V.; Umar, S. Bacterial Infections and Cancer: Exploring This Association and Its Implications for Cancer Patients. Int. J. Mol. Sci. 2023, 24, 3110. [Google Scholar] [CrossRef] [PubMed]
- Md, S.; Kit, B.C.M.; Jagdish, S.; David, D.J.P.; Pandey, M.; Chatterjee, L.A. Development and In Vitro Evaluation of a Zerumbone Loaded Nanosuspension Drug Delivery System. Crystals 2018, 8, 286. [Google Scholar] [CrossRef]
- Kesharwani, S.S.; Bhat, G.J. Formulation and Nanotechnology-Based Approaches for Solubility and Bioavailability Enhancement of Zerumbone. Medicina 2020, 56, 557. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef]
- Rajamma, R.; Gopalakrishnan Nair, S.; Abdul Khadar, F.; Baskaran, B. Antibacterial and anticancer activity of biosynthesised CuO nanoparticles. IET Nanobiotechnol. 2020, 14, 833–838. [Google Scholar] [CrossRef]
- Gulbay, G.; Secme, M.; Ilhan, H. Exploring the Potential of Thymoquinone-Stabilized Selenium Nanoparticles: In HEC1B Endometrial Cancer Cells Revealing Enhanced Anticancer Efficacy. ACS Omega 2023, 8, 39822–39829. [Google Scholar] [CrossRef]
- Ilhan, H. Nanoarchitectonics of the Effects of Curcumin Carbon Dot-Decorated Chitosan Nanoparticles on Proliferation and Apoptosis-Related Gene Expressions in HepG2 Hepatocellular Carcinoma Cells. ACS Omega 2023, 8, 33554–33563. [Google Scholar] [CrossRef]
- Reddy, M.S.; Singh, K.P.; Kumar, N.; Kumar, R.; Singh, M.V.; Gupta, S. Multifaceted applications of chitosan-L-ornithine modified ZnO nanoparticles: Antibacterial, antioxidant, and anticancer potentials. J. Drug Deliv. Sci. Technol. 2024, 91, 105192. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Thuy, V.N.; Van, T.V.; Dao, A.H.; Lee, B.J. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. OpenNano 2022, 8, 100064. [Google Scholar] [CrossRef]
- Rahman, H.S.; Rasedee, A.; How, C.W.; Abdul, A.B.; Zeenathul, N.A.; Othman, H.H.; Saeed, M.I.; Yeap, S.K. Zerumbone-loaded nanostructured lipid carriers: Preparation, characterization, and antileukemic effect. Int. J. Nanomed. 2013, 8, 2769–2781. [Google Scholar] [CrossRef] [PubMed]
- Eid, E.E.M.; Abdul, A.B.; Suliman, F.E.O.; Sukari, M.A.; Rasedee, A.; Fatah, S.S. Characterization of the inclusion complex of zerumbone with hydroxypropyl-β-cyclodextrin. Carbohydr. Polym. 2011, 83, 1707–1714. [Google Scholar] [CrossRef]
- Hassan, M.M.; Mohammed, A.F.A.; Elamin, K.M.; Devkota, H.P.; Ohno, Y.; Motoyama, K.; Higashi, T.; Imai, T. Improvement of Pharmaceutical Properties of Zerumbone, a Multifunctional Compound, Using Cyclodextrin Derivatives. Chem. Pharm. Bull. 2020, 68, 1117–1120. [Google Scholar] [CrossRef]
- Wang, S.; Xie, X.; Xia, W.; Cui, J.; Zhang, S.; Du, X. Study on the structure activity relationship of the crystal MOF-5 synthesis, thermal stability and N2 adsorption property. High Temp. Mater. Process. 2020, 39, 171–177. [Google Scholar] [CrossRef]
- Chen, G.; Luo, J.; Cai, M.; Qin, L.; Wang, Y.; Gao, L.; Huang, P.; Yu, Y.; Ding, Y.; Dong, X.; et al. Investigation of Metal-Organic Framework-5 (MOF-5) as an Antitumor Drug Oridonin Sustained Release Carrier. Molecules 2019, 24, 3369. [Google Scholar] [CrossRef]
- Gao, P.; Chen, Y.; Pan, W.; Li, N.; Liu, Z.; Tang, B. Antitumor Agents Based on Metal-Organic Frameworks. Angew. Chem. 2021, 60, 16763–16776. [Google Scholar] [CrossRef]
- Guo, Z.; Xiao, Y.; Wu, W.; Zhe, M.; Yu, P.; Shakya, S.; Li, Z.; Xing, F. Metal-organic framework-based smart stimuli-responsive drug delivery systems for cancer therapy: Advances, challenges, and future perspectives. J. Nanobiotechnol. 2025, 23, 157. [Google Scholar] [CrossRef]
- Chen, B.; Wang, X.; Zhang, Q.; Xi, X.; Cai, J.; Qi, H.; Shi, S.; Wang, J.; Yuan, D.; Fang, M. Synthesis and characterization of the interpenetrated MOF-5. J. Mater. Chem. 2010, 20, 3758–3767. [Google Scholar] [CrossRef]
- Agostini, I.; Ciuffi, B.; Gallorini, R.; Rizzo, A.M.; Chiaramonti, D.; Rosi, L. Recovery of Terephthalic Acid from Densified Post-consumer Plastic Mix by HTL Process. Molecules 2022, 27, 7112. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, H.; Wang, R.; Duan, M. Fabricating Ag@MOF-5 nanoplates by the template of MOF-5 and evaluating its antibacterial activity. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127093. [Google Scholar] [CrossRef]
- Sabouni, R.; Kazemian, H.; Rohani, S. A novel combined manufacturing technique for rapid production of IRMOF-1 using ultrasound and microwave energies. Chem. Eng. J. 2010, 165, 966–973. [Google Scholar] [CrossRef]
- Icsel, C.; Yilmaz, V.-T. In vitro DNA binding studies of the sweetening agent saccharin and its copper(II) and zinc(II) complexes. J. Photochem. Photobiol. B. 2014, 130, 115–121. [Google Scholar] [CrossRef]
- Akbaş, H.; Okumuş, A.; Kılıç, Z.; Hökelek, T.; Süzen, Y.; Koç, L.Y.; Açık, L.; Celik, Z.B. Phosphorus-nitrogen compounds part 27. Syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing secondary amino and pendant (4-fluorobenzyl)spiro groups. Eur. J. Med. Chem. 2013, 70, 294–307. [Google Scholar] [CrossRef]
- Nasri, M.; Thomas, D. Relaxation of recognition sequence of specific endonuclease HindIII. Nucleic Acids Res. 1986, 14, 811–821. [Google Scholar] [CrossRef]
- Roberts, R.; Wilson, G.; Young, F. Recognition sequence of specific endonuclease BamHI from Bacillus amyloliquefaciens H. Nature 1977, 265, 82–84. [Google Scholar] [CrossRef]
- Lalhminghlui, K.; Jagetia, G.C. Evaluation of the free-radical scavenging and antioxidant activities of Chilauni, Schima wallichii Korth in vitro. Future Sci. OA 2018, 4, FSO272. [Google Scholar] [CrossRef]
- Girisa, S.; Shabnam, B.; Monisha, J.; Fan, L.; Halim, C.E.; Arfuso, F.; Ahn, K.S.; Sethi, G.; Kunnumakkara, A.B. Potential of Zerumbone as an Anti-Cancer Agent. Molecules 2019, 24, 734. [Google Scholar] [CrossRef]
- Abdelwahab, S.I.; Abdul, A.B.; Zain, Z.N.; Hadi, A.H. Zerumbone inhibits interleukin-6 and induces apoptosis and cell cycle arrest in ovarian and cervical cancer cells. Int. Immunopharmacol. 2012, 12, 594–602. [Google Scholar] [CrossRef]
- Sehrawat, A.; Arlotti, J.A.; Murakami, A.; Singh, S.V. Zerumbone causes Bax- and Bak-mediated apoptosis in human breast cancer cells and inhibits orthotopic xenograft growth in vivo. Breast Cancer Res. Treat. 2012, 136, 429–441. [Google Scholar] [CrossRef]
- Hosseini, N.; Khoshnazar, A.; Saidijam, M.; Azizi Jalilian, F.; Najafi, R.; Mahdavinezhad, A.; Ezati, R.; Sotanian, A.; Amini, R. Zerumbone Suppresses Human Colorectal Cancer Invasion and Metastasis via Modulation of FAk/PI3k/NFκB-uPA Pathway. Nutr. Cancer 2019, 71, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zeng, Q.; Zhang, B.; Liu, H.; Wang, W. Promotion of p53 expression and reactive oxidative stress production is involved in zerumbone-induced cisplatin sensitization of non-small cell lung cancer cells. Biochimie 2014, 107 Pt B, 257–262. [Google Scholar] [CrossRef]
- Samad, N.A.; Abdul, A.B.; Rahman, H.S.; Rasedee, A.; Tengku Ibrahim, T.A.; Keon, Y.S. Zerumbone Suppresses Angiogenesis in HepG2 Cells through Inhibition of Matrix Metalloproteinase-9, Vascular Endothelial Growth Factor, and Vascular Endothelial Growth Factor Receptor Expressions. Pharmacogn. Mag. 2018, 13 (Suppl. S4), S731–S736. [Google Scholar] [PubMed]
- Shamoto, T.; Matsuo, Y.; Shibata, T.; Tsuboi, K.; Nagasaki, T.; Takahashi, H.; Funahashi, H.; Okada, Y.; Takeyama, H. Zerumbone inhibits angiogenesis by blocking NF-κB activity in pancreatic cancer. Pancreas 2014, 43, 396–404. [Google Scholar] [CrossRef]
- Moreira da Silva, T.; Pinheiro, C.D.; Puccinelli Orlandi, P.; Pinheiro, C.C.; Soares Pontes, G. Zerumbone from Zingiber zerumbet (L.) smith: A potential prophylactic and therapeutic agent against the cariogenic bacterium Streptococcus mutans. BMC Complement. Altern. Med. 2018, 18, 301. [Google Scholar] [CrossRef]
- Kim, H.R.; Rhee, K.J.; Eom, Y.B. Anti-biofilm and antimicrobial effects of zerumbone against Bacteroides fragilis. Anaerobe 2019, 57, 99–106. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Shi, R.; Kang, T.; Pang, G.; Wang, B.; Zhao, Y.; Zeng, X.; Zou, C.; Wu, P.; et al. Synthesis of hollow nanocages MOF-5 as drug delivery vehicle to solve the load-bearing problem of insoluble antitumor drug oleanolic acid (OA). Inorg. Chem. Commun. 2018, 96, 20–23. [Google Scholar] [CrossRef]
- Javanbakht, S.; Hemmati, A.; Namazi, H.; Heydari, A. Carboxymethylcellulose-coated 5-fluorouracil@MOF-5 nano-hybrid as a bio-nanocomposite carrier for the anticancer oral delivery. Int. J. Biol. Macromol. 2020, 155, 876–882. [Google Scholar] [CrossRef]
- Dashti, N.; Akbari, V.; Varshosaz, J.; Soleimanbeigi, M.; Rostami, M. Co-delivery of carboplatin and doxorubicin using ZIF-8 coated chitosan-poly(N-isopropyl acrylamide) nanoparticles through a dual pH/thermo responsive strategy to breast cancer cells. Int. J. Biol. Macromol. 2024, 269 Pt 1, 131971. [Google Scholar] [CrossRef]
- Lu, X.; Ye, J.; Zhang, D.; Xie, R.; Bogale, R.F.; Sun, Y.; Zhao, L.; Zhao, Q.; Ning, G. Silver carboxylate metal-organic frameworks with highly antibacterial activity and biocompatibility. J. Inorg. Biochem. 2014, 138, 114–121. [Google Scholar] [CrossRef]
- Sava Gallis, D.F.; Butler, K.S.; Agola, J.O.; Pearce, C.J.; McBride, A.A. Antibacterial Countermeasures via Metal-Organic Framework-Supported Sustained Therapeutic Release. ACS Appl. Mater. Interfaces 2019, 11, 7782–7791. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Zheng, Y.; Zhang, N.; Zhang, Y.; Zheng, B. Rhoifolin from Plumula Nelumbinis exhibits anti-cancer effects in pancreatic cancer via AKT/JNK signaling pathways. Sci. Rep. 2022, 12, 5654. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Park, S.; Park, K.Y.; Choi, E.Y. Long-Term Antioxidant Metal-Organic Frameworks. ACS Omega 2024, 9, 21484–21493. [Google Scholar] [CrossRef] [PubMed]
- El-Bindary, M.A.; El-Desouky, M.G.; El-Bindary, A.A. Metal-organic frameworks encapsulated with an anticancer compound as drug delivery system: Synthesis, characterization, antioxidant, anticancer, antibacterial, and molecular docking investigation. Appl. Organomet. Chem. 2022, 36, e6660. [Google Scholar] [CrossRef]
- Wu, L.L.; Wang, Z.; Zhao, S.N.; Meng, X.; Song, X.Z.; Feng, J.; Song, S.Y.; Zhang, H.J. A Metal-Organic Framework/DNA Hybrid System as a Novel Fluorescent Biosensor for Mercury(II) Ion Detection. Chemistry 2016, 22, 477–480. [Google Scholar] [CrossRef]
- Liang, X.; Jiang, J.; Xue, X.; Huang, L.; Ding, X.; Nong, D.; Chen, H.; Pan, L.; Ma, Z. Synthesis, characterization, photoluminescence, anti-tumor activity, DFT calculations and molecular docking with proteins of zinc(ii) halogen substituted terpyridine compounds. Dalton Trans. 2019, 48, 10488–10504. [Google Scholar] [CrossRef]
- Chatterjee, T.; Guha, P.; Dutta, B.; Khan, S.; Siddiqui, M.R.; Wabaidur, S.M.; Hedayetullah Mir, M.; Mafiz Alam, S. Structural Characteristics and DNA Groove Binding Abilities of Two Zinc-Based Isoreticular MOFs. Chem. Asian J. 2025, 20, e202400922. [Google Scholar] [CrossRef]
- Tranchemontagne, D.J.; Hunt, J.R.; Yaghi, O.-M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64, 8553–8557. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Ninth Edition; CLSI Document M07-A9; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; ISBN 1-56238-783-9 [Print]; ISBN 1-56238-784-7 [Electronic]. [Google Scholar]
- Methods for the determination of susceptibility of bacteria to antimicrobial agents. Terminology. Clin. Microbiol. Infect. 1998, 4, 291–296. [CrossRef]
- Chipinga, J.V.; Kamanula, J.F.; Moyo, P.B.B. Efficacy of Pterocarpus angolensis crude extracts against Candida krusei, Staphylococcus aureus, Streptococcus agalactiae and Escherichia coli. Malawi Med. J. 2018, 30, 219–224. [Google Scholar] [CrossRef]
- Yamasaki, K.; Hashimoto, A.; Kokusenya, Y.; Miyamoto, T.; Sato, T. Electrochemical method for estimating the antioxidative effects of methanol extracts of crude drugs. Chem. Pharm. Bull. 1994, 42, 1663–1665. [Google Scholar] [CrossRef]
Microorganisms | Compounds | Positive Controls | |||
---|---|---|---|---|---|
Zerumbone | ZER@MOF-5 | Ampicillin | Chloramphenicol | Ketoconazole | |
B. cereus NRRLB-3711 | 1.25 | 2500 | 31.25 | 125 | NS |
B. subtilis ATCC 6633 | >5 | >5000 | 62.5 | 3.91 | NS |
S. aureus ATCC 25923 | 1.25 | 1250 | 62.5 | 125 | NS |
E. faecalis ATCC 29212 | 1.25 | 1250 | 31.25 | 62.5 | NS |
E. hirae ATCC 9790 | 1.25 | 2500 | 62.5 | 62.5 | NS |
S. typhimurium ATCC 14028 | 2.5 | 1250 | 62.5 | 125 | NS |
P. aeruginosa ATCC 27853 | 1.25 | 1250 | >125 | >125 | NS |
K. pneumaniae ATCC 13883 | 2.5 | 2500 | 125 | 15.63 | NS |
P. vulgaris RSKK 96029 | 1.25 | 1250 | >125 | 125 | NS |
E. coli ATCC 35218 | 5 | 2500 | >125 | >125 | NS |
E. coli ATCC 25922 | 0.625 | 1250 | >125 | 125 | NS |
C. albicans ATCC 10231 | 1.25 | 1250 | NS | NS | 31.25 |
C. krusei ATCC 6258 | 0.625 | 1250 | NS | NS | <0.98 |
C. tropicalis Y-12968 | 0.625 | 1250 | NS | NS | 31.25 |
Microorganisms | Compounds | Positive Controls | |||
---|---|---|---|---|---|
Zerumbone | ZER@MOF-5 | Ampicillin | Chloramphenicol | Ketoconazole | |
B. cereus NRRLB-3711 | 2.5 | 2500 | >125 | 125 | NS |
B. subtilis ATCC 6633 | >5 | >5000 | 62.5 | 3.91 | NS |
S. aureus ATCC 25923 | 5 | 5000 | 62.5 | >125 | NS |
E. faecalis ATCC 29212 | >5 | 5000 | 125 | >125 | NS |
E. hirae ATCC 9790 | 5 | 2500 | 62.5 | >125 | NS |
S. typhimurium ATCC 14028 | 5 | 2500 | 63.5 | 125 | NS |
P. aeruginosa ATCC 27853 | 2.5 | 1250 | >125 | >125 | NS |
K. pneumaniae ATCC 13883 | 5 | 2500 | 125 | 15.63 | NS |
P. vulgaris RSKK 96029 | 2.5 | 1250 | >125 | >125 | NS |
E. coli ATCC 35218 | 5 | 5000 | >125 | >125 | NS |
E. coli ATCC 25922 | 2.5 | 2500 | >125 | >125 | NS |
C. albicans ATCC 10231 | 1.25 | 2500 | NS | NS | 62.5 |
C. krusei ATCC 6258 | 2.5 | 1250 | NS | NS | 15.63 |
C. tropicalis Y-12968 | 0.625 | 2500 | NS | NS | 125 |
Gram-positive bacterial strains | Staphylococcus aureus (ATCC 25923) Bacillus subtilis (ATCC 6633) Bacillus cereus (NRRLB-3711) Enterococcus faecalis (ATCC 29212) Enterococcus hirae (ATCC 9790) |
Gram-negative bacterial strains | Pseudomonas aeruginosa (ATCC 27853) Salmonella typhimurium (ATCC 14028) Klebsiella pneumoniae (ATCC 13883) Proteus vulgaris (RSKK 96029) Escherichia coli (ATCC 35218) Escherichia coli (ATCC 25922) |
Yeast strains | Candida tropicalis (Y-12968) Candida albicans (ATCC 10231) Candida crusei (ATCC 6258) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aybek, S.D.; Secme, M.; Ilhan, H.; Acik, L.; Celik, S.P.; Gulbay, G. Multifaceted Applications of Zerumbone-Loaded Metal–Organic Framework-5: Anticancer, Antibacterial, Antifungal, DNA-Binding, and Free Radical Scavenging Potentials. Molecules 2025, 30, 2936. https://doi.org/10.3390/molecules30142936
Aybek SD, Secme M, Ilhan H, Acik L, Celik SP, Gulbay G. Multifaceted Applications of Zerumbone-Loaded Metal–Organic Framework-5: Anticancer, Antibacterial, Antifungal, DNA-Binding, and Free Radical Scavenging Potentials. Molecules. 2025; 30(14):2936. https://doi.org/10.3390/molecules30142936
Chicago/Turabian StyleAybek, Sumeyya Deniz, Mucahit Secme, Hasan Ilhan, Leyla Acik, Suheyla Pinar Celik, and Gonca Gulbay. 2025. "Multifaceted Applications of Zerumbone-Loaded Metal–Organic Framework-5: Anticancer, Antibacterial, Antifungal, DNA-Binding, and Free Radical Scavenging Potentials" Molecules 30, no. 14: 2936. https://doi.org/10.3390/molecules30142936
APA StyleAybek, S. D., Secme, M., Ilhan, H., Acik, L., Celik, S. P., & Gulbay, G. (2025). Multifaceted Applications of Zerumbone-Loaded Metal–Organic Framework-5: Anticancer, Antibacterial, Antifungal, DNA-Binding, and Free Radical Scavenging Potentials. Molecules, 30(14), 2936. https://doi.org/10.3390/molecules30142936