Structure-Based Design of Small-Molecule Inhibitors of Human Interleukin-6
Abstract
1. Introduction
2. Materials and Methods
2.1. Homology Modeling
2.2. Molecular Dynamics (MD) Simulations
2.3. Ensemble Docking Algorithm to Select Distinct Conformations of HIL-6 for Screening
2.4. Docking Protocol and Selection of Database for Docking
2.5. Selection Criteria for Choosing Compounds for In Vitro Screening
2.6. In Vitro Functional Assays
3. Results and Discussion
Compound ID | Mol. Formula | Mol. Wt. | logP | Net Charge | H-Bond Donors | H-Bond Acceptors | tPSA | Docking Score (kcal/mol) |
---|---|---|---|---|---|---|---|---|
Z229652212 | C27H34N4O2 | 446.595 | 4.442 | 0 | 3 | 2 | 77 | −9.150 |
Z169667518 | C23H18N4O | 366.424 | 3.102 | 0 | 1 | 4 | 59 | −8.881 |
Z30414428 | C24H30N4O | 390.531 | 4.826 | 0 | 1 | 4 | 59 | −8.840 |
Z423372198 | C24H24N4O4 | 432.48 | 3.033 | 0 | 4 | 5 | 126 | −8.774 |
Z30575853 | C22H20F3N3O3S | 463.481 | 4.35 | 0 | 2 | 4 | 78 | −8.711 |
Z219812438 | C22H15F3N6O2 | 452.396 | 4.19 | 0 | 1 | 7 | 98 | −8.701 |
Z95673807 | C23H22N4O2 | 386.455 | 4.086 | 0 | 1 | 5 | 69 | −8.627 |
Z1494820480 | C23H21N5O2 | 399.454 | 3.07 | 0 | 1 | 6 | 81 | −8.618 |
Z30414352 | C30H29N5O2 | 491.595 | 4.877 | 0 | 1 | 5 | 80 | −8.611 |
Z730618946 | C26H23F3N4O2 | 480.49 | 4.189 | 0 | 1 | 4 | 75 | −8.582 |
Z30413297 | C26H27N5O4 | 473.533 | 3.434 | 0 | 1 | 7 | 98 | −8.574 |
Z99369176 | C21H22N6O3S | 438.513 | 1.502 | - | 1 | 6 | - | −8.287 |
Z151698596 | C27H26N4O3S | 486.597 | 4.552 | 0 | 1 | 5 | 84 | −8.281 |
Z759866796 | C24H19FN4O3 | 430.439 | 4.516 | 0 | 1 | 5 | 88 | −8.258 |
Z317553462 | C22H14F3N5O2 | 437.381 | 4.21 | 0 | 2 | 5 | 92 | −8.238 |
Z426079482 | C22H20FN3O3S | 425.485 | 3.67 | 0 | 2 | 3 | 82 | −8.208 |
Z1033202002 | C26H27F2N5O2 | 479.531 | 4.313 | 0 | 2 | 4 | 79 | −7.879 |
Z961175732 | C17H18N4O | 294.358 | 3.101 | 0 | 2 | 2 | 64 | −7.772 |
Z300247222 | C18H18BrN3O4S | 452.33 | 2.13 | 0 | 2 | 4 | 95 | −7.331 |
Z445038774 | C20H14ClFN4O2 | 396.809 | 5.084 | 0 | 2 | 4 | - | −7.280 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ehlers, M.; Grötzinger, J.; Dehon, F.D.; Müllberg, J.; Brakenhoff, J.P.; Liu, J.; Wollmer, A.; Rose-John, S. Identification of Two Novel Regions of Human IL-6 Responsible for Receptor Binding and Signal Transduction. J. Immunol. 1994, 153, 1744–1753. [Google Scholar] [CrossRef] [PubMed]
- Taga, T.; Kishimoto, T. Gp130 and the Interleukin-6 Family of Cytokines. Annu. Rev. Immunol. 1997, 15, 797–819. [Google Scholar] [CrossRef]
- Kishimoto, T.; Akira, S.; Narazaki, M.; Taga, T. Interleukin-6 Family of Cytokines and Gp130. Blood 1995, 86, 1243–1254. [Google Scholar] [CrossRef]
- Heinrich, P.C.; Behrmann, I.; Müller-Newen, G.; Schaper, F.; Graeve, L. Interleukin-6-Type Cytokine Signalling through the Gp130/Jak/STAT Pathway. Biochem. J. 1998, 334, 297–314. [Google Scholar] [CrossRef]
- Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The Pro-and Anti-Inflammatory Properties of the Cytokine Interleukin-6. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2011, 1813, 878–888. [Google Scholar] [CrossRef]
- Becker, C.; Fantini, M.C.; Schramm, C.; Lehr, H.A.; Wirtz, S.; Nikolaev, A.; Burg, J.; Strand, S.; Kiesslich, R.; Huber, S.; et al. TGF-Suppresses Tumor Progression in Colon Cancer by Inhibition of IL-6 trans-Signaling. Immunity 2004, 21, 491–501. [Google Scholar] [CrossRef]
- Grivennikov, S.; Karin, E.; Terzic, J.; Mucida, D.; Yu, G.-Y.; Vallabhapurapu, S.; Scheller, J.; Rose-John, S.; Cheroutre, H.; Eckmann, L.; et al. IL-6 and Stat3 Are Required for Survival of Intestinal Epithelial Cells and Development of Colitis-Associated Cancer. Cancer Cell 2009, 15, 103–113. [Google Scholar] [CrossRef]
- Tamura, T.; Udagawa, N.; Takahashi, N.; Miyaura, C.; Tanaka, S.; Yamada, Y.; Koishihara, Y.; Ohsugi, Y.; Kumaki, K.; Taga, T. Soluble Interleukin-6 Receptor Triggers Osteoclast Formation by Interleukin 6. Proc. Natl. Acad. Sci. USA 1993, 90, 11924–11928. [Google Scholar] [CrossRef]
- Hénaut, L.; Massy, Z.A. New Insights into the Key Role of Interleukin 6 in Vascular Calcification of Chronic Kidney Disease. Nephrol. Dial. Transplant. 2018, 33, 543–548. [Google Scholar] [CrossRef]
- Hirano, T.; Matsuda, T.; Turner, M.; Miyasaka, N.; Buchan, G.; Tang, B.; Sato, K.; Shimi, M.; Maid, R.; Feldmann, M.; et al. Excessive Production of Interleukin 6/B Cell Stimulatory Factor-2 in Rheumatoid Arthritis. Eur. J. Immunol. 1988, 18, 1797–1802. [Google Scholar] [CrossRef]
- McGonagle, D.; Sharif, K.; O’REgan, A.; Bridgewood, C. The Role of Cytokines Including Interleukin-6 in COVID-19 Induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun. Rev. 2020, 19, 102537. [Google Scholar] [CrossRef] [PubMed]
- McElvaney, O.J.; Curley, G.F.; Rose-John, S.; McElvaney, N.G. Interleukin-6: Obstacles to Targeting a Complex Cytokine in Critical Illness. Lancet Respir. Med. 2021, 9, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Egorov, A.; Chasnyk, V.; Kostik, M.; Snegireva, L.; Kalashnikova, O.; Dubko, M.; Masalova, V.; Likhacheva, T.; Fedorova, E. Anemia in Children with JIA: Is It Really Driven by Hepcidin Level, or by a Set of Factors of a Chronic Disease. Pediatr. Rheumatol. 2014, 12, 187. [Google Scholar] [CrossRef]
- Nishimoto, N.; Murakami, M.; Tomiita, M. Tomiita Tocilizumab in the Treatment of Systemic Juvenile Idiopathic Arthritis. Open Access Rheumatol. Res. Rev. 2012, 4, 71–79. [Google Scholar] [CrossRef]
- Emery, P.; Keystone, E.; Tony, H.P.; Cantagrel, A.; Van Vollenhoven, R.; Sanchez, A.; Alecock, E.; Lee, J.; Kremer, J. IL-6 Receptor Inhibition with Tocilizumab Improves Treatment Outcomes in Patients with Rheumatoid Arthritis Refractory to Anti-Tumour Necrosis Factor Biologicals: Results from a 24-Week Multicentre Randomised Placebo-Controlled Trial. Ann. Rheum. Dis. 2008, 67, 1516–1523. [Google Scholar] [CrossRef]
- Jordan, S.C.; Choi, J.; Kim, I.; Wu, G.; Toyoda, M.; Shin, B.; Vo, A. Interleukin-6, A Cytokine Critical to Mediation of Inflammation, Autoimmunity and Allograft Rejection. Transplantation 2017, 101, 32–44. [Google Scholar] [CrossRef]
- Chakraborty, C.; Sharma, A.R.; Bhattacharya, M.; Sharma, G.; Lee, S.; Agoramoorthy, G. COVID-19: Consider IL-6 Receptor Antagonist for the Therapy of Cytokine Storm Syndrome in SARS-CoV-2 Infected Patients. J. Med. Virol. 2020, 92, 2260–2262. [Google Scholar] [CrossRef]
- Casper, C.; Chaturvedi, S.; Munshi, N.; Wong, R.; Qi, M.; Schaffer, M.; Bandekar, R.; Hall, B.; Van de Velde, H.; Vermeulen, J.; et al. Analysis of Inflammatory and Anemia-Related Biomarkers in a Randomized, Double-Blind, Placebo-Controlled Study of Siltuximab (Anti-IL6 Monoclonal Antibody) in Patients With Multicentric Castleman Disease. Clin. Cancer Res. 2015, 21, 4294–4304. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Babitt, J.L. Hepcidin Regulation in the Anemia of Inflammation. Curr. Opin. Hematol. 2016, 23, 189–197. [Google Scholar] [CrossRef]
- Ancrile, B.; Lim, K.-H.; Counter, C.M. Oncogenic Ras-Induced Secretion of IL6 Is Required for Tumorigenesis. Genes Dev. 2007, 21, 1714–1719. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, B.; Wang, B.; Chen, H.; Li, Y.; Cao, Q.; Zhong, J.; Shieh, M.-J.; Ran, Z.; Tang, T.; et al. Effect of Induction Therapy With Olamkicept vs Placebo on Clinical Response in Patients With Active Ulcerative Colitis. JAMA 2023, 329, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Waetzig, G.H.; Chalaris, A.; Rosenstiel, P.; Suthaus, J.; Holland, C.; Karl, N.; Uriarte, L.V.; Till, A.; Scheller, J.; Grötzinger, J.; et al. N-Linked Glycosylation Is Essential for the Stability but Not the Signaling Function of the Interleukin-6 Signal Transducer Glycoprotein 130. J. Biol. Chem. 2010, 285, 1781–1789. [Google Scholar] [CrossRef]
- Tenhumberg, S.; Waetzig, G.H.; Chalaris, A.; Rabe, B.; Seegert, D.; Scheller, J.; Rose-John, S.; Grötzinger, J. Structure-guided Optimization of the Interleukin-6 Trans-signaling Antagonist sgp130. J. Biol. Chem. 2008, 283, 27200–27207. [Google Scholar] [CrossRef]
- Rose-John, S. Interleukin-6 Biology Is Coordinated by Membrane Bound and Soluble Receptors. Acta Biochim. Pol. 2003, 50, 603–611. [Google Scholar] [CrossRef]
- Garbers, C.; Thaiss, W.; Jones, G.W.; Waetzig, G.H.; Lorenzen, I.; Guilhot, F.; Lissilaa, R.; Ferlin, W.G.; Grötzinger, J.; Jones, S.A.; et al. Inhibition of Classic Signaling Is a Novel Function of Soluble Glycoprotein 130 (sgp130), Which Is Controlled by the Ratio of Interleukin 6 and Soluble Interleukin 6 Receptor. J. Biol. Chem. 2011, 286, 42959–42970. [Google Scholar] [CrossRef]
- Jostock, T.; Müllberg, J.; Özbek, S.; Atreya, R.; Blinn, G.; Voltz, N.; Fischer, M.; Neurath, M.F.; Rose-John, S. Soluble Gp130 Is the Natural Inhibitor of Soluble Interleukin-6 Receptor Transsignaling Responses. Eur. J. Biochem. 2001, 268, 160–167. [Google Scholar] [CrossRef]
- Van Vollenhoven, R.F.; Fleischmann, R.; Cohen, S.; Lee, E.B.; Meijide, J.A.G.; Wagner, S.; Forejtova, S.; Zwillich, S.H.; Gruben, D.; Koncz, T.; et al. Tofacitinib or Adalimumab versus Placebo in Rheumatoid Arthritis. N. Engl. J. Med. 2012, 367, 508–519. [Google Scholar] [CrossRef]
- Genovese, M.C.; Smolen, J.S.; Weinblatt, M.E.; Burmester, G.R.; Meerwein, S.; Camp, H.S.; Wang, L.; Othman, A.A.; Khan, N.; Pangan, A.L.; et al. Efficacy and Safety of ABT-494, a Selective JAK-1 Inhibitor, in a Phase IIb Study in Patients With Rheumatoid Arthritis and an Inadequate Response to Methotrexate. Arthritis Rheumatol. 2016, 68, 2857–2866. [Google Scholar] [CrossRef]
- Kremer, J.M.; Emery, P.; Camp, H.S.; Friedman, A.; Wang, L.; Othman, A.A.; Khan, N.; Pangan, A.L.; Jungerwirth, S.; Keystone, E.C. A Phase IIb Study of ABT–494, a Selective JAK–1 Inhibitor, in Patients With Rheumatoid Arthritis and an Inadequate Response to Anti–Tumor Necrosis Factor Therapy. Arthritis Rheumatol. 2016, 68, 2867–2877. [Google Scholar] [CrossRef]
- Rubbert-Roth, A.; Enejosa, J.; Pangan, A.L.; Haraoui, B.; Rischmueller, M.; Khan, N.; Zhang, Y.; Martin, N.; Xavier, R.M. Trial of Upadacitinib or Abatacept in Rheumatoid Arthritis. N. Engl. J. Med. 2020, 383, 1511–1521. [Google Scholar] [CrossRef]
- Hong, S.-S.; Choi, J.H.; Lee, S.Y.; Park, Y.-H.; Park, K.-Y.; Lee, J.Y.; Kim, J.; Gajulapati, V.; Goo, J.-I.; Singh, S.; et al. A Novel Small-Molecule Inhibitor Targeting the IL-6 Receptor Subunit, Glycoprotein 130. J. Immunol. 2015, 195, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Swaroop, A.K.; Namboori, P.K.K.; Esakkimuthukumar, M.; Praveen, T.K.; Nagarjuna, P.; Patnaik, S.K.; Selvaraj, J. Leveraging Decagonal In-Silico Strategies for Uncovering IL-6 Inhibitors with Precision. Comput. Biol. Med. 2023, 163, 107231. [Google Scholar] [CrossRef]
- Schultz, D.C.; Pan, L.; Wang, T.; Booker, C.; Hyder, I.; Hanold, L.; Rubin, G.; Ding, Y.; Lin, J.; Li, C. Carbohydrate-Small Molecule Hybrids as Lead Compounds Targeting IL-6 Signaling. Molecules 2023, 28, 677. [Google Scholar] [CrossRef] [PubMed]
- Zinzalla, G.; Haque, M.R.; Basu, B.P.; Anderson, J.; Kaye, S.L.; Haider, S.; Hasan, F.; Antonow, D.; Essex, S.; Rahman, K.M.; et al. A Novel Small-Molecule Inhibitor of IL-6 Signalling. Bioorganic Med. Chem. Lett. 2010, 20, 7029–7032. [Google Scholar] [CrossRef]
- Chen, Q.; Niu, X.; Li, N. Exploring the Natural Chemiome to Target Interleukin-6 Receptor (IL-6R) Cytokines: An Atomic Scale Investigation for Novel Rheumatoid Arthritis Drug Discovery. Braz. J. Pharm. Sci. 2018, 53. [Google Scholar] [CrossRef]
- Yoshizaki, K.; Matsuda, T.; Nishimoto, N.; Kuritani, T.; Taeho, L.; Aozasa, K.; Nakahata, T.; Kawai, H.; Tagoh, H.; Komori, T. Pathogenic Significance of Interleukin-6 (IL-6/BSF-2) in Castleman’s Disease. Blood 1989, 74, 1360–1367. [Google Scholar] [CrossRef]
- Villar-Fincheira, P.; Sanhueza-Olivares, F.; Norambuena-Soto, I.; Cancino-Arenas, N.; Hernandez-Vargas, F.; Troncoso, R.; Gabrielli, L.; Chiong, M. Role of Interleukin-6 in Vascular Health and Disease. Front. Mol. Biosci. 2021, 8, 641734. [Google Scholar] [CrossRef]
- Hirano, T. IL-6 in Inflammation, Autoimmunity and Cancer. Int. Immunol. 2020, 33, 127–148. [Google Scholar] [CrossRef]
- Shun, T.Y.; Lazo, J.S.; Sharlow, E.R.; Johnston, P.A. Identifying Actives from HTS Data Sets: Practical Approaches for the Selection of an Appropriate HTS Data-Processing Method and Quality Control Review. Slas Discov. Adv. Sci. Drug Discov. 2011, 16, 1–14. [Google Scholar] [CrossRef]
- Gupta, M.; Ha, K.; Agarwal, R.; Quarles, L.D.; Smith, J.C. Molecular dynamics analysis of the binding of human interleukin-6 with interleukin-6-receptor. Proteins Struct. Funct. Bioinform. 2020, 89, 163–173. [Google Scholar] [CrossRef]
- Wang, J.; Qiao, C.; Xiao, H.; Lin, Z.; Li, Y.; Zhang, J.; Shen, B.; Fu, T.; Feng, J. Structure-Based Virtual Screening and Characterization of a Novel IL-6 Antagonistic Compound from Synthetic Compound Database. Drug Des. Dev. Ther. 2016, 10, 4091–4100. [Google Scholar] [CrossRef] [PubMed]
- Tran, Q.-H.; Nguyen, Q.-T.; Vo, N.-Q.-H.; Mai, T.T.; Tran, T.-T.-N.; Tran, T.-D.; Le, M.-T.; Trinh, D.-T.T.; Thai, K.-M. Structure-Based 3D-Pharmacophore Modeling to Discover Novel Interleukin 6 Inhibitors: An in Silico Screening, Molecular Dynamics Simulations and Binding Free Energy Calculations. PLoS ONE 2022, 17, e0266632. [Google Scholar] [CrossRef]
- Nada, H.; Sivaraman, A.; Lu, Q.; Min, K.; Kim, S.; Goo, J.-I.; Choi, Y.; Lee, K. Perspective for Discovery of Small Molecule IL–6 Inhibitors through Study of Structure–Activity Relationships and Molecular Docking. J. Med. Chem. 2023, 66, 4417–4433. [Google Scholar] [CrossRef]
- Falcon, W.E.; Ellingson, S.R.; Smith, J.C.; Baudry, J.Y. Ensemble Docking in Drug Discovery: How Many Protein Configurations from Molecular Dynamics Simulations are Needed To Reproduce Known Ligand Binding? J. Phys. Chem. B 2019, 123, 5189–5195. [Google Scholar] [CrossRef]
- Amaro, R.E.; Baudry, J.; Chodera, J.; Demir, Z.; McCammon, J.A.; Miao, Y.; Smith, J.C. Ensemble Docking in Drug Discovery. Biophys. J. 2018, 114, 2271–2278. [Google Scholar] [CrossRef]
- Acharya, A.; Agarwal, R.; Baker, M.B.; Baudry, J.; Bhowmik, D.; Boehm, S.; Byler, K.G.; Chen, S.Y.; Coates, L.; Cooper, C.J.; et al. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to COVID-19. J. Chem. Inf. Model. 2020, 60, 5832–5852. [Google Scholar] [CrossRef]
- Agarwal, R.; Bensing, B.A.; Mi, D.; Vinson, P.N.; Baudry, J.; Iverson, T.M.; Smith, J.C. Structure Based Virtual Screening Identifies Small Molecule Effectors for the Sialoglycan Binding Protein Hsa. Biochem. J. 2020, 477, 3695–3707. [Google Scholar] [CrossRef]
- Davis, C.C.; Shah, K.S.; Lechowicz, M.J. Clinical Development of Siltuximab. Curr. Oncol. Rep. 2015, 17, 29. [Google Scholar] [CrossRef]
- Somers, W.; Stahl, M.; Seehra, J.S. 9 Acrystal structure of interleukin 6: Implications for a novel mode of receptor dimerization and signaling. EMBO J. 1997, 16, 989–997. [Google Scholar] [CrossRef]
- Boulanger, M.J.; Chow, D.-C.; Brevnova, E.E.; Garcia, K.C. Hexameric Structure and Assembly of the Interleukin-6/IL-6-Receptor/gp130 Complex. Science 2003, 300, 2101–2104. [Google Scholar] [CrossRef]
- Song, Y.; DiMaio, F.; Wang, R.Y.-R.; Kim, D.; Miles, C.; Brunette, T.; Thompson, J.; Baker, D. High-Resolution Comparative Modeling with RosettaCM. Structure 2013, 21, 1735–1742. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef]
- Huang, J.; MacKerell, A.D. CHARMM36 All-Atom Additive Protein Force Field: Validation Based on Comparison to NMR Data. J. Comput. Chem. 2013, 34, 2135–2145. [Google Scholar] [CrossRef]
- Feller, S.E.; Zhang, Y.; Pastor, R.W.; Brooks, B.R. Constant Pressure Molecular Dynamics Simulation: The Langevin Piston Method. J. Chem. Phys. 1995, 103, 4613–4621. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- Darnell, S.J.; Page, D.; Mitchell, J.C. An Automated Decision-Tree Approach to Predicting Protein Interaction Hot Spots. Proteins: Struct. Funct. Bioinform. 2007, 68, 813–823. [Google Scholar] [CrossRef]
- Zhu, X.; Mitchell, J.C. KFC2: A Knowledge-Based Hot Spot Prediction Method Based on Interface Solvation, Atomic Density, and Plasticity Features. Proteins: Struct. Funct. Bioinform. 2011, 79, 2671–2683. [Google Scholar] [CrossRef]
- Leebeek, F.W.; Kariya, K.; Schwabe, M.; Fowlkes, D.M. Identification of a Receptor Binding Site in the Carboxyl Terminus of Human Interleukin-6. J. Biol. Chem. 1992, 267, 14832–14838. [Google Scholar] [CrossRef]
- Fontaine, V.; Savino, R.; Arcone, R.; De Wit, L.; Brakenhoff, J.P.J.; Content, J.; Ciliberto, G. Involvement of the Arg179 in the Active Site of Human IL-6. Eur. J. Biochem. 1993, 211, 749–755. [Google Scholar] [CrossRef]
- Lütticken, C.; Krüttgen, A.; Möller, C.; Heinrich, P.C.; Rose-John, S. Evidence for the importance of a positive charge and an α-helical structure of the C-terminus for biological activity of human IL-6. FEBS Lett. 1991, 282, 265–267. [Google Scholar] [CrossRef] [PubMed]
- Krüttgen, A.; Rose-John, S.; Möller, C.; Wroblowski, B.; Wollmer, A.; Müllberg, J.; Hirano, T.; Kishimoto, T.; Heinrich, P.C. Structure-Function Analysis of Human Interleukin-6. FEBS Lett. 1990, 262, 323–326. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Ellingson, S.R.; Smith, J.C.; Baudry, J. VinaMPI: Facilitating Multiple Receptor High-Throughput Virtual Docking on High-Performance Computers. J. Comput. Chem. 2013, 34, 2212–2221. [Google Scholar] [CrossRef]
- Voigt, J.H.; Bienfait, B.; Wang, S.; Nicklaus, M.C. Comparison of the NCI Open Database with Seven Large Chemical Structural Databases. J. Chem. Inf. Comput. Sci. 2001, 41, 702–712. [Google Scholar] [CrossRef]
- Enamine Discovery Diversity Set. Available online: https://enamine.net/compound-libraries/diversity-libraries/dds-50240 (accessed on 23 November 2020).
- Enamine PPI Library. Available online: https://enamine.net/compound-libraries/targeted-libraries/ppi-library (accessed on 23 November 2020).
- Novick, P.A.; Ortiz, O.F.; Poelman, J.; Abdulhay, A.Y.; Pande, V.S. SWEETLEAD: An In Silico Database of Approved Drugs, Regulated Chemicals, and Herbal Isolates for Computer-Aided Drug Discovery. PLoS ONE 2013, 8, e79568. [Google Scholar] [CrossRef]
- Sanner, M.F. Python: A Programming Language for Software Integration and Development. J. Mol. Graph. Model. 1999, 17, 57–61. [Google Scholar]
- O’BOyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef]
- Lagorce, D.; Bouslama, L.; Becot, J.; Miteva, M.A.; Villoutreix, B.O. FAF-Drugs4: Free ADME-Tox Filtering Computations for Chemical Biology and Early Stages Drug Discovery. Bioinformatics 2017, 33, 3658–3660. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.M.; Agarwal, R.; Vermaas, J.V.; Smith, M.D.; Rajeshwar, R.T.; Cooper, C.; Sedova, A.; Boehm, S.; Baker, M.; Glaser, J.; et al. SARS-CoV2 Billion-Compound Docking. Sci. Data 2023, 10, 173. [Google Scholar] [CrossRef]
- Lipinski, C.A. Drug-like Properties and the Causes of Poor Solubility and Poor Permeability. J. Pharmacol. Toxicol. Methods 2000, 44, 235–249. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Leeson, P.D.; Bento, A.P.; Gaulton, A.; Hersey, A.; Manners, E.J.; Radoux, C.J.; Leach, A.R. Target-Based Evaluation of Drug-Like Properties and Ligand Efficiencies. J. Med. Chem. 2021, 64, 7210–7230. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead-and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Doak, B.C.; Kihlberg, J. Drug discovery beyond the rule of 5—Opportunities and challenges. Expert Opin. Drug Discov. 2016, 12, 115–119. [Google Scholar] [CrossRef]
- Oprea, T.I. Property distribution of drug-related chemical databases*. J. Comput. Mol. Des. 2000, 14, 251–264. [Google Scholar] [CrossRef]
- Verboogen, D.R.J.; Revelo, N.H.; Beest, M.T.; Van Den Bogaart, G. Interleukin-6 Secretion Is Limited by Self-Signaling in Endosomes. J. Mol. Cell Biol. 2018, 11, 144–157. [Google Scholar] [CrossRef]
- Barillé, S.; Bataille, R.; Amiot, M. The Role of Interleukin-6 and Interleukin-6/Interleukin-6 Receptor-Alpha Complex in the Pathogenesis of Multiple Myeloma. Eur. Cytokine Netw. 2000, 11, 546–551. [Google Scholar]
- Sun, Y.; Vandenbriele, C.; Kauskot, A.; Verhamme, P.; Hoylaerts, M.F.; Wright, G.J. A Human Platelet Receptor Protein Microarray Identifies FcepsilonR1alpha as an Activating PEAR1 Ligand. Mol. Cell Proteomics 2015, 14, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Baeg, G.-H.; Zhou, R.; Perrimon, N. Genome-Wide RNAi Analysis of JAK/STAT Signaling Components in Drosophila. Genes Dev. 2005, 19, 1861–1870. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Liu, J.; Liu, S.-H.; Petridis, L.; Cai, C.; Cao, L.; Wang, G.; Chin, A.L.; Cleveland, J.W.; Ikedionwu, M.O.; et al. Novel Small Molecule Fibroblast Growth Factor 23 Inhibitors Increase Serum Phosphate and Improve Skeletal Abnormalities in Hyp Mice. Mol. Pharmacol. 2022, 101, 408–421. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, S.; Trievel, R.C. Carbon-Oxygen Hydrogen Bonding in Biological Structure and Function. J. Biol. Chem. 2012, 287, 41576–41582. [Google Scholar] [CrossRef]
- Irwin, J.J.; Tang, K.G.; Young, J.; Dandarchuluun, C.; Wong, B.R.; Khurelbaatar, M.; Moroz, Y.S.; Mayfield, J.; Sayle, R.A. ZINC20A Free Ultralarge-Scale Chemical Database for Ligand Discovery. J. Chem. Inf. Model. 2020, 60, 6065–6073. [Google Scholar] [CrossRef]
- Zia, K.; Nur-E-Alam, M.; Ahmad, A.; Ul-Haq, Z. Taming the cytokine storm: Small molecule inhibitors targeting IL-6/IL-6 receptor. Mol. Divers. 2024, 28, 4151–4165. [Google Scholar] [CrossRef]
- Tran, Q.-H.; Nguyen, Q.-T.; Tran, T.-T.N.; Tran, T.-D.; Le, M.-T.; Trinh, D.-T.T.; Tran, V.-T.; Tran, V.-H.; Thai, K.-M. Identification of Small Molecules as Potential Inhibitors of Interleukin 6: A Multi-Computational Investigation. Mol. Divers. 2022, 27, 2315–2330. [Google Scholar] [CrossRef]
- Kapriniotis, K.; Lampridis, S.; Mitsos, S.; Patrini, D.; Lawrence, D.R.; Panagiotopoulos, N. Biologic Agents in the Treatment of Multicentric Castleman Disease. Turk. Thorac. J. 2018, 19, 220–225. [Google Scholar] [CrossRef]
- Imazio, M.; Lazaros, G.; Gattorno, M.; LeWinter, M.; Abbate, A.; Brucato, A.; Klein, A. Anti-Interleukin-1 Agents for Pericarditis: A Primer for Cardiologists. Eur. Heart J. 2021, 43, 2946–2957. [Google Scholar] [CrossRef]
Compound ID | Mol. Formula | Mol. Wt. | logP | Net Charge | H-Bond Donors | H-Bond Acceptors | tPSA | Docking Score (kcal/mol) |
---|---|---|---|---|---|---|---|---|
NSC39921 | C43H43N3O6S2 | 762.0 | 6.3 | 0 | 2 | 8 | 192.9 | −11.1 |
NSC13989 | C34H18O2 | 458.5 | 8.8 | 0 | 0 | 2 | 34.1 | −10.6 |
NSC171279 | C30H30 | 390.6 | 7.1 | 0 | 0 | 0 | 0 | −10.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, A.; Xiao, Z.; Suman, S.; Cooper, C.; Ha, K.; Carson, J.A.; Quarles, L.D.; Smith, J.C.; Gupta, M. Structure-Based Design of Small-Molecule Inhibitors of Human Interleukin-6. Molecules 2025, 30, 2919. https://doi.org/10.3390/molecules30142919
Joshi A, Xiao Z, Suman S, Cooper C, Ha K, Carson JA, Quarles LD, Smith JC, Gupta M. Structure-Based Design of Small-Molecule Inhibitors of Human Interleukin-6. Molecules. 2025; 30(14):2919. https://doi.org/10.3390/molecules30142919
Chicago/Turabian StyleJoshi, Ankit, Zhousheng Xiao, Shreya Suman, Connor Cooper, Khanh Ha, James A. Carson, Leigh Darryl Quarles, Jeremy C. Smith, and Madhulika Gupta. 2025. "Structure-Based Design of Small-Molecule Inhibitors of Human Interleukin-6" Molecules 30, no. 14: 2919. https://doi.org/10.3390/molecules30142919
APA StyleJoshi, A., Xiao, Z., Suman, S., Cooper, C., Ha, K., Carson, J. A., Quarles, L. D., Smith, J. C., & Gupta, M. (2025). Structure-Based Design of Small-Molecule Inhibitors of Human Interleukin-6. Molecules, 30(14), 2919. https://doi.org/10.3390/molecules30142919