Phytochemical Screening and Biological Activities of Lippia multiflora Moldenke
Abstract
1. Introduction
2. Results and Discussion
2.1. Total Flavonoid Contents (TFCs) and Total Phenolic Contents (TPCs)
2.2. Phytochemical Screening of the Crude Extracts of the Root, Leaf, and Stem Bark Using UHPLC–Q/Orbitrap/MS Analysis
2.2.1. Terpenoids
2.2.2. Flavonoids
2.2.3. Phenolic Compounds
2.2.4. Alkaloids
2.2.5. Coumarins and Others
2.3. Comparison of Analytical Equipment Used for Compound Identification in This Study with the Existing Literature
2.4. Multivariate Analysis
2.5. Antioxidant Activity
2.6. Comparison of the Methods Used to Determine the Antioxidant Activity of Extracts Obtained in This Study with the Existing Literature
2.7. Pearson Correlation Analysis Between Phytochemicals (TFC and TPC) and Their Antioxidant Activities
2.8. Cytotoxicity
3. Materials and Methods
3.1. General Experimental Procedure
3.2. Sampling and Extraction
3.3. Total Flavonoid Content (TFC)
- C = total amount of compounds.
- c = concentration of standard from the standard curve (mg/mL).
- V = volume of the extract (mL).
- m = weight of extract (g).
3.4. Total Phenolic Content (TPC)
3.5. UHPLC-Q Exactive-Orbitrap-MS Analysis
3.6. Antioxidant Activity Assays
3.6.1. Free Radical Scavenging Assay (DPPH)
3.6.2. Reducing Power
3.7. Cytotoxicity Assay
3.7.1. Cell Culture
3.7.2. Cytotoxicity Assay
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oladimeji, F.A.; Orafidiya, L.O.; Okeke, I.N. Physical properties and antimicrobial activities of leaf essential oil of Lippia multiflora Moldenke. Int. J. Aromather. 2004, 14, 162–168. [Google Scholar] [CrossRef]
- Samba, N.; Aitfella-Lahlou, R.; Nelo, M.; Silva, L.; Coca, R.; Rocha, P.; Lopez Rodilla, J.M. Chemical composition and antibacterial activity of Lippia multiflora Moldenke essential oil from different regions of Angola. Molecules 2020, 26, 155. [Google Scholar] [CrossRef]
- Ngaibi, J.; Kandeda, A.K.; Nguezeye, Y.; Wangbara, T.A.; Gaoudji, L.; Taiwe, G.S.; Bum, E.N. Antiepileptic and anti-inflammatory effects of Lippia multiflora moldenke (Verbenaceae) in mice model of chronic temporal lobe epilepsy induced by pilocarpine. Heliyon 2024, 10, e39483. [Google Scholar] [CrossRef]
- Folashade, K.O.; Omoregie, E.H. Essential oil of Lippia multiflora Moldenke: A review. J. Appl. Pharm. Sci. 2012, 2, 15–23. [Google Scholar]
- Mawunu, M.; António, D.; Vita, P.; Ngbolua, K.N.; Luyeye, L.; Ndiku, L.; Luzolawo, M.P.; Francisco, N.M. Ethnobotanical Survey of Herbal Teas Consumed in Uíge Province, Angola: Part 1. Ethnobot. Res. Appl. 2023, 26, 23. [Google Scholar] [CrossRef]
- Mawunu, M.; Makuntima, P.; Masidivinga, L.; Lautenschläger, T.; Luyindula, N.; Ngbolua, K.N.; Lukoki, L. First Survey on the Edible Non-Wood Forest Products Sold in Uíge Province, Northern Angola. Eur. J. Agric. Food Sci. 2020, 2, 6. [Google Scholar] [CrossRef]
- Lautenschläger, T.; Monizi, M.; Pedro, M.; Mandombe, J.L.; Bránquima, M.F.; Heinze, C.; Neinhuis, C. First large-scale ethnobotanical survey in the province of Uíge, Northern Angola. J. Ethnobiol. Ethnomed. 2018, 14, 513. [Google Scholar] [CrossRef]
- Oladimeji, F.A.; Orafidiya, O.O.; Ogunniyi, T.A.B.; Adewunmi, T.A. Pediculocidal and scabicidal properties of Lippia multiflora essential oil. J. Ethnopharmacol. 2000, 72, 305–311. [Google Scholar] [CrossRef]
- Sakyiamah, M.M.; Baffour, P.K.; Atta-Adjei, P.; Bolah, P.; Ehun, E.; Opare, C.; Brew-Daniels, H.; Appiah, A.A. Effect of seasonal variations on the secondary metabolites and antioxidant activities of Bridelia ferruginea, Lippia multiflora, and Azadirachta indica leaves. J. Pharmacogn. Phytother. 2024, 16, 1–13. [Google Scholar]
- Abena, A.A.; Atipo-Ebata, J.K.; Diatewa, M. Psychopharmacological properties of crude extract and essential oil of Lippia multiflora. L’encephale 2001, 27, 360–364. [Google Scholar]
- Abena, A.A.; Diatewa, M.; Gakosso, G.; Gbeassor, M.; Hondi-Assah, T.H.; Ouamba, J.M. Analgesic, antipyretic and anti-inflammatory effects of essential oil of Lippia multiflora. Fitoterapia 2003, 74, 231–236. [Google Scholar] [CrossRef]
- Oussou, K.R.; Yolou, S.; Boti, J.B.; Guessennd, K.N.; Kanko, C.; Ahibo, C.; Casanova, J. Etude chimique et activité antidiarrheique des huiles essentielles de deux plantes aromatiques de la pharmacopée ivoirienne. Eur. J. Sci. Res. 2008, 24, 94–103. [Google Scholar]
- Masunda, A.T.; Inkoto, C.L.; Masengo, C.A.; Bongili, S.B.; Basilua, J.P.K.; Legbiye, E.M.; Mpiana, P.T. Traditional uses, physical properties, phytochemistry and bioactivity of Lippia multiflora Moldenke (Verbenaceae): A Mini-review. Dis. Phytomed. 2020, 7, 19–26. [Google Scholar]
- Koïta, K.; Baissac, Y.; Sanon, E.; Campa, C.; Sankara, P. Phenolics from Lippia multiflora Moldenke as potential bioactive agents against peanut pathogens. Res. J. Agric. Sci. 2017, 7, 267–276. [Google Scholar]
- Kunle, O.; Okogun, J.; Egamana, E.; Emojevwe, E.; Shok, M. Antimicrobial activity of various extracts and carvacrol from Lippia multiflora leaf extract. Phytomedicine 2003, 10, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef]
- Collin, F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci. 2019, 20, 2407. [Google Scholar] [CrossRef]
- Demirci-Cekic, S.; Özkan, G.; Avan, A.N.; Uzunboy, S.; Çapanoğlu, E.; Apak, R. Biomarkers of oxidative stress and antioxidant defense. J. Pharm. Biomed. Anal. 2022, 209, 114477. [Google Scholar] [CrossRef]
- Limmongkon, A.; Janhom, P.; Amthong, A.; Kawpanuk, M.; Nopprang, P.; Poohadsuan, J.; Somboon, T.; Saijeen, S.; Surangkul, D.; Srikummool, M.; et al. Antioxidant activity, total phenolic, and resveratrol content in five cultivars of peanut sprouts. Asian Pac. J. Trop. Biomed. 2017, 7, 332–338. [Google Scholar] [CrossRef]
- Škrovánková, S.; Mišurcová, L.; Machů, L. Antioxidant activity and protecting health effects of common medicinal plants. Adv. Food Nutr. Res. 2012, 67, 75–139. [Google Scholar]
- Engwa, G.A. Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases. In Phytochemicals: Source of Antioxidants and Role in Disease Preventio; Intech: New York, NY, USA, 2018; Volume 7, pp. 49–74. [Google Scholar]
- Simunkova, M.; Barbierikova, Z.; Jomova, K.; Hudecova, L.; Lauro, P.; Alwasel, S.H.; Alhazza, I.; Rhodes, C.J.; Valko, M. Antioxidant vs. prooxidant properties of the flavonoid, kaempferol, in the presence of Cu (II) ions: A ROS-scavenging activity, fenton reaction and DNA damage study. Int. J. Mol. Sci. 2021, 22, 1619. [Google Scholar] [CrossRef]
- Dabire, C.M.; Bationo, R.K.; Hema, A.; Nebie, R.C.; Pale, E.; Dhanabal, S.P.; Nacro, M. Total phenolics content, flavonoids profiling and antioxidant activity of Lippia multiflora leaves extracts from Burkina Faso. Asian J. Plant Sci. Res. 2015, 5, 28–33. [Google Scholar]
- Guo, J.; Zhang, D.; Yu, C.; Yao, L.; Chen, Z.; Tao, Y.; Cao, W. Phytochemical analysis, antioxidant and analgesic activities of Incarvillea compacta Maxim from the Tibetan plateau. Molecules 2019, 24, 1692. [Google Scholar] [CrossRef] [PubMed]
- Nwozo, O.S.; Effiong, E.M.; Aja, P.M.; Awuchi, C.G. Antioxidant, phytochemical, and therapeutic properties of medicinal plants: A review. Int. J. Food Prop. 2023, 26, 359–388. [Google Scholar] [CrossRef]
- Burlec, A.F.; Pecio, Ł.; Mircea, C.; Cioancă, O.; Corciovă, A.; Nicolescu, A.; Oleszek, W.; Hăncianu, M. Chemical profile and antioxidant activity of Zinnia elegans Jacq. fractions. Molecules 2019, 24, 2934. [Google Scholar] [CrossRef] [PubMed]
- Burlec, A.F.; Pecio, Ł.; Kozachok, S.; Mircea, C.; Corciovă, A.; Vereștiuc, L.; Cioancă, O.; Oleszek, W.; Hăncianu, M. Phytochemical profile, antioxidant activity, and cytotoxicity assessment of Tagetes erecta L. flowers. Molecules 2021, 26, 1201. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, A.; Javid, S.; Khan, M.F.; Ahmad, K.S.; Mustafa, A. In vitro total phenolics, total flavonoids, antioxidant and antibacterial activities of selected medicinal plants using different solvent systems. BMC Chem. 2022, 16, 64. [Google Scholar] [CrossRef]
- Itam, A.; Wulandari, A.; Rahman, M.M.; Ferdinal, N. Preliminary phytochemical screening, total phenolic content, antioxidant and cytotoxic activities of Alstonia scholaris R. Br leaves and stem bark extracts. J. Pharm. Sci. Res. 2018, 10, 518–522. [Google Scholar]
- Okselni, T.; Santoni, A.; Dharma, A.; Efdi, M. Determination of antioxidant activity, total phenolic content, and total flavonoid content of roots, stem bark, and leaves of Elaeocarpus mastersii king. Rasayan J. Chem. 2018, 11, 1211–1216. [Google Scholar] [CrossRef]
- Syaputra, N.D.; Dewi, K.C.; Lili, W.; Agung, M.U.K. Total phenolic, flavonoid content and antioxidant capacity of stem bark, root, and leaves methanolic extract of Rhizophora mucronata Lam. World News Nat. Sci. 2019, 26, 118–128. [Google Scholar]
- Gupta, S.; Acharya, R.; Gamit, R.V.; Shukla, V.J. Quantitative analysis of tannins, alkaloids, phenols, and flavonoids in Ficus semicordata leaf, stem, stem bark, root, and fruit powder. J. Indian. Sys. Med. 2021, 9, 171–174. [Google Scholar] [CrossRef]
- Dirar, A.I.; Alsaadi, D.H.M.; Wada, M.; Mohamed, M.A.; Watanabe, T.; Devkota, H.P. Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. S. A. J. Bot. 2019, 120, 261–267. [Google Scholar] [CrossRef]
- Neupane, P.; Lamichhane, J. Estimation of total phenolic content, total flavonoid content and antioxidant capacities of five medicinal plants from Nepal. Vegetos 2020, 33, 360–366. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.; Silva, A.M. Plant flavonoids: Chemical characteristics and biological activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Yu, M.; Gouvinhas, I.; Rocha, J.; Barros, A.I. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci. Rep. 2021, 11, 10041. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef]
- Rouamba, A.; Badini, D.; Compaoré, E.; Ouédraogo, V.; Kiendrebeogo, M. Lippia multiflora leaves extracts enhance cefotaxime bactericidal effects and quench the biofilm formation in methicillin-resistant Staphylococcus aureus ATCC 43300. Avicenna J. Med. Biotechnol. 2024, 16, 193. [Google Scholar] [CrossRef]
- Phuyal, N.; Jha, P.K.; Raturi, P.P.; Rajbhandary, S. Total phenolic, flavonoid contents, and antioxidant activities of fruit, seed, and bark extracts of Zanthoxylum armatum DC. Sci. World J. 2020, 2020, 8780704. [Google Scholar] [CrossRef]
- Koraqi, H.; Petkoska, A.T.; Khalid, W.; Sehrish, A.; Ambreen, S.; Lorenzo, J.M. Optimization of the extraction conditions of antioxidant phenolic compounds from strawberry fruits (Fragaria x ananassa Duch.) using response surface methodology. Food Anal. Methods 2023, 16, 1030–1042. [Google Scholar] [CrossRef]
- Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement. Alt. Med. 2012, 12, 221. [Google Scholar]
- Desmiaty, Y.; Saputri, F.C.; Hanafi, M.; Prastiwi, R.; Elya, B. Anti-elastase, anti-tyrosinase and anti-oxidant of Rubus fraxinifolius stem methanolic extract. Pharmacogn. J. 2020, 12, 271–275. [Google Scholar] [CrossRef]
- Mannino, G.; Occhipinti, A.; Maffei, M.E. Quantitative determination of 3-O-acetyl-11-keto-β-boswellic acid (AKBA) and other boswellic acids in Boswellia sacra Flueck and Boswellia serrata Roxb. Molecules 2016, 21, 1329. [Google Scholar] [CrossRef] [PubMed]
- Nam, D.G.; Yang, H.S.; Bae, U.J.; Park, E.; Choi, A.J.; Choe, J.S. The Cactus (Opuntia ficus-indica) Cladodes and Callus extracts: A study combined with LC-MS metabolic profiling, in-silico, and in-vitro analyses. Antioxidants 2023, 12, 1329. [Google Scholar] [CrossRef]
- Pollier, J.; Morreel, K.; Geelen, D.; Goossens, A. Metabolite profiling of triterpene saponins in Medicago truncatula hairy roots by liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. J. Nat. Prod. 2011, 74, 1462–1476. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Liu, Y.; Wang, Y.; Fan, X.; Cheng, Y. Rapid discovery and identification of anti-inflammatory constituents from traditional Chinese medicine formula by activity index, LC-MS, and NMR. Sci. Rep. 2016, 6, 31000. [Google Scholar] [CrossRef]
- Liu, W.; Huang, J.; Zhang, F.; Zhang, C.C.; Li, R.-S.; Wang, Y.-L.; Wang, C.-R.; Liang, X.M.; Zhang, W.D.; Yang, L. Comprehensive profiling and characterization of the absorbed components and metabolites in mice serum and tissues following oral administration of Qing-Fei-Pai-Du decoction by UHPLC-Q-Exactive-Orbitrap HRMS. Chin. J. Nat. Med. 2021, 19, 305–320. [Google Scholar] [CrossRef]
- Araujo, N.M.P.; Arruda, H.S.; Dos Santos, F.N.; de Morais, D.R.; Pereira, G.A.; Pastore, G.M. LC-MS/MS screening and identification of bioactive compounds in leaves, pulp and seed from Eugenia calycina Cambess. Food Res. Int. 2020, 137, 109556. [Google Scholar] [CrossRef] [PubMed]
- Tava, A.; Biazzi, E.; Ronga, D.; Mella, M.; Doria, F.; D’Addabbo, T.; Candido, V.; Avato, P. Chemical identification of specialized metabolites from sulla (Hedysarum coronarium L.) collected in southern Italy. Molecules 2021, 26, 4606. [Google Scholar] [CrossRef]
- Tine, Y.; Yang, Y.; Renucci, F.; Costa, J.; Wélé, A.; Paolini, J. LC-MS/MS analysis of flavonoid compounds from Zanthoxylum zanthoxyloides extracts and their antioxidant activities. Nat. Prod. Commun. 2017, 12, 1865–1868. [Google Scholar] [CrossRef]
- Ali, A.; Bashmil, Y.M.; Cottrell, J.J.; Suleria, H.A.; Dunshea, F.R. LC-MS/MS-QTOF screening and identification of phenolic compounds from Australian grown herbs and their antioxidant potential. Antioxidants 2021, 10, 1770. [Google Scholar] [CrossRef]
- Picardo, M.; Sanchís, J.; Núñez, O.; Farré, M. Suspect screening of natural toxins in surface and drinking water by high performance liquid chromatography and high-resolution mass spectrometry. Chemosphere 2002, 261, 127888. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Singh, A.; Bajpai, V.; Srivastava, M.; Singh, B.P.; Kumar, B. Structural characterization of monoterpene indole alkaloids in ethanolic extracts of Rauwolfia species by liquid chromatography with quadrupole time-of-flight mass spectrometry. J. Pharm. Anal. 2016, 6, 363–373. [Google Scholar] [CrossRef]
- Smitha, C.K.; Udayan, P.S. GC-MS and HR-LCMS fingerprinting of various parts of Oroxylum indicum (L.) Vent. A comparative phytochemical study based on plant part substitution approach. J. Pharmacogn. Phytochem. 2020, 9, 1817–1824. [Google Scholar]
- Servi, H.; Kisa, Ö.; Aysal, A.I.; ERKÖSE GENÇ, G.; Şatana, D. Chemical profile by LC-Q-TOF-MS of Nigella sativa seed extracts and in vitro antimicrobial activity on bacteria which are determined resistance gene and isolated from nosocomial infection. J. Res. Pharm. 2022, 26, 287. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Yu, K.; Zhang, M.; Li, Q.; Tang, S.; Liu, Y.; Li, H.; Zhang, Z. Rapid chemical characterization and pharmacological mechanism of Fining Granules in the treatment of chronic bronchitis based on UHPLC–Q-exactive orbitrap mass spectrometer and network pharmacology. Heliyon 2024, 10, e31804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yin, M.; Feng, X.; Ibrahim, S.A.; Liu, Y.; Huang, W. Anti-inflammatory activity of four triterpenoids isolated from poriae cutis. Foods 2021, 10, 3155. [Google Scholar] [CrossRef] [PubMed]
- Sheth, K.; Catalfomo, P.; Sciuchetti, L.A. Isolation and identification of eburicoic acid from Fomes pinicola. J. Pharm. Sci. 1967, 56, 1656–1658. [Google Scholar] [CrossRef]
- Timbekova, A.E.; Isaev, M.I.; Abubakirov, N.K. Chemistry and biological activity of triterpenoid glycosides from Medicago sativa. In Saponins Used in Food and Agriculture; Waller, G.R., Yamasaki, K., Eds.; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 1996; Volume 405, pp. 171–182. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, Y.; Zhang, L.; Zhou, J.; Yu, Y.; Zhou, Y.; Kang, T. Chemical profiling and antioxidant evaluation of Paeonia lactiflora Pall. “Zhongjiang” by HPLC–ESI–MS combined with DPPH assay. J. Chromatogr. Sci. 2021, 59, 795–805. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Rabalski, I.; Mats, L.; Rai, I. Identification and quantification of anthocyanin and catechin compounds in purple tea leaves and flakes. Molecules 2022, 27, 6676. [Google Scholar] [CrossRef]
- Zgórka, G.; Maciejewska-Turska, M.; Makuch-Kocka, A.; Plech, T. In vitro evaluation of the antioxidant activity and chemopreventive potential in human breast cancer cell lines of the standardized extract obtained from the aerial parts of zigzag clover (Trifolium medium L.). Pharmaceuticals 2022, 15, 699. [Google Scholar] [CrossRef]
- Parolin Trindade, G.; Perez Pinheiro, G.; Silva, A.A.R.; Porcari, A.D.M.; Sawaya, A.C.H.F. Sources of variation of the chemical composition of Lippia origanoides Kunth (Verbenaceae). Nat. Prod. Res. 2025, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jug, U.; Naumoska, K.; Vovk, I. (−)-Epicatechin—An important contributor to the antioxidant activity of Japanese knotweed rhizome bark extract as determined by antioxidant activity-guided fractionation. Antioxidants 2021, 10, 133. [Google Scholar] [CrossRef]
- Gülçin, I.L.; Beydemir, Ş.; Topal, F.; Gagua, N.; Bakuridze, A.; Bayram, R.; Gepdiremen, A. Apoptotic, antioxidant and antiradical effects of majdine and isomajdine from Vinca herbacea Waldst. and kit. J. Enzym. Inhib. Med. Chem. 2012, 27, 587–594. [Google Scholar] [CrossRef]
- Wang, Y.H.; Avula, B.; Wang, M.; Sagi, S.; Cohen, P.A.; Maller, G.; DeSouza, R.; Khan, I.A. Determination of caffeine, yohimbic acid, corynanthine, yohimbine and rauwolscine from yohimbe plants and products using LC-UV-MS/MS. Planta Medica 2014, 80, 32. [Google Scholar] [CrossRef]
- Wang, C.C.; Chen, L.G.; Lee, L.T.; Yang, L.L. Effects of 6-gingerol, an antioxidant from ginger, on inducing apoptosis in human leukemic HL-60 cells. In Vivo (Athens Greece) 2003, 17, 641–645. [Google Scholar] [PubMed]
- Grzesik, M.; Naparło, K.; Bartosz, G.; Sadowska-Bartosz, I. Antioxidant properties of catechins: Comparison with other antioxidants. Food Chem. 2018, 241, 480–492. [Google Scholar] [CrossRef] [PubMed]
- Picos-Salas, M.A.; Leyva-López, N.; Bastidas-Bastidas, P.D.J.; Antunes-Ricardo, M.; Cabanillas-Bojórquez, L.A.; Angulo-Escalante, M.A.; Heredia, J.B.; Gutiérrez-Grijalva, E.P. Supercritical CO2 extraction of naringenin from Mexican oregano (Lippia graveolens): Its antioxidant capacity under simulated gastrointestinal digestion. Sci. Rep. 2024, 14, 1146. [Google Scholar] [CrossRef]
- González Güereca, M.C.; Soto Hernández, M.; Kite, G.; Martinez Vazquez, M. Antioxidant activity of flavonoids from the stem of the Mexican oregano (Lippia graveolens HBK var. berlandieri Schauer). Rev. Fitotec. Mex. 2007, 30, 43–49. [Google Scholar]
- Dhami, N.; Mishra, A.D. Phytochemical variation: How to resolve the quality controversies of herbal medicinal products? J. Herb. Med. 2015, 5, 118–127. [Google Scholar] [CrossRef]
- Gololo, S.S.; Shai, L.J.; Agyei, N.M.; Mogale, M.A. Effect of seasonal changes on the quantity of phytochemicals in the leaves of three medicinal plants from Limpopo province, South Africa. J. Pharm. Phytother. 2016, 8, 168–172. [Google Scholar]
- Tlhapi, D.; Ramaite, I.; Anokwuru, C.; van Ree, T.; Madala, N.; Hoppe, H. Effects of seasonal variation on phytochemicals contributing to the antimalarial and antitrypanosomal activities of Breonadia salicina using a metabolomic approach. Heliyon 2024, 10, e24068. [Google Scholar] [CrossRef]
- Gupta, M.; Singh, S.; Luqman, S.; Saikia, D.; Thomas, M.; Rout, P.K. Correlation of boswellic acids with antiproliferative, antioxidant and antimicrobial activities of topographically collected Boswellia serrata oleo-gum-resin. Phytomed. Plus 2022, 2, 100289. [Google Scholar] [CrossRef]
- Su, Y.C.; Liu, C.T.; Chu, Y.L.; Raghu, R.; Kuo, Y.H.; Sheen, L.Y. Eburicoic acid, an active triterpenoid from the fruiting bodies of basswood cultivated Antrodia cinnamomea, induces ER stress-mediated autophagy in human hepatoma cells. J. Trad. Complement. Med. 2012, 2, 312–322. [Google Scholar] [CrossRef]
- Meneses-Gutiérrez, C.L.; Hernández-Damián, J.; Pedraza-Chaverri, J.; Guerrero-Legarreta, I.; Téllez, D.I.; Jaramillo-Flores, M.E. Antioxidant capacity and cytotoxic effects of catechins and resveratrol oligomers produced by enzymatic oxidation against T24 human urinary bladder cancer cells. Antioxidants 2019, 8, 214. [Google Scholar] [CrossRef] [PubMed]
- de Lima, R.M.T.; Dos Reis, A.C.; de Oliveira Santos, J.V.; de Oliveira Ferreira, J.R.; Braga, A.L.; de Oliveira Filho, J.W.G.; de Menezes, A.A.P.M.; da Mata, A.M.O.F.; de Alencar, M.V.O.B.; do Nascimento Rodrigues, D.C.; et al. Toxic, cytogenetic and antitumor evaluations of [6]-gingerol in non-clinical in vitro studies. Biomed. Pharmacother. 2019, 115, 108873. [Google Scholar] [CrossRef]
- Weisburg, J.H.; Weissman, D.B.; Sedaghat, T.; Babich, H. In vitro cytotoxicity of epigallocatechin gallate and tea extracts to cancerous and normal cells from the human oral cavity. Basic. Clin. Pharmacol. Toxicol. 2004, 95, 191–200. [Google Scholar] [CrossRef]
- Jamshidi-Adegani, F.; Ghaemi, S.; Al-Hashmi, S.; Vakilian, S.; Al-Kindi, J.; Rehman, N.U.; Alam, K.; Al-Riyami, K.; Csuk, R.; Arefian, E.; et al. Comparative study of the cytotoxicity, apoptotic, and epigenetic effects of Boswellic acid derivatives on breast cancer. Sci. Rep. 2022, 12, 19979. [Google Scholar] [CrossRef] [PubMed]
- Tlhapi, B.D. Isolation and Structure Elucidation of Bioactive Compounds from Rauvolfia caffra Sond. Master’s Thesis, University of Venda, Thohoyandou, South Africa, 2018. [Google Scholar]
- Motamed, S.M.; Naghibi, F. Antioxidant activity of some edible plants of the Turkmen Sahra region in northern Iran. Food Chem. 2010, 119, 1637–1642. [Google Scholar] [CrossRef]
- Pereira, O.R.; Macias, R.I.; Perez, M.J.; Marin, J.J.; Cardoso, S.M. Protective effects of phenolic constituents from Cytisus multiflorus, Lamium album L. and Thymus citriodorus on liver cells. J. Funct. Foods 2013, 5, 1170–1179. [Google Scholar] [CrossRef]
- Mariri, N.G.; Mongalo, N.I.; Makhafola, T.J. The in vitro cytotoxicity, genotoxicity and LC-ToF-MS profiling of four South African plants with good antifungal activity. S. Afr. J. Bot. 2024, 174, 446–455. [Google Scholar] [CrossRef]
Compound No. | Rt (min) | Theoretical Mass [M − H]− (m/z) | Observed Mass [M − H]− (m/z) | Molecular Formula | MS/MS Fragment Ions (m/z) | Compound Name | Compound Class | R | S | DL | ML | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.50 | 483.31 | 483.12 | C30H44O5 | 483 | Poricoic acid B | Triterpenoid | √ | √ | √ | √ | [42] |
2 | 1.45 | 455.35 | 455.30 | C30H48O3 | 454, 453 | Boswellic acid alpha | Pentacyclic terpenoid | √ | √ | √ | √ | [43] |
3 | 10.06 | 469.36 | 469.11 | C31H50O3 | 469 | Eburicoic acid | Triterpenoid | √ | X | X | X | [44] |
4 | 1.55 | 501.32 | 501.11 | C30H46O6 | 485, 421 | Medicagenic acid | Triterpenoids | X | √ | X | X | [45] |
5 | 1.98 | 525.16 | 525.30 | C23H28O11 | 525 | Albiflorin | Monoterpenoid glycoside | X | √ | X | X | [46] |
6 | 0.60 | 289.07 | 289.18 | C15H14O6 | 259, 231 | Catechin | Flavonoid | X | √ | √ | X | [47] |
7 | 0.60 | 289.10 | 289.18 | C15H14O6 | 259, 243 | Epicatechin | Flavonoid | X | √ | √ | X | [48] |
8 | 2.12 | 267.02 | 267.07 | C22H22O9 | 267 | Formononetin-7-O-glucoside (Ononin) | Isoflavone glycoside | √ | √ | √ | √ | [49] |
9 | 2.88 | 297.23 | 297.24 | C17H14O5 | 311 | 3′,4′-Dimethoxy-7-hydroxyflavone | Flavonoid | X | X | X | √ | MassBank-BS-BS003750 |
10 | 1.97 | 447.09 | 447.09 | C21H20O11 | 455, 303 | Quercitrin | Flavonoid | X | X | √ | √ | [50] |
11 | 1.46 | 293.17 | 293.18 | C17H26O4 | 248, 237, 209 | 6-Gingerol | Phenolic compound | X | X | X | √ | [48] |
12 | 2.33 | 277.18 | 277.20 | C17H26O3 | 283, 233, 205 | 6-Paradol | Phenolic ketone | √ | √ | √ | √ | [48] |
13 | 2.58 | 295.17 | 295.23 | C16H25NO4 | - | Esmolol | Phenolic compound | X | X | X | √ | [48] |
14 | 1.51 | 305.06 | 305.92 | C15H14O7 | 289, 221 | (−)-Epigallocatechin | Polyphenol | √ | √ | √ | √ | [51] |
15 | 0.65 | 427.18 | 427.18 | C23H28N2O6 | 397, 381, 369, 243, 231 | Isomajdine | Indole Alkaloid | X | X | √ | X | [52] |
16 | 0.23 | 339.17 | 339.12 | C20H24N2O3 | 321, 297 | Yohimbic acid | Monoterpene indole alkaloids | X | X | X | √ | [53] |
17 | 1.46 | 399.22 | 339.20 | C22H28N2O5 | 325, 309, 304 | Reserpic acid | Monoterpene indole alkaloids | √ | √ | √ | √ | [53] |
18 | 1.52 | 339.06 | 339.07 | C15H16O9 | 338 | 6,7-Dihydroxycoumarin-6-glucoside (Esculin) | Coumarin glucoside | X | X | √ | √ | [54] |
19 | 1.83 | 307.26 | 307.19 | C20H36O2 | 289, 290 | Eicosadieneoic acid | Polyunsaturated fatty acid | √ | √ | X | X | [55] |
20 | 0.35 | 229.14 | 229.14 | C12H22O4 | 213 | Dodecanedioic acid | Organic acid | √ | √ | √ | √ | [56] |
Compound No. | Identified Compound | Molecular Formula | Compound Class | Plant Part(s) (exp) | Plant Part(s) (lit) | Method of Identification (exp) | Method of Identification (lit) | References |
---|---|---|---|---|---|---|---|---|
1 | Poricoic acid B | C30H44O5 | Triterpenoid | Root, stem bark, leaves | Stem bark, poriae cutis | UHPLC–Q/Orbitrap/MS | UPLC-MS XEVO G2-XS QTOF, UHPLC-QTOF-MS/MS, 1H-NMR, 13C-NMR | [42,57] |
2 | Boswellic acid alpha | C30H48O3 | Pentacyclic terpenoid | Root, stem bark, leaves | Resins | UHPLC–Q/Orbitrap/MS | HPLC-DAD-ESI-MS/MS, HPLC | [43] |
3 | Eburicoic acid | C31H50O3 | Triterpenoid | Root | Cactus, cladodes, callus, stem decay | UHPLC–Q/Orbitrap/MS | UPLC-QTOF-MS, FTIR, 1H-NMR, 13C-NMR | [44,58] |
4 | Medicagenic acid | C30H46O6 | Triterpenoids | Stem bark | Root, leaves | UHPLC–Q/Orbitrap/MS | LC ESI FT-ICR MS, FTIR, 1H-NMR, 13C-NMR | [45,59] |
5 | Albiflorin | C23H28O11 | Monoterpenoid glycoside | Stem bark | Whole plant, roots, stems, leaves, flowers | UHPLC–Q/Orbitrap/MS | LC-Q-TOF-MS, LC-IT-MS, HPLC–DAD, HPLC–DAD–ESI–MS | [46,60] |
6 | Catechin | C15H14O6 | Flavonoid | Stem bark, leaves | Whole plant | UHPLC–Q/Orbitrap/MS | UHPLC-Q-Orbitrap HRMS, UPLC, LC-MS/MS | [47,61] |
7 | Epicatechin | C15H14O6 | Flavonoid | Stem bark, leaves | Pulp, seed, leaves | UHPLC–Q/Orbitrap/MS | LC-ESI-MS/MS, | [48] |
8 | Formononetin-7-O-glucoside (Ononin) | C22H22O9 | Isoflavone glycoside | Root, stem bark, leaves | Leaves, flowers | UHPLC–Q/Orbitrap/MS | LC-ESI-MS, HPLC/DAD, RP-LC/PDA-ESI-QTOF-MS/MS | [49,62] |
9 | 3′,4′-Dimethoxy-7-hydroxyflavone | C17H14O5 | Flavonoid | Leaves | N.R. | UHPLC–Q/Orbitrap/MS | LC-ESI-QTOF | MassBank-BS-BS003750 |
10 | Quercitrin | C21H20O11 | Flavonoid | Leaves | Root barks, trunk barks, stem, leaves, fruits | UHPLC–Q/Orbitrap/MS | LC-MS/MS, UHPLC-ESI-QTOF-MS/MS | [50,63] |
11 | 6-Gingerol | C17H26O4 | Phenolic compound | Leaves | Pulp, seed, leaves | UHPLC–Q/Orbitrap/MS | LC-ESI-MS/MS, LC-MS/MS Q-TOF | [48] |
12 | 6-Paradol | C17H26O3 | Phenolic ketone | Root, stem bark, leaves | Pulp, seed, leaves | UHPLC–Q/Orbitrap/MS | LC-ESI-MS/MS, LC-MS/MS Q-TOF | [48] |
13 | Esmolol | C16H25NO4 | Phenolic compound | Leaves | Pulp, seed, leaves | UHPLC–Q/Orbitrap/MS | LC-ESI-MS/MS, LC-MS/MS Q-TOF | [48] |
14 | (−)-Epigallocatechin | C15H14O7 | Polyphenol | Root, stem bark, leaves | Rhizome bark | UHPLC–Q/Orbitrap/MS | HPLC-MS, SEC-HPLC-UV, HPTLC | [64] |
15 | Isomajdine | C23H28N2O6 | Indole Alkaloid | Leaves | Root | UHPLC–Q/Orbitrap/MS | NMR | [65] |
16 | Yohimbic acid | C20H24N2O3 | Monoterpene indole alkaloids | Leaves | Root | UHPLC–Q/Orbitrap/MS | HPLC–ESI–QTOF–MS/MS, UHPLC–UV–MS/MS | [53,66] |
17 | Reserpic acid | C22H28N2O5 | Monoterpene indole alkaloids | Root, stem bark, leaves | Root | UHPLC–Q/Orbitrap/MS | HPLC–ESI–QTOF–MS/MS | [53] |
18 | 6,7-Dihydroxycoumarin-6-glucoside (Esculin) | C15H16O9 | Coumarin glucoside | Leaves | Root, young stem, leaves | UHPLC–Q/Orbitrap/MS | HR-LCMS | [54] |
19 | Eicosadieneoic acid | C20H36O2 | Polyunsaturated fatty acid | Root, stem bark | Seeds | UHPLC–Q/Orbitrap/MS | LC-Q-TOF-MS | [55] |
20 | Dodecanedioic acid | C12H22O4 | Organic acid | Root, stem bark, leaves | Rhizomes | UHPLC–Q/Orbitrap/MS | UHPLC–Q-exactive orbitrap MS | [56] |
Compounds | PC1 | PC2 | PC3 |
---|---|---|---|
C1 | 0 | 0 | 0 |
C2 | 0 | 0 | 0 |
C3 | −0.279210 | −0.73822 | −0.61406 |
C4 | −0.67912 | 0.10398 | 0.72662 |
C5 | −0.67912 | 0.10398 | 0.72662 |
C6 | −0.52758 | 0.82961 | 0.18275 |
C7 | −0.52758 | 0.082961 | 0.18275 |
C8 | 0 | 0 | 0 |
C9 | 0.88841 | −0.21973 | 0.40304 |
C10 | 0.82994 | 0.54927 | −0.097482 |
C11 | 0.88841 | −0.21973 | 0.40304 |
C12 | 0 | 0 | 0 |
C13 | 0.88841 | −0.21973 | 0.40304 |
C14 | 0 | 0 | 0 |
C15 | 0.069923 | 0.85397 | −0.5156 |
C16 | 0.88841 | −0.021973 | 0.40304 |
C17 | 0 | 0 | 0 |
C18 | 0.82994 | 0.54927 | −0.097482 |
C19 | −0.82994 | −0.54927 | 0.097482 |
C20 | 0 | 0 | 0 |
Samples | DPPH IC50 (µg/mL) | Reducing Power IC0.5 (µg/mL) |
---|---|---|
Root extract | 25.108 ± 19.798 ab | 0.218 ± 0.157 a |
Stem bark extract | 5.031 ± 2.940 a | 0.029 ± 0.026 a |
Methanol leaf extract | 0.559 ± 0.269 a | 0.710 ± 1.220 a |
Dichloromethane leaf extract | 6.299 ± 0.495 a | 0.326 ± 0.210 a |
Ascorbic acid | 44.308 ± 9.813 b | 0.355 ± 0.393 a |
Gallic acid | 37.340 ± 17.529 ab | 8.210 ± 11.257 a |
Quercetin | 37.361 ± 21.356 b | 3.760 ± 2.979 a |
Compound No. | Identified Compound | Molecular Formula | Compound Class | Plant Part(s) (exp) | Plant Part(s) (lit) | Antioxidant Assay (exp) | Antioxidant Assay (lit) | References |
---|---|---|---|---|---|---|---|---|
1 | Poricoic acid B | C30H44O5 | Triterpenoid | Root, stem bark, leaves | Stem bark | DPPH, RPA | DPPH | [42] |
2 | Boswellic acid alpha | C30H48O3 | Pentacyclic terpenoid | Root, stem bark, leaves | Resins | DPPH, RPA | DPPH, ABTS | [74] |
3 | Eburicoic acid | C31H50O3 | Triterpenoid | Root | - | DPPH, RPA | - | - |
4 | Medicagenic acid | C30H46O6 | Triterpenoids | Stem bark | - | DPPH, RPA | - | - |
5 | Albiflorin | C23H28O11 | Monoterpenoid glycoside | Stem bark | Root, stem, leaves, flowers | DPPH, RPA | DPPH, ABTS | [60] |
6 | Catechin | C15H14O6 | Flavonoid | Stem bark, leaves | N.R. | DPPH, RPA | ABTS, FRAP | [68] |
7 | Epicatechin | C15H14O6 | Flavonoid | Stem bark, leaves | N.R. | DPPH, RPA | ABTS, FRAP | [68] |
8 | Formononetin-7-O-glucoside (Ononin) | C22H22O9 | Isoflavone glycoside | Root, stem bark, leaves | Leaves, flowers | DPPH, RPA | DPPH, ABTS | [62] |
9 | 3′,4′-Dimethoxy-7-hydroxyflavone | C17H14O5 | Flavonoid | Leaves | - | DPPH, RPA | - | - |
10 | Quercitrin | C21H20O11 | Flavonoid | Leaves | Trunk barks | DPPH, RPA | ABTS, ORAC, TEAC | [50,69,70] |
11 | 6-Gingerol | C17H26O4 | Phenolic compound | Leaves | Rhizomes | DPPH, RPA | DPPH | [67] |
12 | 6-Paradol | C17H26O3 | Phenolic ketone | Root, stem bark, leaves | - | DPPH, RPA | - | - |
13 | Esmolol | C16H25NO4 | Phenolic compound | Leaves | - | DPPH, RPA | - | - |
14 | (−)-Epigallocatechin | C15H14O7 | Polyphenol | Root, stem bark, leaves | Rhizome bark | DPPH, RPA | DPPH | [64] |
15 | Isomajdine | C23H28N2O6 | Indole Alkaloid | Leaves | Root | DPPH, RPA | ABTS, DMPD, Fe2+ | [65] |
16 | Yohimbic acid | C20H24N2O3 | Monoterpene indole alkaloids | Leaves | - | DPPH, RPA | - | - |
17 | Reserpic acid | C22H28N2O5 | Monoterpene indole alkaloids | Root, stem bark, leaves | - | DPPH, RPA | - | - |
18 | 6,7-Dihydroxycoumarin-6-glucoside (Esculin) | C15H16O9 | Coumarin glucoside | Leaves | - | DPPH, RPA | - | - |
19 | Eicosadieneoic acid | C20H36O2 | Polyunsaturated fatty acid | Root, stem bark, | - | DPPH, RPA | - | - |
20 | Dodecanedioic acid | C12H22O4 | Organic acid | Root, stem bark, leaves | - | DPPH, RPA | - | - |
Test | TFC | TPC | DPPH | RP |
---|---|---|---|---|
TFC | 1 | |||
TPC | −0.111 * | 1 | ||
DPPH | 0.619 * | 0.071 * | 1 | |
RP | −0.956 | −0.019 | −0.406 | 1 |
Samples | Vero IC50 (µg/mL) |
---|---|
Root extract | 37.15 ± 2.61 b |
Stem bark extract | 273.60 ± 1.70 e |
Methanol leaf extract | 74.22 ± 2.33 c |
Dichloromethane leaf extract | 132.90 ± 4.52 d |
Doxorubicin (positive control) | 4.97 ± 0.83 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tlhapi, D.; Malebo, N.; Manduna, I.T.; Mawunu, M.; Chokwe, R.C. Phytochemical Screening and Biological Activities of Lippia multiflora Moldenke. Molecules 2025, 30, 2882. https://doi.org/10.3390/molecules30132882
Tlhapi D, Malebo N, Manduna IT, Mawunu M, Chokwe RC. Phytochemical Screening and Biological Activities of Lippia multiflora Moldenke. Molecules. 2025; 30(13):2882. https://doi.org/10.3390/molecules30132882
Chicago/Turabian StyleTlhapi, Dorcas, Ntsoaki Malebo, Idah Tichaidza Manduna, Monizi Mawunu, and Ramakwala Christinah Chokwe. 2025. "Phytochemical Screening and Biological Activities of Lippia multiflora Moldenke" Molecules 30, no. 13: 2882. https://doi.org/10.3390/molecules30132882
APA StyleTlhapi, D., Malebo, N., Manduna, I. T., Mawunu, M., & Chokwe, R. C. (2025). Phytochemical Screening and Biological Activities of Lippia multiflora Moldenke. Molecules, 30(13), 2882. https://doi.org/10.3390/molecules30132882