An Organic Solvent-Tolerant α-L-Rhamnosidase from Dictyoglomus thermophilum and Its Application in Production of Icariside I from Icariin
Abstract
1. Introduction
2. Results and Discussion
2.1. Sequence and Phylogenetic Analysis
2.2. Purification and Characterization of Recombinant DthRha
2.3. Effects of Organic Solvents on DthRha Activity
2.4. Kinetic Parameters of DthRha
2.5. Substrate Specificity of DthRha
2.6. Enzymatic Production of Icariside I
3. Materials and Methods
3.1. Strains, Growth Media and Regents
3.2. Sequence Analysis of DthRha
3.3. Expression of DthRha in E. coli BL21 (DE3) and Enzyme Purification
3.4. Assay of Enzyme Activity and Protein Concentration
3.5. Biochemical Characterization of DthRha
3.6. Catalytic Kinetic Parameters
3.7. Enzymatic Hydrolysis of Icariin to Icariside I by DthRha
3.8. Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, S.; Gou, Y.; Jin, D.; Ma, J.; Chen, M.; Dong, X. Effects of Icaritin on the physiological activities of esophageal cancer stem cells. Biochem. Biophys. Res. Commun. 2018, 504, 792–796. [Google Scholar] [CrossRef]
- Chen, C.; Wu, M.; Lei, H.; Cao, Z.; Wu, F.; Song, Y.; Zhang, C.; Qin, M.; Zhang, C.; Du, R. A novel prenylflavonoid icariside I ameliorates estrogen deficiency-induced osteoporosis via simultaneous regulation of osteoblast and osteoclast differentiation. ACS Pharmacol. Transl. Sci. 2023, 6, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Li, H.; He, T.; Hui, S.; Dai, W.; Hou, X.; Zhao, J.; Zhao, J.; Wen, J.; Kan, W. Icariside I reduces breast cancer proliferation, apoptosis, invasion, and metastasis probably through inhibiting IL-6/STAT3 signaling pathway. J. Pharm. Pharmacol. 2024, 76, 499–513. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Wang, Y.; Li, Z.; Huang, H.; Shen, G.; Ren, Y.; Mao, X.; Wang, W.; Ou, J. Icariside I enhances the effects of immunotherapy in gastrointestinal cancer via targeting TRPV4 and upregulating the cGAS-STING-IFN-I pathway. Biomed. Pharmacother. 2024, 177, 117134. [Google Scholar] [CrossRef]
- Li, J.; Liu, P.; Zhang, R.; Cao, L.; Qian, H.; Liao, J.; Xu, W.; Wu, M.; Yin, Z. Icaritin induces cell death in activated hepatic stellate cells through mitochondrial activated apoptosis and ameliorates the development of liver fibrosis in rats. J. Ethnopharmacol. 2011, 137, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Cao, Z.; Shi, Z.; Lei, H.; Chen, C.; Yuan, P.; Wu, F.; Liu, C.; Dong, M.; Song, Y. Microbiome analysis combined with targeted metabolomics reveal immunological anti-tumor activity of icariside I in a melanoma mouse model. Biomed. Pharmacother. 2021, 140, 111542. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Fernández-Fueyo, E.; Hollmann, F.; Paul, C.E.; Pesic, M.; Schmidt, S.; Wang, Y.; Younes, S.; Zhang, W. Biocatalytic oxidation reactions: A chemist’s perspective. Angew. Chem. Int. Edit. 2018, 57, 9238–9261. [Google Scholar] [CrossRef]
- Yadav, V.; Yadav, P.K.; Yadav, S.; Yadav, K.D.S. α-L-Rhamnosidase: A review. Process Biochem. 2010, 45, 1226–1235. [Google Scholar] [CrossRef]
- Zhang, T.; Yuan, W.; Li, M.; Miao, M.; Mu, W. Purification and characterization of an intracellular α-L-rhamnosidase from a newly isolated strain, Alternaria alternata SK37. 001. Food Chem. 2018, 269, 63–69. [Google Scholar] [CrossRef]
- Li, L.; Gong, J.; Wang, S.; Li, G.; Gao, T.; Jiang, Z.; Cheng, Y.-S.; Ni, H.; Li, Q. Heterologous expression and characterization of a new clade of Aspergillus α-L-rhamnosidase suitable for citrus juice processing. J. Agric. Food Chem. 2019, 67, 2926–2935. [Google Scholar] [CrossRef]
- González-Pombo, P.; Fariña, L.; Carrau, F.; Batista-Viera, F.; Brena, B.M. Aroma enhancement in wines using co-immobilized Aspergillus niger glycosidases. Food Chem. 2014, 143, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Yadava, S.; Yadav, K.D.S. α-L-rhamnosidase selective for rutin to isoquercitrin transformation from Penicillium griseoroseum MTCC-9224. Bioorg. Chem. 2017, 70, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.J.; Xia, N.; Zhu, S.M.; Liu, Q.; Gao, Y. A novel and high-effective biosynthesis pathway of hesperetin-7-O-glucoside based on the construction of immobilized rhamnosidase reaction platform. Front. Bioeng. Biotechnol. 2020, 8, 608. [Google Scholar] [CrossRef]
- Lou, H.; Liu, X.; Liu, S.; Chen, Q. Purification and Characterization of a Novel α-L-Rhamnosidase from Papiliotrema laurentii ZJU-L07 and Its Application in Production of Icariin from Epimedin, C. J. Fungi 2022, 8, 644. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Liu, Y.; Zhou, F.; Zhan, L.; Zhao, L. Heterologous Expression and Characterization of a Thermostable α-L-Rhamnosidase from Thermoclostridium stercorarium subsp. thermolacticum DSM 2910 and Its Application in the Biotransformation of Rutin. J. Microbiol. Biotechnol. 2023, 33, 1521. [Google Scholar]
- Cheng, L.; Zhang, H.; Cui, H.; Cheng, J.; Wang, W.; Wei, B.; Liu, F.; Liang, H.; Shen, X.; Yuan, Q. A novel α-L-Rhamnosidase renders efficient and clean production of icaritin. J. Clean. Prod. 2022, 341, 130903. [Google Scholar] [CrossRef]
- Zucca, P.; Sanjust, E. Inorganic materials as supports for covalent enzyme immobilization: Methods and mechanisms. Molecules 2014, 19, 14139–14194. [Google Scholar] [CrossRef]
- Jia, H.Y.; Hu, J.Y.; Zhao, L.; Zheng, X.K.; Feng, W.S. Recyclable β-glucosidase by one-pot encapsulation with Cu-based MOFs for efficient production of baohuoside I from icariin. Mol. Catal. 2025, 573, 114855. [Google Scholar] [CrossRef]
- Hasnaoui, I.; Mechri, S.; Dab, A.; Bentouhami, N.E.; Abouloifa, H.; Bellaouchi, R.; Allala, F.; Saalaoui, E.; Jaouadi, B.; Noiriel, A. Preparation and Biochemical Characterization of Penicillium crustosum Thom P22 Lipase Immobilization Using Adsorption, Encapsulation, and Adsorption–Encapsulation Approaches. Molecules 2025, 30, 434. [Google Scholar] [CrossRef]
- Vila-Real, H.; Alfaia, A.J.; Calado, A.R.; Ribeiro, M.H.L. Improvement of activity and stability of soluble and sol–gel immobilized naringinase in co-solvent systems. J. Mol. Catal. B Enzym. 2010, 65, 91–101. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, S.; Tong, X.; Wu, T.; Pei, J.; Zhao, L. Biochemical characterization of a novel hyperthermophilic α-L-rhamnosidase from Thermotoga petrophila and its application in production of icaritin from epimedin C with a thermostable β-glucosidase. Process Biochem. 2020, 93, 115–124. [Google Scholar] [CrossRef]
- Ichinose, H.; Fujimoto, Z.; Kaneko, S. Characterization of an α-L-rhamnosidase from Streptomyces avermitilis. Biosci. Biotechnol. Biochem. 2013, 77, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Angelov, A.; Liebl, S.; Ballschmiter, M.; Bömeke, M.; Lehmann, R.d.; Liesegang, H.; Daniel, R.; Liebl, W. Genome sequence of the polysaccharide-degrading, thermophilic anaerobe Spirochaeta thermophila DSM 6192. J. Bacteriol. 2010, 192, 6492–6493. [Google Scholar] [CrossRef]
- Jia, H.Y.; Zong, M.H.; Zheng, G.W.; Li, N. One-Pot Enzyme Cascade for Controlled Synthesis of Furancarboxylic Acids from 5-Hydroxymethylfurfural by H2O2 Internal Recycling. ChemSusChem 2019, 12, 4764–4768. [Google Scholar] [CrossRef]
- Krajewska, B.; Zaborska, W. The effect of phosphate buffer in the range of pH 5.80–8.07 on jack bean urease activity. J. Mol. Catal. B Enzym. 1999, 6, 75–81. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Mao, S.; Chen, Z.; Wang, Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts. Chin. J. Catal. 2022, 43, 928–955. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Yuan, Q. Study the effect of His-tag on chondroitinase ABC I based on characterization of enzyme. Int. J. Biol. Macromol. 2015, 78, 96–101. [Google Scholar] [CrossRef]
- Flores, S.S.; Clop, P.D.; Barra, J.L.; Argaraña, C.E.; Perillo, M.A.; Nolan, V.; Sánchez, J.M. His-tag β-galactosidase supramolecular performance. Biophys. Chem. 2022, 281, 106739. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Wu, T.; Cao, S.; Pei, J.; Zhao, L. Screening and characterization of a β-xylosidase from Bifidobacterium breve K-110 and its application in the biotransformation of the total flavonoids of epimedium to icariin with α-l-rhamnosidase. Bioorg. Chem. 2023, 132, 106364. [Google Scholar] [CrossRef]
- Ferreira-Lazarte, A.; Plaza-Vinuesa, L.; de las Rivas, B.; Villamiel, M.; Muñoz, R.; Moreno, F.J. Production of α-rhamnosidases from Lactobacillus plantarum WCFS1 and their role in deglycosylation of dietary flavonoids naringin and rutin. Int. J. Biol. Macromol. 2021, 193, 1093–1102. [Google Scholar] [CrossRef]
- Alvarenga, A.E.; Romero, C.M.; Castro, G.R. A novel α-L-rhamnosidase with potential applications in citrus juice industry and in winemaking. Eur. Food Res. Technol. 2013, 237, 977–985. [Google Scholar] [CrossRef]
- Luo, C.M.; Ke, L.F.; Huang, X.Y.; Zhuang, X.Y.; Guo, Z.W.; Xiao, Q.; Chen, J.; Chen, F.Q.; Yang, Q.M.; Ru, Y. Efficient biosynthesis of prunin in methanol cosolvent system by an organic solvent-tolerant α-L-rhamnosidase from Spirochaeta thermophila. Enzym. Microb. Technol. 2024, 175, 110410. [Google Scholar] [CrossRef]
- Shin, K.C.; Nam, H.K.; Oh, D.K. Hydrolysis of flavanone glycosides by β-glucosidase from Pyrococcus furiosus and its application to the production of flavanone aglycones from citrus extracts. J. Agric. Food Chem. 2013, 61, 11532–11540. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferro, L.S.; Piñuel, L.; Erra-Balsells, R.; Giudicessi, S.L.; Breccia, J.D. Transglycosylation specificity of Acremonium sp. α-rhamnosyl-β-glucosidase and its application to the synthesis of the new fluorogenic substrate 4-methylumbelliferyl-rutinoside. Carbohyd. Res. 2012, 347, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Weiz, G.; Braun, L.; Lopez, R.; de María, P.D.; Breccia, J.D. Enzymatic deglycosylation of flavonoids in deep eutectic solvents-aqueous mixtures: Paving the way for sustainable flavonoid chemistry. J. Mol. Catal. B Enzym. 2016, 130, 70–73. [Google Scholar] [CrossRef]
- Ye, H.; Li, X.; Li, L.; Zhang, Y.; Zheng, J. Homologous Expression and Characterization of α-L-rhamnosidase from Aspergillus niger for the Transformation of Flavonoids. Appl. Biochem. Biotechnol. 2022, 194, 3453–3467. [Google Scholar] [CrossRef]
- Li, Q.; Ge, L.; Zheng, D.; Zhang, X.; Zhao, L. Screening and characterization of a GH78 α-L-rhamnosidase from Aspergillus terreus and its application in the bioconversion of icariin to icaritin with recombinant β-glucosidase. Enzym. Microb. Technol. 2022, 153, 109940. [Google Scholar] [CrossRef]
- Xie, J.; Zhao, J.; Zhang, N.; Xu, H.; Yang, J.; Ye, J.; Jiang, J. Efficient production of isoquercitin, icariin and icariside II by a novel thermostable α-L-rhamnosidase PodoRha from Paenibacillus odorifer with high α-1, 6-/α-1, 2-glycoside specificity. Enzym. Microb. Technol. 2022, 158, 110039. [Google Scholar] [CrossRef]
- Yu, B.; Luo, S.; Ding, Y.; Gong, Z.; Nie, T. Insights into glycosidic bond specificity of an engineered selective α-L-rhamnosidase N12-Rha via activity assays and molecular modelling. AMB Express 2022, 12, 143. [Google Scholar] [CrossRef]
- Manzanares, P.; Orejas, M.; Ibanez, E.; Vallés, S.; Ramón, D. Purification and characterization of an α-L-rhamnosidase from Aspergillus nidulans. Lett. Appl. Microbiol. 2000, 31, 198–202. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, B.L.; Xie, T.; Li, G.C.; Tuo, Y.; Xiang, Y.T. Biotransformation of rutin to isoquercitrin using recombinant α-L-rhamnosidase from Bifidobacterium breve. Biotechnol. Lett. 2015, 37, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.J.; Hu, H.X.; Lu, Y.J.; Bao, Y.D.; Zhou, J.L.; Huang, M. Computer-aided design of α-L-Rhamnosidase to increase the synthesis efficiency of Icariside, I. Front. Bioeng. Biotechnol. 2022, 10, 926829. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
Organism | Enzyme | Organic Solvent (v/v%) | Residual Activity | Refs. |
---|---|---|---|---|
Dictyoglomus thermophilum | DthRha | DMSO (10%) | 86.5% | This study * |
Spirochaeta thermophila | St-Rha | DMSO (10%) | Ca. 67% | [32] |
Thermotoga petrophila | TpeRha | DMSO (10%) | 82.1% | [21] |
Aspergillus terreus | AtRha | DMSO (10%) | 44.6 | [37] |
Thermoclostridium stercorarium | TstRha | DMSO (10%) | Ca. 61% | [15] |
Paenibacillus odorifer | PodRha | DMSO (10%) | Ca. 53% | [38] |
Aspergillus niger | N12-Rha | DMSO (10%) | Ca. 71% | [39] |
Aspergillus niger | Rha-N1 | DMSO (10%) | Ca. 85% | [36] |
Enzyme | Km (mM) | kcat (s−1) | kcat/Km (s−1 mM−1) | Refs. |
---|---|---|---|---|
DthRha | 0.44 | 7.99 | 18.16 | This study * |
Rha-N1 | 2.80 | 0.95 | 0.339 | [36] |
AnRha | 2.9 | 29 | 10 | [40] |
BbRha | 2.2 | 2.5 | 1.14 | [41] |
PgRha | 1.13 | 43.65 | 38.6 | [12] |
TpeRha | 2.99 | 651.37 | 219.83 | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Song, L.; Zhao, L.; Zheng, X.; Feng, W.; Jia, H. An Organic Solvent-Tolerant α-L-Rhamnosidase from Dictyoglomus thermophilum and Its Application in Production of Icariside I from Icariin. Molecules 2025, 30, 2847. https://doi.org/10.3390/molecules30132847
Hu J, Song L, Zhao L, Zheng X, Feng W, Jia H. An Organic Solvent-Tolerant α-L-Rhamnosidase from Dictyoglomus thermophilum and Its Application in Production of Icariside I from Icariin. Molecules. 2025; 30(13):2847. https://doi.org/10.3390/molecules30132847
Chicago/Turabian StyleHu, Jinyue, Lingling Song, Le Zhao, Xiaoke Zheng, Weisheng Feng, and Haoyu Jia. 2025. "An Organic Solvent-Tolerant α-L-Rhamnosidase from Dictyoglomus thermophilum and Its Application in Production of Icariside I from Icariin" Molecules 30, no. 13: 2847. https://doi.org/10.3390/molecules30132847
APA StyleHu, J., Song, L., Zhao, L., Zheng, X., Feng, W., & Jia, H. (2025). An Organic Solvent-Tolerant α-L-Rhamnosidase from Dictyoglomus thermophilum and Its Application in Production of Icariside I from Icariin. Molecules, 30(13), 2847. https://doi.org/10.3390/molecules30132847