Recent Advances in Multi-Atom Catalysts for Sustainable Energy Applications
Abstract
1. Introduction
2. The Reaction Mechanisms of ORR, HER, and OER
2.1. ORR
2.2. HER
2.3. OER
3. DACs
3.1. Noble Metal-Based DACs
3.1.1. Pt-Based DACs
3.1.2. Ir-Based DACs
3.1.3. Ru-Based DACs
Catalyst | HER Activity | OER Activity | ORR Activity | Mass Activity | Stability | Ref. |
---|---|---|---|---|---|---|
Pt/Ni-NC | η = 30 mV TS = 27 mV dec−1 | NA | NA | MA1 = 26.7 A mg−1 (η = 5.0 mV) MA2 = 64.8 A mg−1 (η = 100 mV) | Att. ≈ 0 (2000 cycles of CV test) | [64] |
Fex/Pty-CN | Fe0.1/Pt0.9-CN η = 29 mV TS = 30 mV dec−1 Fe0.25/Pt0.75-CN η = 36 mV TS = 40 mV dec−1 | NA | NA | MA = 3.8 A mg−1 Pt (Fe0.1/Pt0.9-CN, η = 50 mV) | η increased by 51 mV (at 10 mA cm−2) | [69] |
Pt/Ir | NA | J = 26.8 μA·cm−2 (0.5 M H2SO4, η = 0.4 V) | NA | MALD = 557 A·g−1 (η = 0.39 V) | J decreased by 8% (stored in 1.6 M vanadium electrolyte for 1 day) | [80] |
Pt3.6/Ni-S NWs | TS = 114.7 mVdec−1 | NA | NA | MA = 4.37 mA/mg Pt (η = 70 mV) | NA | [81] |
Ce/Se-NC | TS = 51.28 mV·dec−1 | NA | E1/2= 0.886 V vs. RHE | NA | E1/2 decreased 11 mV (8000 cycles) Att. ≈ 0 (at 10 mA·cm−2) | [82] |
Pt/Co-C | NA | NA | TS = 93–113 mVdec−1 I0(0.5at%Co) = 1.13 × 10−5 A/cm2 I0(1at%Co) = 1.59 × 10−5 A/cm2 | MA(0.5at%Co) = 104 mA/mg MA(1at%Co) = 124 mA/mg | Att. ≈ 0 (500 h of stability test) | [83] |
3.2. Non-Noble Metal DACs
3.2.1. Fe-Based DACs
3.2.2. Co-Based DACs
Catalyst | HER Activity | OER Activity | ORR Activity | Mass Activity | Stability | Ref |
---|---|---|---|---|---|---|
Fe2-N-C |
TS = 67 mV dec−1 Eonset = 0.0 V vs. RHE (0.1 mol L−1 HClO4) | E1/2 = 0.37 Vvs. RHE (0.1 mol L−1 KOH) | E1/2 = 0.78 V vs. RHE (0.5 mol/L H2SO4 ) | MA = 0.45 A mg−1 (0.5 mol L−1 H2SO4) | E1/2 decreased 20 mV (20,000 cycles) | [85] |
Fe2N6 |
TS = 67 mV dec−1 Eonset = 0.0 V vs. RHE (0.1 mol L−1 HClO4) | Eonset = 1.5 V vs. RHE (0.1 mol L−1 KOH) | E1/2 = 0.84 V vs. RHE (0.5 mol/L H2SO4) | MA = 0.45 A mg−1 (0.5 mol L−1H2SO4) | E1/2 decreased 24 mV (10,000 cycles) | [86] |
Fe/Zn-N-C |
TS = 75 mV dec−1 (0.1 mol L−1 HClO4) Eonset = 0.0 V vs. RHE (0.1 mol L−1 HClO4) | E1/2 = 0.37 V vs. RHE (0.1 mol L−1 KOH) | E1/2 = 0.808 V vs. RHE (0.1 mol/L HClO4) | MA = 0.30 A mg−1 (0.1 mol L−1 HClO4) | E1/2 decreased 25 mV (2000 cycles) | [87] |
Fe/Co-N-C |
TS = 66 mV dec−1 (0.1 M HClO4) |
Eonset = 1.06 V vs. RHE (0.1 M HClO4) | E1/2 = 0.863 V vs. RHE (0.1 M HClO4) | MA = 0.35 A mg−1 (0.1 M HClO4) | E1/2 decreased 20 mV (50,000 CV cycles test) | [93] |
Fe/Cu-C | TS = 152 mV dec−1 Eonset = −0.335 V ƞ = 150 mV (At 10 mA cm−2) | TS = 163.5 mV dec−1 Eonset = 1.319 V ƞ = 325 mV (at J = 10 mA cm−2) J = 83.8 mA cm−2 (At ƞ = 400 mV) | NA | NA | ΔJ(CUD) = 0 (at a potential of −0.35 V, 24 h chronoamperometry current test) | [97] |
Fe-/Nb-C-SNC | NA |
η
= 390 mV (at J = 10 mA cm−2) |
E
1/2
= 0.922 V (vs. RHE) J = 15.6 mA cm−2 at 0.9 V | TOF = 4.64 e− site−1 s−1 PPD(ZAB) = 314 mW cm−2 PPD(HEMFC) = 1.18 W cm−2 | ΔJ(ACD) = 0 (at a potential of 1.8 V, 24 h chronoamperometry current test) E1/2 decreased 20 mV (50,000 CV cycles test) | [104] |
4. MACs
4.1. Noble Metal MACs
Catalyst | HER Activity | Mass Activity | ORR Activity | Stability | Ref |
---|---|---|---|---|---|
Pt/Ru/Co TAs |
TS = 26.2 mV/dec η = 15 mV (at J = 10 mA/cm2) | MA = 32.9 A/mg (at η = 50 mV) | NA |
η
increased 1 mV (at J = 10 mA/cm2, 20 h test) | [110] |
N−Pt/HEA/C | NA |
MA = 1.34 A/mg Pt (At 0.9 V) SA = 1.93 mA/cm2 (at 0.9 V) | E1/2 = 924 mV | After 30,000 cycles in ADT: MA decreased 20.9%, SA decreased 16.6%, and E1/2 decreased 8 mV After 30,000 accelerated stability test (AST) cycles in MEA, J decreased by 12.3% (at 0.7 V), ECSA decreased by 9.8% | [111] |
Ir/Co/Ni-PHNCs | TS = 26.6 mV dec−1 η = 35 mV (at J = 20 mA/cm2) | NA | TS = 3.8 mV dec−1 η = 303 mV (at J = 10 mA/cm2) | J decreased by 5.5% (1.65 V vs. RHE) The polarization curve offset was 8 mV (1000 cycles durability test) | [112] |
Pt34/Fe5/Ni20/Cu31/Mo9/Ru | TS = 27 mV dec−1 η = 20 mV (1 M KOH) | MA = 11.4 A mg−1 | TS = 69 mV dec−1 | In 1 M KOH with 40 h of the constant current test, J decreased by 5% (HER) and the current density retention rate = 92% (OER). In 0.1 M HClO4 with 40 h of the constant current test, the current density retention rate = 89% (ORR) | [113] |
Fe/Ni/Co/Cr/Ru-HEA NPs | TS = 52.2 mV dec−1 η = 0.002 V (1 M KOH; η = 10 mA cm−2) | MA = 474.39 A g−1 (η = 0.1 V) | TS = 35 mV dec−1 η = 0.321 V (at J = 100 mA cm−2) | ΔV ≈ 0 (J = 250 mA cm−2, over the 3000 h cycle test) | [114] |
4.2. Non-Noble Metal MACs
Catalyst | HER Activity | OER Activity | ORR Activity | Mass Activity | Stability | Ref |
---|---|---|---|---|---|---|
Zn/Co/Fe/TAC/SNC | NA | η = 360 mV (at J = 10 mA cm−2) | TS = 52 mV dec−1 E1/2 = 0.901 V (vs. RHE) J = 45.17 mA cm−2 | NA | Att. ≈ 0 (0.1 M KOH, 5000 cycles stability test) | [115] |
Cox/Ni-MAC | TS = 159.3 mV dec−1 | NA | Eonset = 0.75 V (vs. RHE) | ECSA = 1.61 μF cm−2 | Att. ≈ 0 (0.1 M HClO4, with constant disk potential of 0.5 V) | [117] |
Co/Cr/Fe/Ni/Mo | TS = 46.09 mV dec−1 η = 156.7 mV (1.0 M KOH; J = 10 mA cm−2) |
TS =
2.48 mV dec−1 η = 390 mV (1.0 M KOH; J = 50 mA cm−2.) | NA | NA | Δη ≈ 0 (1.0 M KOH, 14 h test) | [118] |
Fe/Co/Ni/Mn/V HEA/N-CNTs | NA | NA | Eonset = 0.99 V E1/2 = 0.85 V TS = 77.22 mV dec−1 | NA | ΔE1/2 = 0 (10,000 cycles at 10 mV s−1 scan rate) J = 91.3% (10 h test at 0.6 V) | [119] |
Mn/Se @ MWCNT | NA | TS = 54.76 mV dec−1 Eonset = 1.47 V η = 290 mV (at J = 10 mA cm−2) | Eonset = 0.94 V vs. RHE E1/2 = 0.86 V | NA | Att. = 4.7% (1.0 M KOH, 12 h test at 1.52 V) Att. = 9.8% (1.0 M KOH, 12 h test at 1.55 V) | [120] |
5. Summary and Future Prospects
- (1)
- Restricted synthesis methods. The conventional preparation routes of MACs generally rely on high-temperature calcination, which inherently lacks the precise regulation of the location of metal atoms on the support. This limitation obscures the identification of true active sites. Moreover, conventional pyrolysis inevitably induces metal aggregation (particle size > 5 nm) and energy inefficiency (>80% mass loss). Therefore, the development of novel synthesis strategies, which can achieve precise control over the configuration and location of multi-atom ensembles while simultaneously maintaining lower production costs, represents a key research direction in the future.
- (2)
- Mechanistic ambiguity. Current characterization techniques for identifying MACs are limited to accurately distinguish MACs, making it difficult to precisely identify active sites and quantify their respective contributions to catalytic activity. Thus, the application of in situ techniques, such as in situ X-ray absorption spectroscopy (XAS) and in situ infrared spectroscopy (IR), is crucial for a deeper understanding of structure–performance relationships at the atomic level. Furthermore, in situ characterization can also monitor the dynamic evolution of active sites, which provides fundamental insights into the reaction process and clarifies the reaction mechanism.
- (3)
- Traditional approaches generally entail prohibitive experimental labor due to the combinatorial complexity of MACs. The combinatorial optimization of atomic species/ratios exponentially escalates the experimental burden, severely hindering the development of MACs. Nowadays, machine learning can efficiently screen and predict high-performance MAC configurations, thereby drastically reducing experimental screening and accelerating their application in energy conversion and storage fields.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muzaffar, A.; Ahamed, M.B.; Hussain, C.M. Green Supercapacitors: Latest Developments and Perspectives in the Pursuit of Sustainability. Renew. Sustain. Energy Rev. 2024, 195, 114324. [Google Scholar] [CrossRef]
- Luo, S.; Zeng, Z.; Wang, H.; Xiong, W.; Song, B.; Zhou, C.; Duan, A.; Tan, X.; He, Q.; Zeng, G.; et al. Recent Progress in Conjugated Microporous Polymers for Clean Energy: Synthesis, Modification, Computer Simulations, and Applications. Prog. Polym. Sci. 2021, 115, 101374. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, Q.; Wang, J.; Jin, F.; Zhang, P.; Yan, D.; Cheng, P.; Chen, Y.; Zhang, Z. Industry-Compatible Covalent Organic Frameworks for Green Chemical Engineering. Sci. China Chem. 2022, 65, 2144–2162. [Google Scholar] [CrossRef]
- Chakraborty, U. Fuel Crossover and Internal Current in Proton Exchange Membrane Fuel Cell Modeling. Appl. Energy 2016, 163, 60–62. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.; Yan, L.; Yue, B. Improving the Overall Characteristics of Proton Exchange Membranes via Nanophase Separation Technologies: A Progress Review. Fuel Cells 2017, 17, 3–17. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Huo, J.; Meng, X.; Cui, L.; Zhou, Q. Effects of Conducting Channels Microstructure in Proton Exchange Membrane on the Performance of Fuel Cells. Prog. Chem. 2015, 27, 395–403. [Google Scholar]
- Zhao, X.; Zhang, Y.; Wang, X. Research on Testing and Evaluation Technology of Proton Exchange Membrane for Fuel Cell. Energy Rep. 2023, 10, 1943–1950. [Google Scholar]
- Zhang, Y.; Li, J.; Ma, L.; Cai, W.; Cheng, H. Recent Developments on Alternative Proton Exchange Membranes: Strategies for Systematic Performance Improvement. Energy Technol. 2015, 3, 675–691. [Google Scholar] [CrossRef]
- Jiao, D.; Ma, Z.; Li, J.; Han, Y.; Mao, J.; Ling, T.; Qiao, S. Test Factors Affecting the Performance of Zinc-Air Battery. J. Energy Chem. 2020, 44, 1–7. [Google Scholar] [CrossRef]
- Renderos, G.D.; Kuang, J.; Takeuchi, K.J.; Takeuchi, E.S.; Marschilok, A.C.; Wang, L. Bifunctional MnOX Electrocatalysts for Zinc-Air Batteries in Alkaline Electrolytes. Funct. Mater. Lett. 2021, 14, 2130015. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, Z.; Shang, N.; Wang, K.; Zuo, Y.; Wei, M.; Wang, H.; Zhong, D.; Pei, P. Advances in Polymer Electrolytes for Solid-State Zinc-Air Batteries. Mater. Chem. Front. 2023, 7, 3994–4018. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, B.; Fan, X.; Liu, X.; Ding, J.; Hu, W.; Zhong, C. Methods for Producing an Easily Assembled Zinc-Air Battery. MethodsX 2020, 7, 100973. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Teranishi, M.; Naya, S.-i.; Tada, H. Mechanism of the Multiple-Electron Oxygen Reduction Reaction in the Presence of the Binuclear Cu(acac)2 Complex. Chemphyschem 2015, 16, 3392–3396. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Rodriguez, P.; Borchardt, L.; Foelske, A.; Yuan, J.; Herrmann, A.-K.; Geiger, D.; Zheng, Z.; Kaskel, S.; Gaponik, N.; et al. Bimetallic Aerogels: High-Performance Electrocatalysts for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2013, 52, 9849–9852. [Google Scholar] [CrossRef]
- Zhou, J.; Qin, P.; Liu, W.; Liu, Y. Application of Oxygen Reduction Reaction, Oxygen Evolution Reaction and Hydrogen Evolution Reaction in Electrochemical Biosensing. Int. J. Electrochem. Sci. 2022, 17, 221152. [Google Scholar] [CrossRef]
- Abdelghafar, F.; Xu, X.; Jiang, S.P.; Shao, Z. Perovskite for Electrocatalytic Oxygen Evolution at Elevated Temperatures. ChemSusChem 2024, 17, e202301534. [Google Scholar] [CrossRef]
- Gui, L.; Huang, Z.; Li, G.; Wang, Q.; He, B.; Zhao, L. Insights into Ni/Fe Couple in Perovskite Electrocatalysts for Highly Efficient Electrochemical Oxygen Evolution. Electrochim. Acta 2019, 293, 240–246. [Google Scholar] [CrossRef]
- Han, D.-U.; Park, G. Transition Metal-Based Layered Double Hydroxides for Oxygen Evolution Reaction Catalysts. J. Korean Inst. Electr. Electron. Mater. Eng. 2024, 37, 358–373. [Google Scholar]
- Hu, C.; Dai, L. Multifunctional Carbon-Based Metal-Free Electrocatalysts for Simultaneous Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution. Adv. Mater. 2017, 29, 1604942. [Google Scholar] [CrossRef]
- Huo, X.; Yu, H.; Xing, B.; Zuo, X.; Zhang, N. Review of High Entropy Alloys Electrocatalysts for Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reaction. Chem. Rec. 2022, 22, e202200175. [Google Scholar] [CrossRef]
- Wu, X.; Tang, C.; Cheng, Y.; Min, X.; Jiang, S.P.; Wang, S. Bifunctional Catalysts for Reversible Oxygen Evolution Reaction and Oxygen Reduction Reaction. Chem. Eur. J. 2020, 26, 3906–3929. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Huang, Z.; Zhao, M.; Huang, R.; Wang, Z.; Liang, H. Hydrogen Production by Electrocatalysis Using the Reaction of Acidic Oxygen Evolution: A Review. Environ. Chem. Lett. 2022, 20, 3429–3452. [Google Scholar] [CrossRef]
- Du, S.; Zhou, Y.; Tao, L.; Wang, S.; Liu, Z.-Q. Hydrogen Electrode Reactions in Energy-Related Electrocatalysis Systems. ChemsusChem 2024, 17, e202400714. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Pang, W.; Xu, Y.; Guo, A.; Gao, X.; Qiu, X.; Chen, W. Transition Metal Selenides for Electrocatalytic Hydrogen Evolution Reaction. ChemElectroChem 2020, 7, 31–54. [Google Scholar] [CrossRef]
- Murthy, A.P.; Madhavan, J.; Murugan, K. Recent Advances in Hydrogen Evolution Reaction Catalysts on Carbon/Carbon-Based Supports in Acid Media. J. Power Sources 2018, 398, 9–26. [Google Scholar] [CrossRef]
- Sheng, W.; Zhuang, Z.; Gao, M.; Zheng, J.; Chen, J.G.; Yan, Y. Correlating Hydrogen Oxidation and Evolution Activity on Platinum at Different pH with Measured Hydrogen Binding Energy. Nat. Commun. 2015, 6, 5848. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Liu, Y.; Wang, R.; Yang, Y.; Chen, J. A Critical Review of Research Progress for Metal Alloy Materials in Hydrogen Evolution and Oxygen Evolution Reaction. Environ. Sci. Pollut. Res. 2023, 30, 11302–11320. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Zhao, S.; Xie, C.; Huang, Z.; Wang, S. Insights into the Dynamic Evolution of Defects in Electrocatalysts. Adv. Mater. 2023, 35, e2209680. [Google Scholar] [CrossRef]
- Abdelghafar, F.; Xu, X.; Jiang, S.P.; Shao, Z. Designing Single-atom Catalysts toward Improved Alkaline Hydrogen Evolution Reaction. Mater. Rep. Energy 2022, 2, 100144. [Google Scholar] [CrossRef]
- Xu, X.; Zhong, Y.; Wajrak, M.; Bhatelia, T.; Jiang, S.P.; Shao, Z. Grain Boundary Engineering: An Emerging Pathway toward Efficient Electrocatalysis. InfoMat 2024, 6, e12608. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, B.; Feng, X.; Guo, M.; Wang, Y.; Wang, Y.; Wang, K.; Ye, F.; Xu, C.; Liu, J. Novel Anode Catalyst Layer Structure with Gradient Pore Size Distribution for Highly Efficient Proton Exchange Membrane Water Electrolyzers. J. Power Sources 2025, 636, 236581. [Google Scholar] [CrossRef]
- Wang, M.; Chen, M.; Yang, Z.; Liu, G.; Lee, J.K.; Yang, W.; Wang, X. High-Performance and Durable Cathode Catalyst Layer with Hydrophobic C @ PTFE Particles for Low-Pt Loading Membrane Assembly Electrode of PEMFC. Energy Convers. Manag. 2019, 191, 132–140. [Google Scholar] [CrossRef]
- Li, X.; Liao, S. Pore-Filling Type Proton Exchange Membrane for Fuel Cells. Prog. Chem. 2008, 20, 767–770. [Google Scholar]
- Shi, Q.; Feng, C.; Ming, P.; Tang, F.; Zhang, C. Compressive Stress and Its Impact on the Gas Diffusion Layer: A Review. Int. J. Hydrogen Energy 2022, 47, 3994–4009. [Google Scholar] [CrossRef]
- Kim, M.; Yu, H.N.; Lim, J.W.; Lee, D.G. Bipolar Plates Made of Plain Weave Carbon/Epoxy Composite for Proton Exchange Membrane Fuel Cell. Int. J. Hydrogen Energy 2012, 37, 4300–4308. [Google Scholar] [CrossRef]
- Gomez-Marin, A.M.; Feliu, J.M. New Insights into the Oxygen Reduction Reaction Mechanism on Pt(111): A Detailed Electrochemical Study. ChemsusChem 2013, 6, 1091–1100. [Google Scholar] [CrossRef]
- Prokop, M.; Bystron, T.; Paidar, M.; Bouzek, K. H3PO3 Electrochemical Behaviour on a Bulk Pt Electrode: Adsorption and Oxidation Kinetics. Electrochim. Acta 2016, 212, 465–472. [Google Scholar] [CrossRef]
- Cao, W.; Zhang, J.; Li, H. Batteries with High Theoretical Energy Densities. Energy Storage Mater. 2020, 26, 46–55. [Google Scholar] [CrossRef]
- You, D.J.; Kwon, K.; Joo, S.H.; Kim, J.H.; Kim, J.M.; Pak, C.; Chang, H. Carbon-Supported Ultra-High Loading Pt Nanoparticle Catalyst by Controlled Overgrowth of Pt: Improvement of Pt Utilization Leads to Enhanced Direct Methanol Fuel Cell Performance. Int. J. Hydrogen Energy 2012, 37, 6880–6885. [Google Scholar] [CrossRef]
- Chi, J.; Yu, H. Water Electrolysis Based on Renewable Energy for Hydrogen Production. Chin. J. Catal. 2018, 39, 390–394. [Google Scholar] [CrossRef]
- Choi, H.-S.; Hwang, G. Hydrogen Production Systems through Water Electrolysis. Membr. J. 2017, 27, 477–486. [Google Scholar]
- Ham, K.; Bae, S.; Lee, J. Classification and Technical Target of Water Electrolysis for Hydrogen Production. J. Energy Chem. 2024, 95, 554–576. [Google Scholar] [CrossRef]
- Majumdar, A.; Tran, K.D.; Prabhakaran, S.; Kim, D.H.; Tran, D.T.; Kim, N.H.; Lee, J.H. Strain Engineering of Ru-Co2Ni Nanoalloy Encapsulated with Carbon Nanotubes for Efficient Anion and Proton Exchange Membrane Water Electrolysis. Adv. Funct. Mater. 2025, 35, 2420517. [Google Scholar] [CrossRef]
- Duan, S.; Du, Z.; Fan, H.; Wang, R. Nanostructure Optimization of Platinum-Based Nanomaterials for Catalytic Applications. Nanomaterials 2018, 8, 949. [Google Scholar] [CrossRef] [PubMed]
- More, K.; Allard, L.F.; Reeves, S. Atomic Scale Imaging of Platinum Based Catalysts for Polymer Electrolyte Membrane Fuel Cell Cathodes. In Proceedings of the 237th National Meeting and Exposition of the American Chemical Society, Salt Lake City, UT, USA, 22–26 March 2009; p. 237. [Google Scholar]
- Shan, H.; Chen, W.; Ma, Y.; Shi, F.; Wu, J. Corrosion-Induced Degradation of Platinum Based Oxygen Reduction Reaction Catalysts and In Situ Investigation. Abstr. Pap. Am. Chem. Soc. 2017, 254, 1155. [Google Scholar]
- Zhang, T.; Qiao, B.; Wang, A.; Yang, X.; Allard, L.F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J. Single-Atom Catalysis of CO Oxidation Using Pt1/FeOX. Nat. Chem. 2011, 3, 634–641. [Google Scholar]
- Iqbal, B.; Saleem, M.; Arshad, S.N.; Rashid, J.; Hussain, N.; Zaheer, M. One-Pot Synthesis of Heterobimetallic Metal-Organic Frameworks (MOFs) for Multifunctional Catalysis. Chem. Eur. J. 2019, 25, 10490–10498. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Jun, K.-W.; Kang, S.C.; Zhang, C.; Kwak, G.; Park, J.-M.; Kim, H.-S. Fe-Co/Alumina Catalysts for Production of High Calorific Synthetic Natural Gas: Effect of Fe/Co Ratio. J. Ind. Eng. Chem. 2018, 66, 396–403. [Google Scholar] [CrossRef]
- Ma, X.; Sun, Q.; Ying, W.; Fang, D. Effects of the Ratio of Fe to Co over Fe/Co-SiO2 Bimetallic Catalysts on Their Catalytic Performance for Fischer-Tropsch Synthesis. J. Nat. Gas Chem. 2009, 18, 232–236. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, Y.; Li, L.; Shi, Y.; Zhang, Y.; Wei, L.; Dong, C.L.; Lin, Z.; Su, J. Concurrently Boosting Activity and Stability of Oxygen Reduction Reaction Catalysts via Judiciously Crafting Fe-Mn Dual Atoms for Fuel Cells. Nanomicro Lett. 2024, 17, 88. [Google Scholar] [CrossRef]
- Rebollar, L.; Intikhab, S.; Oliveira, N.J.; Yan, Y.S.; Xu, B.J.; McCrum, I.T.; Snyder, J.D.; Tang, M.H. Beyond Adsorption Descriptors in Hydrogen Electrocatalysis. ACS Catal. 2020, 10, 14747–14762. [Google Scholar] [CrossRef]
- Chen, Z.W.; Li, J.; Ou, P.; Huang, J.E.; Wen, Z.; Chen, L.; Yao, X.; Cai, G.; Yang, C.C.; Singh, C.V.; et al. Unusual Sabatier Principle on High Entropy Alloy Catalysts for Hydrogen Evolution Reactions. Nat. Commun. 2024, 15, 359. [Google Scholar] [CrossRef] [PubMed]
- Ooka, H.; Huang, J.; Exner, K.S. The Sabatier Principle in Electrocatalysis: Basics, Limitations, and Extensions. Front. Energy Res. 2021, 9, 654460. [Google Scholar] [CrossRef]
- Liu, C.; Yang, X.; Jia, Z.; Pan, J.; Zhao, F.; Ban, Y.; Cui, X.; Bai, Z.; Yang, L. Boosted Electron Accumulation around Fe Atom by Asymmetry Coordinated FeN3S1 for Efficient Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2024, 90, 1003–1011. [Google Scholar] [CrossRef]
- Wroblowa, H.S.; Pan, Y.-C.; Razumney, G. Electroreduction of Oxygen: A New Mechanistic Criterion. J. Electroanal. Chem. 1976, 69, 195–201. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Xia, C.A.; Wang, H.F.; Tang, C. Recent Advances in Electrocatalytic Oxygen Reduction for On-Site Hydrogen Peroxide Synthesis in Acidic Media. J. Energy Chem. 2022, 67, 432–450. [Google Scholar] [CrossRef]
- Li, Z.; Li, B.; Yu, M.; Yu, C.; Shen, P.K. Amorphous Metallic Ultrathin Nanostructures: A Latent Ultra-High-Density Atomic-Level Catalyst for Electrochemical Energy Conversion. Int. J. Hydrogen Energy 2022, 47, 26956–26977. [Google Scholar] [CrossRef]
- Song, W.-S.; Wang, M.; Zhan, X.; Wang, Y.-J.; Cao, D.-X.; Song, X.-M.; Nan, Z.-A.; Zhang, L.; Fan, F.R. Modulating the Electronic Structure of Atomically Dispersed Fe-Pt Dual-Site Catalysts for Efficient Oxygen Reduction Reactions. Chem. Sci. 2023, 14, 3277–3285. [Google Scholar] [CrossRef]
- Li, X.-P.; Huang, C.; Han, W.-K.; Ouyang, T.; Liu, Z.-Q. Transition Metal-Based Electrocatalysts for Overall Water Splitting. Chin. Chem. Lett. 2021, 32, 2597–2616. [Google Scholar] [CrossRef]
- Lu, F.; Zhou, M.; Zhou, Y.; Zeng, X. First-Row Transition Metal Based Catalysts for the Oxygen Evolution Reaction under Alkaline Conditions: Basic Principles and Recent Advances. Small 2017, 13, 1701931. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Li, J.L.; Li, X.P.; Yang, S.; Luo, W.; Zhang, Y.J.; Kim, S.H.; Kim, D.H.; Shinde, S.S.; Li, Y.F.; et al. In-Situ Reconstructed Ru Atom Array on α-MnO2 with Enhanced Performance for Acidic Water Oxidation. Nat. Catal. 2021, 4, 1012–1023. [Google Scholar] [CrossRef]
- Da, Y.; Tian, Z.; Jiang, R.; Liu, Y.; Lian, X.; Xi, S.; Shi, Y.; Wang, Y.; Lu, H.; Cui, B.; et al. Dual Pt/Ni Atoms Dispersed on N-Doped Carbon Nanostructure with Novel (Ni/Pt)-N4C2 Configurations for Synergistic Electrocatalytic Hydrogen Evolution Reaction. Sci. China Mater. 2022, 66, 1389–1397. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, P.; Liu, B.; Meng, Q.; Yang, X.; Li, Y.; Han, J.; Wang, Y. Long-Range Pt-Ni Dual Sites Boost Hydrogen Evolution through Optimizing the Adsorption Configuration. Nano Res. 2023, 17, 3700–3706. [Google Scholar] [CrossRef]
- Eiler, K.; Alcaide, F.; García-Lecina, E.; Sort, J.; Pellicer, E. Mesoporous Ni/Pt Nanoparticles on Ni Foam by Electrodeposition: Dual Porosity for Efficient Alkaline Hydrogen Evolution. Int. J. Hydrogen Energy 2025, 99, 448–457. [Google Scholar] [CrossRef]
- Pei, A.; Xie, R.; Zhang, Y.; Feng, Y.; Wang, W.; Zhang, S.; Huang, Z.; Zhu, L.; Chai, G.; Yang, Z.; et al. Effective Electronic Tuning of Pt Single Atoms via Heterogeneous Atomic Coordination of (Co,Ni)(OH)2 for Efficient Hydrogen Evolution. Energy Environ. Sci. 2023, 16, 1035–1048. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhao, B.; Long, X.; Feng, R.; Shakouri, M.; Paterson, A.; Xiao, Q.; Zhang, Y.; Fu, X.Z.; Luo, J.L. Interfacial Electronic Modulation of Dual-Monodispersed Pt-Ni3S2 as Efficacious Bi-Functional Electrocatalysts for Concurrent H2 Evolution and Methanol Selective Oxidation. Nano-Micro Lett 2024, 16, 80. [Google Scholar] [CrossRef]
- Liang, Q. Atomic-Level Regulation of Fe-Pt Based Catalysts for Alkaline Hydrogen Evolution Reaction. Ph.D. Thesis, Jilin University, Changchun, China, 2024. [Google Scholar]
- Zhou, W.; Su, H.; Cheng, W.; Li, Y.; Jiang, J.; Liu, M.; Yu, F.; Wang, W.; Wei, S.; Liu, Q. Regulating the Scaling Relationship for High Catalytic Kinetics and Selectivity of the Oxygen Reduction Reaction. Nat. Commun. 2022, 13, 6414. [Google Scholar] [CrossRef]
- Zhu, Y.; Guo, C.; Zhao, Y.; Song, W.; He, Y.; He, Z.; Yu, Z. A Bimetallic Catalyst Preparation Method and Application. CN 117423839 A, 19 January 2024. [Google Scholar]
- Xiong, X.; Tang, J.; Ji, Y.; Xue, W.; Wang, H.; Liu, C.; Zeng, H.; Dai, Y.; Peng, H.J.; Zheng, T.; et al. High-Efficiency Iridium-Yttrium Alloy Catalyst for Acidic Water Electrolysis. Adv. Energy Mater. 2024, 14, 2304479. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, Y.; Wu, C.; Xu, W.; Xi, S.; Chen, M.; Yang, L.; Zhou, Y.; He, Q.; Li, X.; et al. Triggering Electronic Coupling between Neighboring Hetero-Diatomic Metal Sites Promotes Hydrogen Evolution Reaction Kinetics. Nano Energy 2022, 98, 107296. [Google Scholar] [CrossRef]
- Wang, S.; Feng, G.; Wang, J. Potential-Dependent OER Performance on Dual-Fe/Ir Sites by Grand Canonical Based Constant Charge Method. Mol. Catal. 2023, 549, 113464. [Google Scholar] [CrossRef]
- Bai, X.; Yin, H.; Yang, Z. High-Density Single Nickel Sites via an Encapsulation-Substitution Strategy for Nonenzymatic Glucose Sensing. ACS Appl. Nano Mater. 2024, 7, 24617–24626. [Google Scholar] [CrossRef]
- Liu, M.; Chun, H.; Yang, T.-C.; Hong, S.J.; Yang, C.-M.; Han, B.; Lee, L.Y.S. Tuning the Site-to-Site Interaction in Ru-M (M=Co, Fe, Ni) Diatomic Electrocatalysts to Climb up the Volcano Plot of Oxygen Electroreduction. ACS Nano 2022, 16, 10657–10666. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, C.; Cao, Y.; Ji, J.-Y.; Li, Z.-C.; Niu, Z.; Gu, H.; Braunstein, P.; Lang, J.-P. Electronic Engineering of Co/Ru Diatomic Sites and Ru Nanoparticles for Synergistic Promotion of Hydrogen Evolution. Nano Res. 2023, 17, 3714–3723. [Google Scholar] [CrossRef]
- Han, L.; Ou, P.; Liu, W.; Wang, X.; Wang, H.-T.; Zhang, R.; Pao, C.-W.; Liu, X.; Pong, W.-F.; Song, J.; et al. Design of Ru-Ni Diatomic Sites for Efficient Alkaline Hydrogen Oxidation. Sci. Adv. 2022, 8, eabm3779. [Google Scholar] [CrossRef]
- Lin, X.; Baranwal, R.K.; Wang, B.; Fan, Z. Single Atom Catalyst Anchored on Nitrogen-Doped Porous Carbon as an Effective Sulfur Host for Lithium-Sulfur Batteries. In Electrochemical Society Meeting Abstracts 245; The Electrochemical Society: Honolulu, HI, USA, 2024; p. 3087. [Google Scholar]
- Schlicht, S.; Percin, K.; Kriescher, S.; Hofer, A.; Weidlich, C.; Wessling, M.; Bachmann, J. Atomic Layer Deposition for Efficient Oxygen Evolution Reaction at Pt/Ir Catalyst Layers. Beilstein J. Nanotechnol. 2020, 11, 952–959. [Google Scholar] [CrossRef]
- Liu, Z.; Qi, J.; Liu, M.; Zhang, S.; Fan, Q.; Liu, H.; Liu, K.; Zheng, H.; Yin, Y.; Gao, C. Aqueous Synthesis of Ultrathin Platinum/Non-Noble Metal Alloy Nanowires for Enhanced Hydrogen Evolution Activity. Angew. Chem. Int. Ed. 2018, 57, 11678–11682. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, S.; Sun, M.; Wang, S.; Huang, B.; Du, Y. Non-Bonding Modulations between Single Atomic Cerium and Monodispersed Selenium Sites towards Efficient Oxygen Reduction. Nano Res. 2024, 17, 4753–4763. [Google Scholar] [CrossRef]
- Rao, C.S.; Singh, D.M.; Sekhar, R.; Rangarajan, J. Pt-Co Electrocatalyst with Varying Atomic Percentage of Transition Metal. Int. J. Hydrogen Energy 2011, 36, 14805–14814. [Google Scholar] [CrossRef]
- Wei, J.; Xia, D.; Wei, Y.; Zhu, X.; Li, J.; Gan, L. Probing the Oxygen Reduction Reaction Intermediates and Dynamic Active Site Structures of Molecular and Pyrolyzed Fe-N-C Electrocatalysts by In Situ Raman Spectroscopy. Acs Catalysis 2022, 12, 7811–7820. [Google Scholar] [CrossRef]
- Ye, W.; Chen, S.; Lin, Y.; Yang, L.; Chen, S.; Zheng, X.; Qi, Z.; Wang, C.; Long, R.; Chen, M.; et al. Precisely Tuning the Number of Fe Atoms in Clusters on N-Doped Carbon toward Acidic Oxygen Reduction Reaction. Chem 2019, 5, 2865–2878. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, T.; Ge, J.; Lin, Y.; Du, Z.; Zhong, C.; Wang, W.; Jiao, Q.; Yuan, R.; Tian, Y.; et al. High-Density Planar-like Fe2N6 Structure Catalyzes Efficient Oxygen Reduction. Matter 2020, 3, 509–521. [Google Scholar] [CrossRef]
- Li, H.; Wen, Y.; Jiang, M.; Yao, Y.; Zhou, H.; Huang, Z.; Li, J.; Jiao, S.; Kuang, Y.; Luo, S. Understanding of Neighboring Fe-N4-C and Co-N4-C Dual Active Centers for Oxygen Reduction Reaction. Adv. Funct. Mater. 2021, 31, 2011289. [Google Scholar] [CrossRef]
- Tang, T.; Han, J.; Wang, Z.; Niu, X.; Guan, J. Diatomic Fe-Co catalysts synergistically catalyze oxygen evolution reaction. Nano Res. 2024, 17, 3794–3800. [Google Scholar] [CrossRef]
- Wu, L.; Chen, Y.; Shao, C.; Wang, L.; Li, B. Engineering Synergetic Fe-Co Atomic Pairs Anchored on Porous Carbon for Enhanced Oxygen Reduction Reaction. Adv. Funct. Mater. 2024, 34, 2408257. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, D.; Li, J.; Dong, L.; Ong, W.-J.; He, Y. A highly Efficient Fenton-like Catalyst Based on Isolated Diatomic Fe-Co Anchored on N-doped Porous Carbon. Chem. Eng. J. 2021, 404, 126376. [Google Scholar] [CrossRef]
- Du, J.; Ding, Y.; Guo, Y.; Sun, L.; Li, F. Iron Atomic Cluster Supported on Co/NC having Superior Water Oxidation Activity over Iron Single Atom. iScience 2023, 26, 107339. [Google Scholar] [CrossRef]
- Woo, D.; Kim, J.; Xu, L.; Park, J.; Park, C.Y.; Yi, S.Y.; Kim, S.; Jun, H.; Kim, S.; Lee, J. Selective Self-Assembly of Atomically Dispersed Iron and Cobalt Dual Atom Catalyst on Anisotropic Mesoporous Carbon Particles for High Performance Seawater Batteries. Adv. Funct. Mater. 2024, 35, 2414749. [Google Scholar] [CrossRef]
- Bai, L.; Hsu, C.S.; Alexander, D.T.L.; Chen, H.M.; Hu, X. A Cobalt-Iron Double-Atom Catalyst for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2019, 141, 14190–14199. [Google Scholar] [CrossRef]
- Cheng, Y.; He, S.; Veder, J.P.; De Marco, R.; Yang, S.z.; Jiang, S.P. Atomically Dispersed Bimetallic Fe/Ni Catalysts as Highly Efficient Bifunctional Catalysts for Reversible Oxygen Evolution and Oxygen Reduction Reactions. ChemElectroChem 2019, 6, 3478–3487. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, X.; Li, H.; Xia, Z.; Yu, S.; Wang, S.; Sun, G. Iron-based Binary Metal-Organic Framework Nanorods as an Efficient Catalyst for the Oxygen Evolution Reaction. Chin. J. Catal. 2021, 42, 637–647. [Google Scholar] [CrossRef]
- Qin, T.; Pei, Z.; Qiu, J.; Wang, J.; Xu, Z.; Guo, X. Layered Porous Ring-Like Carbon Network Protected Fe/Ni Metal Atomic Pairs for Bifunctional Oxygen Electrocatalysis and Rechargeable Zn-Air Batteries. Small 2025, 21, e2402762. [Google Scholar] [CrossRef] [PubMed]
- Georgijević, J.; Milikić, J.; Aykut, Y.; Zdolšek, N.; Santos, D.M.F.; Bayrakçeken, A.; Šljukić, B. Fe, Cu-decorated Carbon Material Produced from Ionic Liquids as Resourceful Electrocatalyst for Water Splitting. J. Electroanal. Chem. 2024, 967, 118455. [Google Scholar] [CrossRef]
- Wang, R.; Xiang, T.; Jiang, M.; Wang, R.; Zhang, Z.; Cheng, R.; Wang, Y.; Guo, H.; Chen, C.; Yang, J. Fe/Cu Bimetallic Single-Atom Catalyst: Empowering Highly Efficient Oxygen Reduction Kinetics. J. Electrochem. Soc. 2025, 172, 036507. [Google Scholar] [CrossRef]
- Gong, W.; Guo, P.; Zhang, L.; Fu, R.; Yan, M.; Wu, C.; Sun, M.; Su, G.; Wang, Y.; Ye, J.; et al. Atomically Dispersed Bimetallic Single-Atom Cu, Fe/NC as pH-Universal ORR Electrocatalyst. Chem. Eng. J. 2025, 507, 160400. [Google Scholar] [CrossRef]
- Yao, P.; Zhu, S.; Cui, Z.; Liang, Y.; Li, Z.; Wu, S. Self-Supported Amorphous Nanoporous Nickel-Cobalt Phosphide Catalyst for Hydrogen Evolution Reaction. Prog. Nat. Sci. Mater. Int. 2021, 31, 201–206. [Google Scholar]
- Sun, L.; Reddu, V.; Wang, X. Multi-Atom Cluster Catalysts for Efficient Electrocatalysis. Chem. Soc. Rev. 2022, 51, 8923–8956. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, Z.; Zhang, S.; Guan, X.; Xu, W.; Liang, Y.; Jiang, H.; Li, Z.; Wu, S.; Cui, Z.; et al. Asymmetric-Charge-Distributed Co/Mn Diatomic Catalyst Enables Efficient Oxygen Reduction Reaction. Adv. Funct. Mater. 2025, 2504260, 1–12. [Google Scholar] [CrossRef]
- Jiao, M.; Chen, Z.; Wang, N.; Liu, L. DFT calculation screened Co/Cu and Co/Fe Dual-Atom Catalysts with Remarkable Hydrogen Evolution Reaction Activity. Appl. Catal. B Environ. 2023, 324, 122244. [Google Scholar] [CrossRef]
- Sui, R.; Liu, B.; Chen, C.; Tan, X.; He, C.; Xin, D.; Chen, B.; Xu, Z.; Li, J.; Chen, W.; et al. Constructing Asymmetric Fe-Nb Diatomic Sites to Enhance ORR Activity and Durability. J. Am. Chem. Soc. 2024, 146, 26442–26453. [Google Scholar] [CrossRef]
- Loeffler, T.; Ludwig, A.; Rossmeisl, J.; Schuhmann, W. What Makes High-Entropy Alloys Exceptional Electrocatalysts? Angew. Chem. Int. Ed. 2021, 60, 26894–26903. [Google Scholar] [CrossRef] [PubMed]
- Deng, W. Preparation of Multiple Pt-Based Nanocatalysts and Its Methanol Electrocatalytic Performance. Master’s Thesis, Xiangtan University, Xiangtan, China, 2022. [Google Scholar]
- Luo, Y.; Wang, Y.; Wang, Y.; Huang, H.; Zhang, L.; Zhang, H.; Wang, Y. Illumination Enabling Monoatomic Fe and Pt-Based Catalysts on NC/TiO for Efficient and Stable Oxygen Reduction. Appl. Catal. B Environ. 2022, 317, 121797. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, H.; Ali, A.; Wang, R.; Shen, P. Heterostructure PtNi Supported by Pd Nanosheets High-Performance Catalysts for Multifunctional Fuel Cell. Int. J. Hydrogen Energy 2023, 48, 20655–20666. [Google Scholar] [CrossRef]
- Wang, S. Preparation of Platinum/Palladium Copper-Based Nanocrystals and Exploration of Their Electrochemical Performance. Master’s Thesis, Guizhou University, Guiyang, China, 2023. [Google Scholar]
- Zhang, J.; Song, Z.; Yao, X.; Guan, Y.; Huo, Z.; Chen, N.; Zhang, L.; Sun, X. Precisely Constructing Asymmetric Triple Atoms for Highly Efficient Electrocatalysis. Chem 2025, 11, 102498. [Google Scholar] [CrossRef]
- Zhao, X.; Cheng, H.; Chen, X.; Zhang, Q.; Li, C.; Xie, J.; Marinkovic, N.; Ma, L.; Zheng, J.-C.; Sasaki, K. Multiple Metal–Nitrogen Bonds Synergistically Boosting the Activity and Durability of High-Entropy Alloy Electrocatalysts. J. Am. Chem. Soc. 2024, 146, 3010–3022. [Google Scholar] [CrossRef]
- Feng, J.; Lv, F.; Zhang, W.; Li, P.; Wang, K.; Yang, C.; Wang, B.; Yang, Y.; Zhou, J.; Lin, F.; et al. Iridium-Based Multi-metallic Porous Hollow Nanocrystals for Efficient Overall-Water-Splitting Catalysis. Adv. Mater. 2017, 29, 1703798. [Google Scholar] [CrossRef]
- Chen, Z.; Wen, J.; Wang, C.; Kang, X. Convex Cube-Shaped Pt34Fe5Ni20Cu31Mo9Ru High Entropy Alloy Catalysts toward High-Performance Multifunctional Electrocatalysis. Small 2022, 18, e2204255. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, S.; Meng, A.C.; Zheng, B.; Chen, Z.; Tour, J.M.; Lin, J. Laser-Induced High-Entropy Alloys as Long-Duration Bifunctional Electrocatalysts for Seawater Splitting. Energy Environ. Sci. 2024, 17, 8670–8682. [Google Scholar] [CrossRef]
- Chen, C.; Chai, J.; Sun, M.; Guo, T.; Lin, J.; Zhou, Y.; Sun, Z.; Zhang, F.; Zhang, L.; Chen, W.; et al. An Asymmetrically Coordinated Zn/Co/Fe Hetero-Trimetallic Atom Catalyst Enhances the Electrocatalytic Oxygen Reaction. Energy Environ. Sci. 2024, 17, 2298–2308. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, R.; Liu, C.; Lu, J.; Zou, Y.; Yuan, L.; Wang, J.; Wang, G.; Zhao, Y.; Yu, C. Trimetallic Sulfide Hollow Superstructures with Engineered d-Band Center for Oxygen Reduction to Hydrogen Peroxide in Alkaline Solution. Adv. Sci. 2022, 9, e2104768. [Google Scholar] [CrossRef]
- Tong, Y.; Liu, J.; Su, B.J.; Juang, J.Y.; Hou, F.; Yin, L.; Dou, S.X.; Liang, J. High-Rate Electrochemical H2O2 Production over Multi-Metallic Atom Catalysts under Acidic-Neutral Conditions. Carbon Energy 2023, 6, e378. [Google Scholar] [CrossRef]
- Huo, X.; Zuo, X.; Wang, X.; Xing, B.; Zhang, N. High Entropy Alloy CoCrFeNiMo Reinforced Electrocatalytic Performance for High-Efficient Electrocatalytic Water Splitting. Chem. Asian J. 2023, 18, e202300456. [Google Scholar] [CrossRef]
- Wu, D.-H.; Ul Haq, M.; Zhang, L.; Feng, J.-J.; Yang, F.; Wang, A.-J. Noble metal-free FeCoNiMnV High Entropy Alloy Anchored on N-Doped Carbon Nanotubes with Prominent Activity and Durability for Oxygen Reduction and Zinc-Air Batteries. J. Colloid Interface Sci. 2024, 662, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Marley-Hines, M.; Chakravarty, S.; Nath, M. Multi-Walled Carbon Nanotube Supported Manganese Selenide as a Highly Active Bifunctional OER and ORR Electrocatalyst. J. Mater. Chem. A 2022, 10, 6772–6784. [Google Scholar] [CrossRef]
Four-Electron Transfer Process Under Acidic Conditions | Four-Electron Transfer Process Under Alkaline Conditions |
---|---|
* + O2 → O2* | * + O2 → O2* |
O2* + H+ + e− → OOH* | O2* + H2O + e− → OOH* + OH− |
OOH* + H+ + e− → O* + H2O | OOH* + H2O + e− → O* + OH− |
O* + H+ + e− → * + H2O | O* + H2O + e− → * + OH− |
Two-Electron Transfer Process Under Acidic Conditions | Two-Electron Transfer Process Under Alkaline Conditions |
---|---|
* + O2 → O2* | * + O2 → O2* |
O2* + H+ + e− → OOH* | O2* + H2O + e− → OOH* + OH− |
OOH* + H+ + e− → * + H2O2 | OOH* + H2O + e− → * + H2O2 + OH− |
The Elementary Reaction Steps of HER Under Alkaline Conditions | The Elementary Reaction Steps of HER in Acidic Conditions |
---|---|
H2O + e− → OH− + Hads (Volmer) | H+ + e− + * → Hads (Volmer) |
Hads + H2O + e− → OH− + H2 (Heyrovsky) | Hads + H+ + e− → H2 (Heyrovsky) |
Or 2Hads → H2 (Tafel) | Or 2Hads → H2 (Tafel) |
OER Under Acid Reaction Mechanism | OER Under Alkaline Reaction Mechanism |
---|---|
H2O(l) + * → *OH + H+ + e− | * + OH− → *OH + e− |
*OH → *O + H+ + e− | *OH + OH− → *O + H2O(l) + e− |
H2O(l) + *O → *OOH + H+ + e− | *O + OH− → *OOH + e− |
*OOH → * +O2(g) + H+ + e− | *OOH + OH− → * + O2(g) + H2O(l) + e− |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Cheng, B.; Cai, S.; Li, X.; Lu, D.; Zhang, N.; Chen, C.; Zhang, H.; Feng, Y.; Duan, L.; et al. Recent Advances in Multi-Atom Catalysts for Sustainable Energy Applications. Molecules 2025, 30, 2818. https://doi.org/10.3390/molecules30132818
Wang Q, Cheng B, Cai S, Li X, Lu D, Zhang N, Chen C, Zhang H, Feng Y, Duan L, et al. Recent Advances in Multi-Atom Catalysts for Sustainable Energy Applications. Molecules. 2025; 30(13):2818. https://doi.org/10.3390/molecules30132818
Chicago/Turabian StyleWang, Qing, Bo Cheng, Shichang Cai, Xiaoxiao Li, Di Lu, Naying Zhang, Chaoqun Chen, Hanlu Zhang, Yagang Feng, Lei Duan, and et al. 2025. "Recent Advances in Multi-Atom Catalysts for Sustainable Energy Applications" Molecules 30, no. 13: 2818. https://doi.org/10.3390/molecules30132818
APA StyleWang, Q., Cheng, B., Cai, S., Li, X., Lu, D., Zhang, N., Chen, C., Zhang, H., Feng, Y., Duan, L., Qin, S., & Meng, Z. (2025). Recent Advances in Multi-Atom Catalysts for Sustainable Energy Applications. Molecules, 30(13), 2818. https://doi.org/10.3390/molecules30132818