Computational Kinetic Study on the Intramolecular H-Migration of Hydroperoxyalkylperoxy Radicals (•OOQOOH) in Normal-Alkyl Cyclohexanes
Abstract
1. Introduction
2. Results
2.1. Potential Energy Surfaces
2.2. Lowest Energy Conformations
2.3. Energy Barriers for Subclasses
2.3.1. Subclasses of Reaction Centers Containing Alkyl Side Chains
2.3.2. Subclasses of Reaction Centers Involving Only Cycle Atoms
2.4. High-Pressure Limit Rate Constants and Rate Rules
2.4.1. High-Pressure Limit Rate Rules for Reactions with •P(OOH)2 Products
2.4.2. Comparing the High-Pressure Limit Rate Constants with Reported Published Mechanisms
- (1)
- Subclasses of reaction centers containing alkyl side chains.
2.4.3. Comparison of High-Pressure Limit Rate Rules Between Normal-Alkyl Cyclohexanes and Non-Cyclic Alkane Systems
2.5. Kinetic Modeling
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Westbrook, C.K.; Smith, P.J. Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels; Office of Science U.S. Department of Energy: Germantown, MD, USA, 2006. [Google Scholar]
- Sirjean, B.; Buda, F.; Hakka, H.; Glaude, P.A.; Fournet, R.; Warth, V.; Battin-Leclerc, F.; Ruiz-Lopez, M. The autoignition of cyclopentane and cyclohexane in a shock tube. Proc. Combust. Inst. 2007, 31, 277–284. [Google Scholar] [CrossRef]
- McEnally, C.S.; Pfefferle, L.D. Experimental study of fuel decomposition and hydrocarbon growth processes for cyclohexane and related compounds in nonpremixed flames. Combust. Flame 2004, 136, 155–167. [Google Scholar] [CrossRef]
- Wang, Z.D.; Popolan-Vaida, D.M.; Chen, B.; Moshammer, K.; Mohamed, S.Y.; Wang, H.; Sioud, S.; Raji, M.A.; Kohse-Höinghaus, K.; Hansen, N.; et al. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds. Proc. Natl. Acad. Sci. USA 2017, 114, 13102–13107. [Google Scholar] [CrossRef]
- Zador, J.; Taatjes, C.A.; Fernandes, R.X. Kinetics of elementary’ reactions in low-temperature autoignition chemistry. Prog. Energy Combust. Sci. 2011, 37, 371–421. [Google Scholar] [CrossRef]
- Merchant, S.S.; Goldsmith, C.F.; Vandeputte, A.G.; Burke, M.P.; Klippenstein, S.J.; Green, W.H. Understanding low-temperature first-stage ignition delay: Propane. Combust. Flame 2015, 162, 3658–3673. [Google Scholar] [CrossRef]
- Liu, M.X.; Hui, X.; Xue, X.; Lin, Y.Z.; Zhou, C.W. From electronic structure to model application for alkyl cyclohexane combustion chemistry: H-atom abstraction reactions by HO2 radical. Phys. Chem. Chem. Phys. 2023, 25, 10795–10810. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wang, J. Multi-structural variational kinetics study on hydrogen abstraction reactions of cyclopentanol and cyclopentane by hydroperoxyl radical with anharmonicity, recrossing and tunneling effects. Phys. Chem. Chem. Phys. 2023, 25, 12943. [Google Scholar] [CrossRef]
- Klippenstein, S.J. From theoretical reaction dynamics to chemical modeling of combustion. Proc. Combust. Inst. 2017, 36, 77–111. [Google Scholar] [CrossRef]
- Bugler, J.; Somers, K.P.; Silke, E.J.; Curran, H.J. Revisiting the kinetics and thermodynamics of the low-temperature oxidation pathways of alkanes: A case study of the three pentane isomers. J. Phys. Chem. A 2015, 119, 7510–7527. [Google Scholar] [CrossRef]
- Zhang, K.W.; Banyon, C.; Togbe, C.; Dagaut, P.; Bugler, J.; Curran, H.J. An experimental and kinetic modeling study of n-hexane oxidation. Combust. Flame 2015, 162, 4194–4207. [Google Scholar] [CrossRef]
- Mohamed, S.Y.; Cai, L.; Khaled, F.; Banyon, C.; Wang, Z.; Al Rashidi, M.J.; Pitsch, H.; Curran, H.J.; Farooq, A.; Sarathy, S.M. Modeling ignition of a heptane isomer: Improved thermodynamics, reaction pathways, kinetics, and rate rule optimizations for 2-methylhexane. J. Phys. Chem. A 2016, 120, 2201–2217. [Google Scholar] [CrossRef]
- Zhang, K.; Banyon, C.; Bugler, J.; Curran, H.J.; Rodriguez, A.; Herbinet, O.; Battin-Leclerc, F.; B’Chir, C.; Heufer, K.A. An updated experimental and kinetic modeling study of n-heptane oxidation. Combust. Flame 2016, 172, 116–135. [Google Scholar] [CrossRef]
- Atef, N.; Kukkadapu, G.; Mohamed, S.Y.; Rashidi, M.A.; Banyon, C.; Mehl, M.; Heufer, K.A.; Nasir, E.F.; Alfazazi, A.; Das, A.K.; et al. A comprehensive iso-Octane combustion model with improved thermochemistry and chemical kinetics. Combust. Flame 2017, 178, 111–134. [Google Scholar] [CrossRef]
- Sharma, S.; Raman, S.; Green, W.H. Intramolecular hydrogen migration in alkylperoxy and hydroperoxyalkylperoxy radicals: Accurate treatment of hindered rotors. J. Phys. Chem. A 2010, 114, 5689–5701. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, A. Systematic computational study on the unimolecular reactions of alkylperoxy (RO2), hydroperoxyalkyl (QOOH), and hydroperoxyalkylperoxy (O2QOOH) radicals. J. Phys. Chem. A 2011, 115, 3301–3325. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Sun, X.H.; Li, Z.R.; Chen, F.F.; Li, X.Y. Pressure-dependent rate rules for intramolecular H-migration reactions of hydroperoxyalkylperoxy radicals in low temperature. J. Phys. Chem. A 2017, 121, 3001–3018. [Google Scholar] [CrossRef]
- Zhang, F.; Dibble, T.S. Effects of olefin group and its position on the kinetics for intramolecular H-shift and HO2 elimination of alkenylperoxy radicals. J. Phys. Chem. A 2010, 115, 655–663. [Google Scholar] [CrossRef]
- Li, S.J.; Tan, N.X.; Yao, Q.; Li, Z.R.; Li, X.Y. Calculation of rate constants for intramolecular hydrogen migration reactions of alkylperoxy radicals. Acta Phys.-Chim. Sin. 2015, 31, 859–865. [Google Scholar]
- Villano, S.M.; Huynh, L.K.; Carstensen, H.H. High-pressure rate rules for alkyl+ O2 reactions. 1. The dissociation, concerted elimination, and isomerization channels of the alkyl peroxy radical. J. Phys. Chem. A 2011, 115, 13425–13442. [Google Scholar] [CrossRef]
- Yang, Y.; Boehman, A.L.; Simmie, J.M. Uniqueness in the low temperature oxidation of cycloalkanes. Combust. Flame 2010, 157, 2357–2368. [Google Scholar] [CrossRef]
- Knepp, A.M.; Meloni, G.; Jusinski, L.E.; Taatjes, C.A.; Cavallotti, C.; Klippenstein, S.J. Measurements theory, and modeling of OH and HO2 formation in the reaction of cyclohexyl radicals with O2. Phys. Chem. Chem. Phys. 2007, 9, 4315–4331. [Google Scholar] [CrossRef] [PubMed]
- Sirjean, B.; Glaude, P.A.; Ruiz-Lopez, M.F.; Fournet, R. Theoretical kinetic study of the reactions of cycloalkylperoxy radicals. J. Phys. Chem. A 2009, 113, 6924–6935. [Google Scholar] [CrossRef]
- Fernandes, R.X.; Zador, J.; Jusinski, L.E.; Miller, J.A.; Taatjes, C.A. Formally direct pathways and low-temperature chain branching in hydrocarbon autoignition: The cyclohexyl+ O2 reaction at high pressure. Phys. Chem. Chem. Phys. 2009, 11, 1320–1327. [Google Scholar] [CrossRef]
- Xing, L.L.; Zhang, F.; Zhang, L.D. Theoretical studies for reaction kinetics of cyC6H11CH2 radical with O2. Proc. Combust. Inst. 2015, 36, 179–186. [Google Scholar] [CrossRef]
- Xing, L.L.; Zhang, L.D.; Zhang, F.; Jiang, J. Theoretical kinetic studies for low temperature oxidation of two typical methylcyclohexyl radicals. Combust. Flame 2017, 182, 216–224. [Google Scholar] [CrossRef]
- Weber, B.W.; Pitz, W.J.; Mehl, M.; Silke, E.J.; Davis, A.C.; Sung, C.J. Experiments and modeling of the autoignition of methylcyclohexane at high pressure. Combust. Flame 2014, 161, 1972–1983. [Google Scholar] [CrossRef]
- Ning, H.B.; Gong, C.M.; Tan, N.X.; Li, Z.R.; Li, X.Y. Low- and intermediate-temperature oxidation of ethylcyclohexane: A theoretical study. Combust. Flame 2015, 162, 4167–4182. [Google Scholar] [CrossRef]
- Yao, X.X.; Wang, J.B.; Yao, Q.; Li, Y.Q.; Li, Z.R.; Li, X.Y. Pressure-dependent rate rules for intramolecular H-migration reactions of normal-alkyl cyclohexylperoxy radicals. Combust. Flame 2019, 204, 176–188. [Google Scholar] [CrossRef]
- Yang, K.; Tian, Z.M.; Li, J.H.; Yan, Y.W. Theoretical investigation of rate rules for H-intermigration reactions for cyclic alkylperoxy radicals. Energies 2023, 16, 2881. [Google Scholar] [CrossRef]
- Zou, J.B.; Zhang, X.Y.; Li, Y.Y.; Ye, L.L.; Xing, L.L.; Li, W.; Cao, C.C.; Zhai, Y.T.; Qi, F.; Yang, J.Z. Experimental and kinetic modeling investigation on ethylcyclohexane low-temperature oxidation in a jet-stirred reactor. Combust. Flame 2020, 214, 211–223. [Google Scholar] [CrossRef]
- Liu, M.X.; Fang, R.Z.; Sung, C.J.; Aljohani, K.; Farooq, A.; Almarzooq, Y.; Mathieu, O.; Petersen, E.L.; Dagaut, P.; Zhao, J.; et al. A comprehensive experimental and modeling study of n-propylcyclohexane oxidation. Combust. Flame 2022, 238, 111944. [Google Scholar] [CrossRef]
- Davis, A.C.; Francisco, J.S. Hydroxyalkoxy radicals: Importance of intramolecular hydrogen bonding on chain branching reactions in the combustion and atmospheric decomposition of hydrocarbons. J. Phys. Chem. A 2014, 118, 10982–11001. [Google Scholar] [CrossRef]
- Vereecken, L.; Peeters, J. Theoretical investigation of the role of intramolecular hydrogen bonding in ß-hydroxyethoxy and ß-hydroxyethylperoxy radicals in the tropospheric oxidation of ethene. J. Phys. Chem. A 1999, 103, 1768–1775. [Google Scholar] [CrossRef]
- Vereecken, L.; Peeters, J.; Orlando, J.J.; Tyndall, G.S.; Ferronato, C. Decomposition of ß-hydroxypropoxy radicals in the OH-initiated oxidation of propene. A theoretical and experimental study. J. Phys. Chem. A 1999, 103, 4693–4702. [Google Scholar] [CrossRef]
- Vereecken, L.; Peeters, J. Decomposition of substituted alkoxy radicals-Part I: A generalized structure-activity relationship for reaction barrier heights. Phys. Chem. Chem. Phys. 2009, 11, 9062–9074. [Google Scholar] [CrossRef] [PubMed]
- Vereecken, L.; Peeters, J. A structure-activity relationship for the rate coefficient of H-migration in substituted alkoxy radicals. Phys. Chem. Chem. Phys. 2010, 12, 12608–12620. [Google Scholar] [CrossRef] [PubMed]
- Serinyel, Z.; Herbinet, O.; Frottier, O.; Dirrenberger, P.; Warth, V.; Glaude, P.A.; Battin-Leclerc, F. An experimental and modeling study of the low- and high-temperature oxidation of cyclohexane. Combust. Flame 2013, 160, 2319–2332. [Google Scholar] [CrossRef]
- Vranckx, S.; Lee, C.; Chakravarty, H.K.; Fernandes, R.X. Autoignition of methylcyclohexane and related hydrocarbons in a rapid compression machine. Combust. Flame 2016, 165, 71–85. [Google Scholar]
- Bissoonauth, T.; Wang, Z.D.; Mohamed, S.Y.; Wang, J.Y.; Chen, B.J.; Rodriguez, A.; Frottier, O.; Zhang, X.Y.; Zhang, Y.; Cao, C.C. Methylcyclohexane pyrolysis and oxidation in a jet-stirred reactor. Proc. Combust. Inst. 2019, 37, 409–417. [Google Scholar] [CrossRef]
- Li, Y.Q.; Yao, X.X.; Sun, X.H.; Li, Z.R.; Li, X.Y. Automatic construction of transition states and on-the-fly accurate kinetic calculations for reaction classes in automated mechanism generators. Comput. Theor. Chem. 2020, 1184, 112852. [Google Scholar] [CrossRef]
- Dixon, D.A.; Komornicki, A. Ab initio conformational analysis of cyclohexane. J. Phys. Chem. 1990, 94, 5630–5636. [Google Scholar] [CrossRef]
- Fernández-Alonso, M.D.C.; Cañada, J.; Jiménez-Barbero, J.; Cuevas, G. Theoretical study of inversion and to pomerization processes of substituted cyclohexanes: The relevance of the energy 3D hypersurface. Chem. Phys. Chem. 2005, 6, 671–680. [Google Scholar] [CrossRef]
- CHEMKIN-PRO 15092; Reaction Design: San Diego, CA, USA, 2009.
- Husson, B.; Herbinet, O.; Glaude, P.A.; Ahmed, S.S.; Battin-Leclerc, F. Detailed product analysis during low- and intermediate temperature oxidation of ethylcyclohexane. J. Phys. Chem. A 2012, 116, 5100–5111. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Corrubia, J.A.; Al-Lehaibi, M.; Farid, F.; Wang, H.; Wang, Z.; Chen, B.; Roberts, W.L.; Miller, D.L.; Farooq, A.; et al. A comprehensive combustion chemistry study of n-propylcyclohexane. Combust. Flame 2021, 233, 111576. [Google Scholar] [CrossRef]
- Robinson, P.J.; Holbrook, K.A. Unimolecular Reactions; Wiley-Interscience: London, UK, 1972. [Google Scholar]
- Montgomery, J.A.; Frisch, M.J.; Ochterski, J.W.; Petersson, G.A. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 1999, 110, 2822–2827. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.1; Gaussian: Wallingford, CT, USA, 2009. [Google Scholar]
- Asatryan, R.; Bozzelli, J.W. Chain branching and termination in the low-temperature combustion of n-alkanes: 2-pentyl radical + O2, isomerization and association of the second O2. J. Phys. Chem. A 2010, 14, 7693–7708. [Google Scholar] [CrossRef]
- Wijaya, C.D.; Sumathi, R.; Green, W.H. Thermodynamic properties and kinetic parameters for cyclic ether formation from hydroperoxyalkyl radicals. J. Phys. Chem. A 2003, 107, 4908–4920. [Google Scholar] [CrossRef]
- Sirjean, B.; Glaude, P.A.; Ruiz-Lopez, M.F.; Fournet, R. Detailed kinetic study of the ring opening of cycloalkanes by CBS-QB3 calculations. J. Phys. Chem. A 2006, 110, 12693–12704. [Google Scholar] [CrossRef]
- Altarawneh, M.; Dlugogorski, B.Z.; Kennedy, E.M. Theoretical investigation into the low-temperature oxidation of ethylbenzene. Proc. Combust. Inst. 2013, 34, 315–323. [Google Scholar] [CrossRef]
- Altarawneh, M.; Dlugogorski, B.Z. Reactions of HO2 with n-propylbenzene and its phenylpropyl radicals. Combust. Flame 2015, 162, 1406–1416. [Google Scholar] [CrossRef]
- Altarawneh, M.K.; Dlugogorski, B.Z.; Kennedy, E.M.; Mackie, J.C. Rate constants for reactions of ethylbenzene with hydroperoxyl radical. Combust. Flame 2013, 160, 9–16. [Google Scholar] [CrossRef]
- Zou, J.B.; Li, Y.Y.; Ye, L.L.; Jin, H.F. A comprehensive study on low-temperature oxidation chemistry of cyclohexane. I. Conformational analysis and theoretical study of first and second oxygen addition. Combust. Flame 2022, 235, 111658. [Google Scholar] [CrossRef]
- Yao, X.X.; Pang, W.Q.; Li, T.; Shentu, J.T.; Li, Z.R.; Zhu, Q.; Li, X.Y. High-pressure-limit and pressure-dependent rate rules for unimolecular reactions related to hydroperoxy alkyl radicals in normal alkyl cyclohexane combustion. 1. concerted HO2 elimination reaction class and β-scission reaction class. J. Phys. Chem. A 2021, 125, 8942–8958. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.X.; Pang, W.Q.; Li, T.; Shentu, J.T.; Li, Z.R.; Zhu, Q.; Li, X.Y. High-pressure-limit and pressure-dependent rate rules for unimolecular reactions related to hydroperoxy alkyl radicals in normal-alkyl cyclohexane combustion. 2. cyclization reaction class. J. Phys. Chem. A 2021, 125, 8959–8977. [Google Scholar] [CrossRef] [PubMed]
- Pitzer, K.S.; Gwinn, W.D. Energy levels and thermodynamic functions for molecules with internal rotation I. Rigid frame with attached tops. J. Chem. Phys. 1942, 10, 428–440. [Google Scholar] [CrossRef]
- Atkinson, R.; Baulch, D.L.; Cox, R.A.; Crowley, J.N.; Hampson, R.F.; Hynes, R.G.; Jenkin, M.E.; Rossi, M.J.; Troe, J. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Volume II—Gas Phase Reactions of Organic Species. Chem. Rev. 2006, 106, 4518–4584. [Google Scholar] [CrossRef]
- Crutzen, P.J. The Role of NO and NO2 in the Chemistry of the Troposphere and Stratosphere. Science 2003, 299, 833–834. [Google Scholar] [CrossRef]
- Johnston, H.S.; Heicklen, J. Tunnelling corrections for unsymmetrical eckart potential energy barriers. J. Phys. Chem. 1962, 66, 532–533. [Google Scholar] [CrossRef]
- Mokrushin, V.; Tsang, W. Chemrate, version 1.5.8; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2009. [Google Scholar]
- Herrmann, W.A. N-Heterocyclic Carbenes: A New Concept in Organometallic Catalysis. Chem. Soc. Rev. 2008, 37, 812–826. [Google Scholar] [CrossRef]
Reactions with •P(OOH)2 Products | |
---|---|
Reaction Center Contains Side Chain | Reaction Center Involves Only Cycle Atoms |
(1) 1,4 a-H(p) b-SC c | (10) 1,4-H(s)-CY d |
(2) 1,4-H(s)-SC | (11) 1,5-H(s)-OOHside e-CY |
(3) 1,4-H(t)-SC | (12) 1,5-H(s)-OOHcycle f-CY |
(4) 1,5-H(p)-SC | (13) 1,5-H(t)-CY |
(5) 1,5-H(s)-SC | (14) 1,6-H(s)-OOHside-CY |
(6) 1,5-H(t)-SC | (15) 1,6-H(s)-OOHcycle-CY |
(7) 1,6-H(p)-SC | |
(8) 1,6-H(s)-SC | |
(9) 1,6-H(t)-SC |
Species | Electronic Energy | ||
---|---|---|---|
Echair | Eboat | Δ(Eboat − Echair) | |
R5 | −385,024.3 | −385,013.2 | 11.1 |
TS5 | −384,994.2 | −384,984.1 | 10.1 |
P5 | −385,012.3 | −385,001.3 | 11.0 |
R57 | −360,393.6 | −360,405.1 | 11.5 |
TS57 | −360,366.8 | −360,374.6 | 7.8 |
P57 | −360,387.3 | −360,392.0 | 4.6 |
Reactants | Transition States | Energy Barriers | |||
---|---|---|---|---|---|
(1) | No HB | No HB | 31.7 | ||
(2) | HB | No HB | 32.2 | ||
(3) | No HB | HB | 29.9 | ||
(4) | HB | HB | 30.5 |
Subclasses | No. | Reactions | Energy Barriers |
---|---|---|---|
(1) 1,4-H(p)-SC | R1 | 34.8 | |
R2 | 34.8 | ||
R3 | 32.3 | ||
R4 | 35.2 | ||
34.3 a (2.9 b) | |||
(2) 1,4-H(s)-SC | R5 | 30.1 | |
R6 | 30.6 | ||
R7 | 30.7 | ||
R8 | 30.9 | ||
R9 | 30.9 | ||
R10 | 31.2 | ||
R11 | 31.8 | ||
R12 | 31.3 | ||
R13 | 31.3 | ||
R14 | 31.2 | ||
R15 | 27.7 | ||
R16 | 28.5 | ||
R17 | 27.7 | ||
R18 | 28.3 | ||
R19 | 31.0 | ||
30.2 (4.1) | |||
(3) 1,4-H(t)-SC | R20 | 27.1 | |
R21 | 26.9 | ||
R22 | 27.7 | ||
R23 | 25.9 | ||
R24 | 25.7 | ||
26.7 (2.0) | |||
(4) 1,5-H(p)-SC | R25 | 24.0 | |
R26 | 23.6 | ||
R27 | 20.4 | ||
22.7 (3.6) | |||
(5) 1,5-H(s)-SC | R28 | 19.7 | |
R29 | 20.1 | ||
R30 | 20.4 | ||
R31 | 19.6 | ||
R32 | 20.9 | ||
R33 | 21.2 | ||
R34 | 21.9 | ||
R35 | 20.4 | ||
R36 | 20.2 | ||
R37 | 23.4 | ||
R38 | 23.3 | ||
R39 | 23.2 | ||
R40 | 23.0 | ||
R41 | 23.1 | ||
21.5 (3.8) | |||
(6) 1,5-H(t)-SC | R42 | 16.1 | |
16.1 (0.0) | |||
(7) 1,6-H(p)-SC | R43 | 25.4 | |
R44 | 22.4 | ||
R45 | 23.3 | ||
R46 | 20.9 | ||
R47 | 23.5 | ||
23.1 (4.5) | |||
(8) 1,6-H(s)-SC | R48 | 21.3 | |
R49 | 18.8 | ||
R50 | 18.7 | ||
R51 | 19.3 | ||
R52 | 19.8 | ||
R53 | 21.2 | ||
R54 | 22.0 | ||
R55 | 21.9 | ||
20.4 (3.3) | |||
(9) 1,6-H(t)-SC | R56 | 19.8 | |
19.8 (0.0) |
Subclasses | No. | Reactions | Energy Barriers |
---|---|---|---|
(10) 1,4-H(s)-CY | R57 | 30.5 | |
R58 | 30.5 | ||
R59 | 29.9 | ||
R60 | 32.9 | ||
R61 | 32.9 | ||
R62 | 33.0 | ||
R63 | 33.1 | ||
R64 | 32.9 | ||
R65 | 33.1 | ||
R66 | 32.6 | ||
R67 | 32.3 | ||
R68 | 33.1 | ||
R69 | 33.7 | ||
R70 | 32.8 | ||
R71 | 32.9 | ||
R72 | 32.9 | ||
R73 | 32.6 | ||
R74 | 31.2 | ||
R75 | 28.7 | ||
R76 | 28.7 | ||
32.1 a (5.0 b) | |||
(11) 1,5-H(s)-OOHside-CY | R77 | 23.9 | |
R78 | 23.4 | ||
R79 | 23.7 | ||
R80 | 22.9 | ||
R81 | 21.5 | ||
R82 | 21.6 | ||
R83 | 26.1 | ||
R84 | 25.0 | ||
R85 | 26.3 | ||
R86 | 23.1 | ||
R87 | 24.8 | ||
23.8 (4.8) | |||
(12) 1,5-H(s)-OOHcycle-CY | R88 | 28.9 | |
R89 | 27.5 | ||
R90 | 27.0 | ||
R91 | 27.8 | ||
R92 | 28.4 | ||
R93 | 27.2 | ||
27.8 (1.9) | |||
(13) 1,5-H(t)-CY | R94 | 26.1 | |
R95 | 25.7 | ||
25.9 (0.4) | |||
(14) 1,6-H(s)-OOHside-CY | R96 | 27.3 | |
R97 | 26.7 | ||
R98 | 27.2 | ||
R99 | 30.5 | ||
R100 | 30.2 | ||
R101 | 30.2 | ||
R102 | 26.9 | ||
R103 | 27.4 | ||
28.3 (3.8) | |||
(15) 1,6-H(s)-OOHcycle-CY | R104 | 32.9 | |
R105 | 31.7 | ||
R106 | 32.8 | ||
R107 | 31.6 | ||
R108 | 32.4 | ||
R109 | 31.6 | ||
R110 | 31.5 | ||
32.1 (1.4) |
Modified Arrhenius Parameters | T = 800 K | ||||
---|---|---|---|---|---|
Reaction | A (s−1) | n | E (cal mol−1) | k (s−1) | k/kave a |
R1 | 1.03 × 103 | −5.5 | 39,223.6 | 2.38 × 103 | 0.1 |
R2 | 1.43 × 100 | 3.5 | 26,907.7 | 2.84 × 103 | 0.2 |
R3 | 1.44 × 102 | 3.3 | 25,103.5 | 5.65 × 104 | 3.5 |
R4 | 1.17 × 10−1 | 3.9 | 26,493.9 | 2.44 × 103 | 0.2 |
(1) 1,4-H(p)-SC | 1.04 × 101 | 3.4 | 25,002.9 | 1.60 × 104 | 19.9 # |
R5 | 1.32 × 103 | 2.8 | 23,615.1 | 6.46 × 104 | 1.8 |
R6 | 1.32 × 100 | 3.5 | 23,525.8 | 8.42 × 103 | 0.2 |
R7 | 1.30 × 101 | 3.2 | 23,489.2 | 9.81 × 103 | 0.3 |
R8 | 2.29 × 101 | 3.2 | 23,752.6 | 1.53 × 104 | 0.4 |
R9 | 2.07 × 102 | 2.9 | 24,261.5 | 9.92 × 103 | 0.3 |
R10 | 1.07 × 102 | 3.2 | 24,309.1 | 4.36 × 104 | 1.2 |
R11 | 5.28 × 102 | 3.0 | 25,007.4 | 2.94 × 104 | 0.8 |
R12 | 1.51 × 102 | 3.1 | 24,140.7 | 5.22 × 104 | 1.5 |
R13 | 5.88 × 100 | 3.4 | 23,799.6 | 1.49 × 104 | 0.4 |
R14 | 1.88 × 103 | 2.7 | 2,4806 | 2.46 × 104 | 0.7 |
R15 | 1.14 × 103 | 2.9 | 21,443.3 | 1.37 × 105 | 3.9 |
R16 | 2.09 × 103 | 2.5 | 22,445.5 | 2.97 × 104 | 0.8 |
R17 | 4.30 × 102 | 2.6 | 20,074.1 | 5.60 × 104 | 1.6 |
R18 | 3.19 × 102 | 2.7 | 21,694.9 | 2.65 × 104 | 0.8 |
R19 | 2.25 × 100 | 3.2 | 21,506 | 5.49 × 103 | 0.2 |
(2) 1,4-H(s)-SC | 2.28 × 10−1 | 3.8 | 20,847.9 | 3.52 × 104 | 25.0 |
R20 | 6.84 × 104 | 2.6 | 21,411.6 | 4.17 × 106 | 1.6 |
R21 | 4.15 × 103 | 3.0 | 20,725.3 | 3.94 × 106 | 1.5 |
R22 | 6.29 × 103 | 3.0 | 20,730.7 | 4.59 × 106 | 1.7 |
R23 | 4.77 × 103 | 2.3 | 19,937.6 | 2.88 × 105 | 0.1 |
R24 | 7.88 × 104 | 1.9 | 20,524.6 | 2.49 × 105 | 0.1 |
(3) 1,4-H(t)-SC | 6.31 × 103 | 2.9 | 20,893.1 | 2.65 × 106 | 18.4 |
R25 | 3.75 × 106 | 1.8 | 20,203.9 | 2.25 × 106 | 0.4 |
R26 | 1.01 × 106 | 1.9 | 19,779 | 1.07 × 106 | 0.2 |
R27 | 6.42 × 106 | 1.7 | 17,492.2 | 1.21 × 107 | 2.4 |
(4) 1,5-H(p)-SC | 1.07 × 105 | 2.2 | 17,314.6 | 5.15 × 106 | 11.4 |
R28 | 3.58 × 109 | 0.6 | 16,301 | 5.25 × 106 | 1.3 |
R29 | 1.54 × 107 | 1.4 | 16,675.8 | 6.47 × 106 | 1.6 |
R30 | 1.16 × 106 | 1.9 | 16,530.9 | 9.34 × 106 | 2.3 |
R31 | 2.20 × 107 | 1.5 | 16,129.9 | 9.49 × 106 | 2.3 |
R32 | 2.23 × 108 | 1.2 | 17,494.1 | 9.56 × 106 | 2.3 |
R33 | 2.70 × 106 | 1.7 | 17,128.1 | 5.57 × 106 | 1.4 |
R34 | 1.37 × 108 | 1.1 | 17,962.8 | 2.77 × 106 | 0.7 |
R35 | 1.09 × 106 | 1.6 | 16,346.1 | 1.99 × 106 | 0.5 |
R36 | 1.45 × 106 | 1.6 | 16,352.5 | 2.64 × 106 | 0.6 |
R37 | 1.11 × 106 | 1.8 | 19,452.7 | 7.86 × 105 | 0.2 |
R38 | 1.04 × 106 | 1.8 | 19,282.3 | 1.14 × 106 | 0.3 |
R39 | 1.69 × 106 | 1.6 | 19,263.5 | 4.74 × 105 | 0.1 |
R40 | 5.09 × 105 | 1.8 | 18,859.8 | 5.37 × 105 | 0.1 |
R41 | 2.22 × 106 | 1.7 | 19,069.4 | 1.43 × 106 | 0.3 |
(5) 1,5-H(s)-SC | 8.27 × 105 | 1.8 | 16,262.7 | 4.10 × 106 | 20.2 |
R42 | 4.61 × 106 | 1.5 | 12,886.3 | 4.22 × 107 | 1.0 |
(6) 1,5-H(t)-SC | 4.61 × 106 | 1.5 | 12,886.3 | 4.22 × 107 | 1.0 |
R43 | 2.03 × 106 | 1.9 | 21,852.2 | 9.00 × 105 | 1.1 |
R44 | 3.65 × 103 | 2.3 | 18,974 | 2.59 × 105 | 0.3 |
R45 | 9.45 × 104 | 2.0 | 18,890.6 | 3.06 × 105 | 0.4 |
R46 | 9.92 × 106 | 1.5 | 17,272.6 | 2.47 × 106 | 3.0 |
R47 | 2.14 × 105 | 1.8 | 19,498.7 | 1.35 × 105 | 0.2 |
(7) 1,6-H(p)-SC | 5.94 × 101 | 3.0 | 15,968.2 | 8.14 × 105 | 18.3 |
R48 | 4.03 × 108 | 1.3 | 18,582.4 | 2.32 × 107 | 1.6 |
R49 | 2.61 × 105 | 1.7 | 14,855.9 | 2.38 × 106 | 0.2 |
R50 | 8.06 × 106 | 1.7 | 17,325.9 | 1.41 × 107 | 1.0 |
R51 | 1.92 × 105 | 2.0 | 14,936.6 | 7.94 × 106 | 0.6 |
R52 | 1.35 × 106 | 1.7 | 15,890.3 | 5.19 × 106 | 0.4 |
R53 | 1.64 × 107 | 1.7 | 18,217.9 | 1.15 × 107 | 0.8 |
R54 | 2.79 × 105 | 2.2 | 18,906.4 | 4.46 × 106 | 0.3 |
R55 | 5.08 × 1011 | 0.1 | 19,946.5 | 2.84 × 106 | 0.2 |
(8) 1,6-H(s)-SC | 2.48 × 105 | 2.1 | 16,692.7 | 1.43 × 107 | 9.7 |
R56 | 1.19 × 107 | 1.5 | 16,540.4 | 7.37 × 106 | 1.0 |
(9) 1,6-H(t)-SC | 1.19 × 107 | 1.5 | 16,540.4 | 7.37 × 106 | 1.0 |
Modified Arrhenius Parameters | T = 800 K | ||||
---|---|---|---|---|---|
Reaction | A (s−1) | n | E (cal mol−1) | k (s−1) | k/kave a |
R57 | 2.83 × 103 | 2.7 | 24,279.3 | 5.08 × 104 | 3.3 |
R58 | 1.05 × 102 | 3.0 | 23,839.1 | 1.20 × 104 | 0.8 |
R59 | 9.88 × 102 | 2.8 | 23,306.5 | 6.24 × 104 | 4.1 |
R60 | 5.19 × 101 | 3.2 | 25,740.6 | 6.81 × 103 | 0.4 |
R61 | 7.52 × 101 | 3.1 | 25,766.7 | 5.77 × 103 | 0.4 |
R62 | 5.21 × 101 | 3.2 | 25,824.7 | 6.50 × 103 | 0.4 |
R63 | 5.23 × 101 | 3.2 | 25,814.2 | 6.62 × 103 | 0.4 |
R64 | 4.23 × 101 | 3.1 | 25,558.5 | 6.08 × 103 | 0.4 |
R65 | 3.86 × 101 | 3.2 | 25,738.9 | 9.57 × 103 | 0.6 |
R66 | 6.40 × 101 | 3.2 | 25,449.9 | 1.15 × 104 | 0.7 |
R67 | 8.34 × 101 | 3.1 | 25,135.3 | 1.53 × 104 | 1.0 |
R68 | 2.24 × 101 | 3.3 | 25,625.3 | 7.03 × 103 | 0.5 |
R69 | 1.11 × 101 | 3.3 | 25,619.1 | 3.52 × 103 | 0.2 |
R70 | 6.36 × 101 | 3.2 | 25,488.4 | 1.06 × 104 | 0.7 |
R71 | 5.44 × 101 | 3.2 | 25,476.1 | 1.06 × 104 | 0.7 |
R72 | 1.22 × 102 | 3.0 | 26,018 | 5.22 × 103 | 0.3 |
R73 | 6.64 × 106 | 1.8 | 29,064 | 9.84 × 103 | 0.6 |
R74 | 3.43 × 103 | 2.5 | 26,498.1 | 4.95 × 103 | 0.3 |
R75 | 9.71 × 101 | 2.9 | 21,773.6 | 3.28 × 104 | 2.1 |
R76 | 8.75 × 101 | 2.9 | 21,710.7 | 3.02 × 104 | 2.0 |
(10) 1,4-H(s)-CY | 7.09 × 10-2 | 3.9 | 22,409.4 | 1.54 × 104 | 17.7 # |
R77 | 9.50 × 105 | 1.9 | 19,641.8 | 1.72 × 106 | 2.6 |
R78 | 5.01 × 105 | 1.9 | 19,151.5 | 1.10 × 106 | 1.7 |
R79 | 8.77 × 106 | 1.4 | 20,139 | 2.92 × 105 | 0.4 |
R80 | 6.45 × 105 | 1.7 | 18,860 | 4.10 × 105 | 0.6 |
R81 | 2.14 × 105 | 1.9 | 18,981.2 | 5.20 × 105 | 0.8 |
R82 | 5.35 × 105 | 1.9 | 18,479.5 | 1.69 × 106 | 2.5 |
R83 | 3.43 × 105 | 2.0 | 21,779.8 | 1.98 × 105 | 0.3 |
R84 | 1.21 × 105 | 2.0 | 20,609.7 | 2.32 × 105 | 0.3 |
R85 | 6.15 × 105 | 1.9 | 22,412.8 | 1.78 × 105 | 0.3 |
R86 | 1.66 × 105 | 2.0 | 18,681.5 | 8.81 × 105 | 1.3 |
R87 | 5.13 × 104 | 2.0 | 20,338.8 | 9.00 × 104 | 0.1 |
(11) 1,5-H(s)-OOHside-CY | 4.33 × 104 | 2.2 | 18,830.5 | 6.65 × 105 | 19.1 |
R88 | 6.26 × 104 | 2.2 | 24,236.7 | 3.78 × 104 | 0.2 |
R89 | 1.86 × 105 | 2.0 | 23,082.5 | 7.73 × 104 | 0.5 |
R90 | 8.68 × 101 | 3.0 | 19,560.2 | 2.42 × 105 | 1.6 |
R91 | 8.51 × 104 | 2.3 | 23,225.7 | 1.82 × 105 | 1.2 |
R92 | 4.10 × 104 | 2.3 | 23,605.3 | 5.78 × 104 | 0.4 |
R93 | 9.30 × 105 | 2.0 | 22,862.9 | 3.14 × 105 | 2.1 |
(12) 1,5-H(s)-OOHcycle-CY | 1.10 × 103 | 2.8 | 21,461.1 | 1.52 × 105 | 8.3 |
R94 | 7.83 × 105 | 1.9 | 21,958.9 | 2.18 × 105 | 0.4 |
R95 | 6.53 × 106 | 1.7 | 21,710.2 | 7.74 × 105 | 1.6 |
(13) 1,5-H(t)-CY | 3.12 × 106 | 1.8 | 21,745.3 | 4.96 × 105 | 3.5 |
R96 | 1.65 × 104 | 2.1 | 22,397.1 | 1.77 × 104 | 0.4 |
R97 | 5.74 × 104 | 2.0 | 21,991.9 | 3.32 × 104 | 0.8 |
R98 | 3.08 × 104 | 2.1 | 22,174.6 | 4.45 × 104 | 1.1 |
R99 | 1.19 × 105 | 2.2 | 25,902.4 | 2.03 × 104 | 0.5 |
R100 | 3.68 × 104 | 2.3 | 25,336.2 | 2.79 × 104 | 0.7 |
R101 | 7.63 × 104 | 2.3 | 25,430.9 | 3.11 × 104 | 0.8 |
R102 | 3.31 × 104 | 2.2 | 22,040.7 | 8.11 × 104 | 2.0 |
R103 | 2.54 × 104 | 2.2 | 22,400.5 | 6.18 × 104 | 1.6 |
(14) 1,6-H(s)-OOHside-CY | 5.53 × 101 | 3.0 | 21,661.3 | 3.97 × 104 | 4.6 |
R104 | 1.35 × 106 | 2.1 | 28,924.9 | 2.45 × 104 | 0.5 |
R105 | 1.96 × 105 | 2.4 | 27,260.5 | 4.87 × 104 | 1.1 |
R106 | 1.08 × 105 | 2.5 | 28,135 | 2.97 × 104 | 0.7 |
R107 | 4.12 × 105 | 2.3 | 27,257.6 | 9.28 × 104 | 2.1 |
R108 | 3.44 × 105 | 2.3 | 27,888.2 | 4.67 × 104 | 1.0 |
R109 | 4.66 × 104 | 2.5 | 26,899.1 | 3.13 × 104 | 0.7 |
R110 | 4.94 × 103 | 2.8 | 26,457.4 | 4.05 × 104 | 0.9 |
(15) 1,6-H(s)-OOHcycle-CY | 7.71 × 104 | 2.5 | 27,290.9 | 4.49 × 104 | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, X.; Li, J.; Li, Z. Computational Kinetic Study on the Intramolecular H-Migration of Hydroperoxyalkylperoxy Radicals (•OOQOOH) in Normal-Alkyl Cyclohexanes. Molecules 2025, 30, 2805. https://doi.org/10.3390/molecules30132805
Yao X, Li J, Li Z. Computational Kinetic Study on the Intramolecular H-Migration of Hydroperoxyalkylperoxy Radicals (•OOQOOH) in Normal-Alkyl Cyclohexanes. Molecules. 2025; 30(13):2805. https://doi.org/10.3390/molecules30132805
Chicago/Turabian StyleYao, Xiaoxia, Juanqin Li, and Zerong Li. 2025. "Computational Kinetic Study on the Intramolecular H-Migration of Hydroperoxyalkylperoxy Radicals (•OOQOOH) in Normal-Alkyl Cyclohexanes" Molecules 30, no. 13: 2805. https://doi.org/10.3390/molecules30132805
APA StyleYao, X., Li, J., & Li, Z. (2025). Computational Kinetic Study on the Intramolecular H-Migration of Hydroperoxyalkylperoxy Radicals (•OOQOOH) in Normal-Alkyl Cyclohexanes. Molecules, 30(13), 2805. https://doi.org/10.3390/molecules30132805