Mechanisms of Action of Propofol in Modulating Microglial Activation in Ischemic Stroke
Abstract
1. Introduction
2. Mechanisms of Action of Propofol
2.1. Target Receptors and Mechanisms Underlying Propofol’s Neuropharmacological Effects
2.2. PI3K/Akt Pathway Activation and Inhibition
2.2.1. PI3K/Akt Pathway Activation
2.2.2. PI3K/Akt Pathway Inhibition
2.3. Inhibition of Nicotinamide Adenine Dinucleotide Phosphate Oxidase
2.4. Blocking and Downregulation of Toll-like Receptor 4 Expression
2.5. Downregulation of Connexin 43
2.6. JAK1/STAT3 Pathway Activation
2.7. miR-155/SOCS1 Pathway
2.8. miR-221/222-IRF2 Pathway
2.9. NF-κB/Hif-1α Signaling Pathway
2.10. Extracellular Vesicle Release
2.11. Oxidative Stress and Increasing Antioxidant Activity
2.12. Intracellular Ca2+ Homeostasis
3. Materials and Methods
4. Conclusions
Funding
Conflicts of Interest
References
- Yuan, Q.; Yuan, Y.; Zheng, Y.; Sheng, R.; Liu, L.; Xie, F.; Tan, J. Anti-Cerebral Ischemia Reperfusion Injury of Polysaccharides: A Review of the Mechanisms. Biomed. Pharmacother. 2021, 137, 111303. [Google Scholar] [CrossRef]
- Salvadori, E.; Papi, G.; Insalata, G.; Rinnoci, V.; Donnini, I.; Martini, M.; Falsini, C.; Hakiki, B.; Romoli, A.; Barbato, C.; et al. Comparison between Ischemic and Hemorrhagic Strokes in Functional Outcome at Discharge from an Intensive Rehabilitation Hospital. Diagnostics 2020, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Lv, J.; Guo, H.; Liu, X. Global, Regional, and National Burden of Ischemic Stroke, 1990–2021: An Analysis of Data from the Global Burden of Disease Study 2021. eClinicalMedicine 2024, 75, 102758. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Wang, W.; Lin, F.; Wang, S.; Zhao, J. Mesenchymal Stem Cell Therapy for Ischemic Stroke: A Look into Treatment Mechanism and Therapeutic Potential. J. Neurol. 2021, 268, 4095–4107. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, G.; He, S.; Liu, X.; Zhu, L.; Yang, X.; Zhang, Y.; Orgah, J.; Feng, Y.; Wang, X.; et al. Protection against Acute Cerebral Ischemia/Reperfusion Injury by QiShenYiQi via Neuroinflammatory Network Mobilization. Biomed. Pharmacother. 2020, 125, 109945. [Google Scholar] [CrossRef] [PubMed]
- DeLong, J.H.; Ohashi, S.N.; O’Connor, K.C.; Sansing, L.H. Inflammatory Responses After Ischemic Stroke. Semin. Immunopathol. 2022, 44, 625–648. [Google Scholar] [CrossRef]
- Dong, R.; Huang, R.; Wang, J.; Liu, H.; Xu, Z. Effects of Microglial Activation and Polarization on Brain Injury After Stroke. Front. Neurol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; He, D.; Bai, Y. Microglia-Mediated Inflammation and Neurodegenerative Disease. Mol. Neurobiol. 2016, 53, 6709–6715. [Google Scholar] [CrossRef]
- Yenari, M.A.; Xu, L.; Tang, X.N.; Qiao, Y.; Giffard, R.G. Microglia Potentiate Damage to Blood-Brain Barrier Constituents: Improvement by Minocycline in Vivo and in Vitro. Stroke 2006, 37, 1087–1093. [Google Scholar] [CrossRef]
- Cherry, J.D.; Olschowka, J.A.; O’Banion, M.K. Neuroinflammation and M2 Microglia: The Good, the Bad, and the Inflamed. J. Neuroinflammation 2014, 11, 98. [Google Scholar] [CrossRef]
- Yu, H.; Wang, X.; Kang, F.; Chen, Z.; Meng, Y.; Dai, M. Propofol Attenuates Inflammatory Damage on Neurons Following Cerebral Infarction by Inhibiting Excessive Activation of Microglia. Int. J. Mol. Med. 2019, 43, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Ye, J.-S.; Wang, Y.-L.; Chen, C.; Wang, C.-Y. Posttreatment with Propofol Attenuates Lipopolysaccharide-Induced up-Regulation of Inflammatory Molecules in Primary Microglia. Inflamm. Res. 2014, 63, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Yang, Z.; Tang, X.; Tan, Y.; Wu, X.; Liu, F. Propofol Protects Against Focal Cerebral Ischemia via Inhibition of Microglia-Mediated Proinflammatory Cytokines in a Rat Model of Experimental Stroke. PLoS ONE 2013, 8, e82729. [Google Scholar] [CrossRef]
- Mitsui, K.; Kotoda, M.; Hishiyama, S.; Takamino, A.; Morikawa, S.; Ishiyama, T.; Matsukawa, T. Propofol Ameliorates Ischemic Brain Injury by Blocking TLR4 Pathway in Mice. Transl Neurosci 2022, 13, 246–254. [Google Scholar] [CrossRef]
- Sigel, E.; Steinmann, M.E. Structure, Function, and Modulation of GABAA Receptors. J. Biol. Chem. 2012, 287, 40224. [Google Scholar] [CrossRef] [PubMed]
- Trapani, G.; Altomare, C.; Liso, G.; Sanna, E.; Biggio, G. Propofol in Anesthesia. Mechanism of Action, Structure-Activity Relationships, and Drug Delivery. Curr. Med. Chem. 2000, 7, 249–271. [Google Scholar] [CrossRef]
- Nelson, L.E.; Guo, T.Z.; Lu, J.; Saper, C.B.; Franks, N.P.; Maze, M. The Sedative Component of Anesthesia Is Mediated by GABAA Receptors in an Endogenous Sleep Pathway. Nat. Neurosci. 2002, 5, 979. [Google Scholar] [CrossRef]
- Buggy, D.J.; Nicol, B.; Rowbotham, D.J.; Lambert, D.G. Effects of Intravenous Anesthetic Agents on Glutamate Release: A Role for GABAA Receptor-Mediated Inhibition. Anesthesiology 2000, 92, 1067–1073. [Google Scholar] [CrossRef]
- Rehberg, B.; Duch, D.S. Suppression of Central Nervous System Sodium Channels by Propofol. Anesthesiology 1999, 91, 512–520. [Google Scholar] [CrossRef]
- Kotani, Y.; Shimazawa, M.; Yoshimura, S.; Iwama, T.; Hara, H. The Experimental and Clinical Pharmacology of Propofol, an Anesthetic Agent with Neuroprotective Properties. CNS Neurosci. Ther. 2008, 14, 95. [Google Scholar] [CrossRef]
- Mori, H.; Mishina, M. Structure and Function of the NMDA Receptor Channel. Neuropharmacology 1995, 34, 1219–1237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, D.; Zhang, B.; Zhu, J.; Zhou, Z.; Cui, L. Regulation of Microglia by Glutamate and Its Signal Pathway in Neurodegenerative Diseases. Drug Discov. Today 2020, 25, 1074–1085. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhao, Y.; Chen, X.; Zhu, M.; Miao, C. Propofol Attenuates BV2 Microglia Inflammation via NMDA Receptor Inhibition. Can. J. Physiol. Pharmacol. 2018, 96, 241–248. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z. Protective Effects of Propofol on Rats with Cerebral Ischemia–Reperfusion Injury Via the PI3K/Akt Pathway. J. Mol. Neurosci. 2021, 71, 810–820. [Google Scholar] [CrossRef]
- Tewari, D.; Patni, P.; Bishayee, A.; Sah, A.N.; Bishayee, A. Natural Products Targeting the PI3K-Akt-mTOR Signaling Pathway in Cancer: A Novel Therapeutic Strategy. Semin. Cancer Biol. 2022, 80, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kirkin, V.; Rogov, V.V. A Diversity of Selective Autophagy Receptors Determines the Specificity of the Autophagy Pathway. Mol. Cell 2019, 76, 268–285. [Google Scholar] [CrossRef]
- Luo, J.; Huang, B.; Zhang, Z.; Liu, M.; Luo, T. Delayed Treatment of Propofol Inhibits Lipopolysaccharide-Induced Inflammation in Microglia through the PI3K/PKB Pathway. NeuroReport 2018, 29, 839–845. [Google Scholar] [CrossRef]
- Wang, P.; Shao, B.-Z.; Deng, Z.; Chen, S.; Yue, Z.; Miao, C.-Y. Autophagy in Ischemic Stroke. Prog. Neurobiol. 2018, 163–164, 98–117. [Google Scholar] [CrossRef]
- Liu, J.; Ai, P.; Sun, Y.; Yang, X.; Li, C.; Liu, Y.; Xia, X.; Zheng, J.C. Propofol Inhibits Microglial Activation via miR-106b/Pi3k/Akt Axis. Front. Cell. Neurosci. 2021, 15. [Google Scholar] [CrossRef]
- Guan, S.; Sun, L.; Wang, X.; Huang, X.; Luo, T. Propofol Inhibits Neuroinflammation and Metabolic Reprogramming in Microglia in Vitro and in Vivo. Front. Pharmacol. 2023, 14. [Google Scholar] [CrossRef]
- Choi, S.-H.; Aid, S.; Kim, H.-W.; Jackson, S.H.; Bosetti, F. Inhibition of NADPH Oxidase Promotes Alternative and Anti-Inflammatory Microglial Activation during Neuroinflammation. J. Neurochem. 2012, 120, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Kim, G.S.; Okami, N.; Narasimhan, P.; Chan, P.H. NADPH Oxidase Is Involved in Post-Ischemic Brain Inflammation. Neurobiol. Dis. 2011, 42, 341–348. [Google Scholar] [CrossRef]
- Chéret, C.; Gervais, A.; Lelli, A.; Colin, C.; Amar, L.; Ravassard, P.; Mallet, J.; Cumano, A.; Krause, K.-H.; Mallat, M. Neurotoxic Activation of Microglia Is Promoted by a Nox1-Dependent NADPH Oxidase. J. Neurosci. 2008, 28, 12039–12051. [Google Scholar] [CrossRef]
- Harting, M.T.; Jimenez, F.; Adams, S.D.; Mercer, D.W.; Cox, C.S. Acute, Regional Inflammatory Response after Traumatic Brain Injury: Implications for Cellular Therapy. Surgery 2008, 144, 803–813. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, X.; Yang, X.; Zhou, Z.; Lu, D.; Tang, Y.; Ling, Z.; Zhou, L.; Feng, X. Propofol Protects Against H2O2-Induced Oxidative Injury in Differentiated PC12 Cells via Inhibition of Ca2+-Dependent NADPH Oxidase. Cell Mol. Neurobiol. 2016, 36, 541–551. [Google Scholar] [CrossRef]
- Luo, T.; Wu, J.; Kabadi, S.V.; Sabirzhanov, B.; Guanciale, K.; Hanscom, M.; Faden, J.; Cardiff, K.; Bengson, C.J.; Faden, A.I. Propofol Limits Microglial Activation after Experimental Brain Trauma through Inhibition of Nicotinamide Adenine Dinucleotide Phosphate Oxidase. Anesthesiology 2013, 119, 1370–1388. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Lizarbe, S.; Pascual, M.; Guerri, C. Critical Role of TLR4 Response in the Activation of Microglia Induced by Ethanol1. J. Immunol. 2009, 183, 4733–4744. [Google Scholar] [CrossRef] [PubMed]
- Piccinini, A.M.; Midwood, K.S. DAMPening Inflammation by Modulating TLR Signalling. Mediat. Inflamm. 2010, 2010, 672395. [Google Scholar] [CrossRef]
- Ciesielska, A.; Matyjek, M.; Kwiatkowska, K. TLR4 and CD14 Trafficking and Its Influence on LPS-Induced pro-Inflammatory Signaling. Cell. Mol. Life Sci. 2021, 78, 1233–1261. [Google Scholar] [CrossRef]
- Marsh, B.J.; Williams-Karnesky, R.L.; Stenzel-Poore, M.P. Toll-like Receptor Signaling in Endogenous Neuroprotection and Stroke. Neuroscience 2009, 158, 1007–1020. [Google Scholar] [CrossRef]
- Andresen, L.; Theodorou, K.; Grünewald, S.; Czech-Zechmeister, B.; Könnecke, B.; Lühder, F.; Trendelenburg, G. Evaluation of the Therapeutic Potential of Anti-TLR4-Antibody MTS510 in Experimental Stroke and Significance of Different Routes of Application. PLoS ONE 2016, 11, e0148428. [Google Scholar] [CrossRef] [PubMed]
- Ve, T.; Vajjhala, P.R.; Hedger, A.; Croll, T.; DiMaio, F.; Horsefield, S.; Yu, X.; Lavrencic, P.; Hassan, Z.; Morgan, G.P.; et al. Structural Basis of TIR-Domain-Assembly Formation in MAL- and MyD88-Dependent TLR4 Signaling. Nat. Struct. Mol. Biol. 2017, 24, 743–751. [Google Scholar] [CrossRef]
- Escoubet-Lozach, L.; Benner, C.; Kaikkonen, M.U.; Lozach, J.; Heinz, S.; Spann, N.J.; Crotti, A.; Stender, J.; Ghisletti, S.; Reichart, D.; et al. Mechanisms Establishing TLR4-Responsive Activation States of Inflammatory Response Genes. PLoS Genet 2011, 7, e1002401. [Google Scholar] [CrossRef] [PubMed]
- Valkov, E.; Stamp, A.; DiMaio, F.; Baker, D.; Verstak, B.; Roversi, P.; Kellie, S.; Sweet, M.J.; Mansell, A.; Gay, N.J.; et al. Crystal Structure of Toll-like Receptor Adaptor MAL/TIRAP Reveals the Molecular Basis for Signal Transduction and Disease Protection. Proc. Natl. Acad. Sci. USA 2011, 108, 14879–14884. [Google Scholar] [CrossRef] [PubMed]
- Gay, N.J.; Symmons, M.F.; Gangloff, M.; Bryant, C.E. Assembly and Localization of Toll-like Receptor Signalling Complexes. Nat. Rev. Immunol. 2014, 14, 546–558. [Google Scholar] [CrossRef]
- Wu, G.-J.; Lin, Y.-W.; Chuang, C.-Y.; Tsai, H.-C.; Chen, R.-M. Liver Nitrosation and Inflammation in Septic Rats Were Suppressed by Propofol via Downregulating TLR4/NF-κB-Mediated iNOS and IL-6 Gene Expressions. Life Sci. 2018, 195, 25–32. [Google Scholar] [CrossRef]
- Ye, H.-H.; Wu, K.-J.; Fei, S.-J.; Zhang, X.-W.; Liu, H.-X.; Zhang, J.-L.; Zhang, Y.-M. Propofol Participates in Gastric Mucosal Protection through Inhibiting the Toll-like Receptor-4/Nuclear Factor Kappa-B Signaling Pathway. Clin. Res. Hepatol. Gastroenterol. 2013, 37, e3–e15. [Google Scholar] [CrossRef]
- Qin, X.; Sun, Z.-Q.; Zhang, X.-W.; Dai, X.-J.; Mao, S.-S.; Zhang, Y.-M. TLR4 Signaling Is Involved in the Protective Effect of Propofol in BV2 Microglia against OGD/Reoxygenation. J. Physiol. Biochem. 2013, 69, 707–718. [Google Scholar] [CrossRef]
- Wang, H.; Garcia, C.A.; Rehani, K.; Cekic, C.; Alard, P.; Kinane, D.F.; Mitchell, T.; Martin, M. IFN-β Production by TLR4-Stimulated Innate Immune Cells Is Negatively Regulated by GSK3-Β1. J. Immunol. 2008, 181, 6797–6802. [Google Scholar] [CrossRef]
- Martin, M.; Rehani, K.; Jope, R.S.; Michalek, S.M. Toll-like Receptor–Mediated Cytokine Production Is Differentially Regulated by Glycogen Synthase Kinase 3. Nat. Immunol. 2005, 6, 777–784. [Google Scholar] [CrossRef]
- Gui, B.; Su, M.; Chen, J.; Jin, L.; Wan, R.; Qian, Y. Neuroprotective Effects of Pretreatment with Propofol in LPS-Induced BV-2 Microglia Cells: Role of TLR4 and GSK-3β. Inflammation 2012, 35, 1632–1640. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, Y.; Xia, Q.; Tu, Z.; Sun, J.; Jing, Q.; Chen, P.; Zhao, X. Propofol Mediated Protection of the Brain From Ischemia/Reperfusion Injury Through the Regulation of Microglial Connexin 43. Front. Cell Dev. Biol. 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Wentlandt, K.; Samoilova, M.; Carlen, P.L.; Beheiry, H.E. General Anesthetics Inhibit Gap Junction Communication in Cultured Organotypic Hippocampal Slices. Anesth. Analg. 2006, 102, 1692. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Masaki, K.; Yamasaki, R.; Kawanokuchi, J.; Takeuchi, H.; Matsushita, T.; Suzumura, A.; Kira, J. Th1 Cells Downregulate Connexin 43 Gap Junctions in Astrocytes via Microglial Activation. Sci. Rep. 2016, 6, 38387. [Google Scholar] [CrossRef]
- Yang, Y.; Hang, W.; Li, J.; Liu, T.; Hu, Y.; Fang, F.; Yan, D.; McQuillan, P.M.; Wang, M.; Hu, Z. Effect of General Anesthetic Agents on Microglia. Aging Dis. 2024, 15, 1308–1328. [Google Scholar] [CrossRef]
- Harris, A.L. Connexin Channel Permeability to Cytoplasmic Molecules. Prog. Biophys. Mol. Biol. 2007, 94, 120–143. [Google Scholar] [CrossRef]
- Chever, O.; Lee, C.-Y.; Rouach, N. Astroglial Connexin43 Hemichannels Tune Basal Excitatory Synaptic Transmission. J. Neurosci. 2014, 34, 11228–11232. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Z.-Z.; Chen, N.-H. Connexin 43 Phosphorylation: Implications in Multiple Diseases. Molecules 2023, 28, 4914. [Google Scholar] [CrossRef]
- Eugenín, E.A.; Eckardt, D.; Theis, M.; Willecke, K.; Bennett, M.V.L.; Sáez, J.C. Microglia at Brain Stab Wounds Express Connexin 43 and in Vitro Form Functional Gap Junctions after Treatment with Interferon-γ and Tumor Necrosis Factor-α. Proc. Natl. Acad. Sci. USA 2001, 98, 4190–4195. [Google Scholar] [CrossRef]
- Bruzzone, R.; White, T.W.; Paul, D.L. Connections with Connexins: The Molecular Basis of Direct Intercellular Signaling. Eur. J. Biochem. 1996, 238, 1–27. [Google Scholar] [CrossRef]
- Simon, A.M.; Goodenough, D.A. Diverse Functions of Vertebrate Gap Junctions. Trends Cell Biol. 1998, 8, 477–483. [Google Scholar] [CrossRef]
- Frantseva, M.V.; Kokarovtseva, L.; Velazquez, J.L.P. Ischemia-Induced Brain Damage Depends on Specific Gap-Junctional Coupling. J. Cereb. Blood Flow Metab. 2002, 22, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Gu, Y.; Ding, X.; Wang, J.; Chen, J.; Miao, C. Intracellular Ca2+ Homeostasis and JAK1/STAT3 Pathway Are Involved in the Protective Effect of Propofol on BV2 Microglia against Hypoxia-Induced Inflammation and Apoptosis. PLoS ONE 2017, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Xiao, X.; Han, Y.; Wang, P.; Zang, L.; Wang, L.; Zhao, Y.; Shi, P.; Yang, P.; Guo, C.; et al. Research Progress of Propofol in Alleviating Cerebral Ischemia/Reperfusion Injury. Pharmacol. Rep. 2024. [Google Scholar] [CrossRef]
- Kim, O.S.; Park, E.J.; Joe, E.; Jou, I. JAK-STAT Signaling Mediates Gangliosides-Induced Inflammatory Responses in Brain Microglial Cells. J. Biol. Chem. 2002, 277, 40594–40601. [Google Scholar] [CrossRef]
- Jia, L.; Wang, F.; Gu, X.; Weng, Y.; Sheng, M.; Wang, G.; Li, S.; Du, H.; Yu, W. Propofol Postconditioning Attenuates Hippocampus Ischemia-Reperfusion Injury via Modulating JAK2/STAT3 Pathway in Rats after Autogenous Orthotropic Liver Transplantation. Brain Res. 2017, 1657, 202–207. [Google Scholar] [CrossRef]
- Igaz, P.; Tóth, S.; Falus, A. Biological and Clinical Significance of the JAK-STAT Pathway; Lessons from Knockout Mice. Inflamm. Res. 2001, 50, 435–441. [Google Scholar] [CrossRef]
- Huang, C.; Ma, R.; Sun, S.; Wei, G.; Fang, Y.; Liu, R.; Li, G. JAK2-STAT3 Signaling Pathway Mediates Thrombin-Induced Proinflammatory Actions of Microglia in Vitro. J. Neuroimmunol. 2008, 204, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lin, W.; Zhang, Y.; Lin, L.; Chen, J.; Zeng, Y.; Zheng, M.; Zhuang, Z.; Du, H.; Chen, R.; et al. IL-10 Promotes Neurite Outgrowth and Synapse Formation in Cultured Cortical Neurons after the Oxygen-Glucose Deprivation via JAK1/STAT3 Pathway. Sci. Rep. 2016, 6, 30459. [Google Scholar] [CrossRef]
- Mandal, T.; Bhowmik, A.; Chatterjee, A.; Chatterjee, U.; Chatterjee, S.; Ghosh, M.K. Reduced Phosphorylation of Stat3 at Ser-727 Mediated by Casein Kinase 2 — Protein Phosphatase 2A Enhances Stat3 Tyr-705 Induced Tumorigenic Potential of Glioma Cells. Cell. Signal. 2014, 26, 1725–1734. [Google Scholar] [CrossRef]
- Breit, A.; Besik, V.; Solinski, H.J.; Muehlich, S.; Glas, E.; Yarwood, S.J.; Gudermann, T. Serine-727 Phosphorylation Activates Hypothalamic STAT-3 Independently From Tyrosine-705 Phosphorylation. Mol. Endocrinol. 2015, 29, 445–459. [Google Scholar] [CrossRef]
- Zhong, Y.; Gu, L.; Ye, Y.; Zhu, H.; Pu, B.; Wang, J.; Li, Y.; Qiu, S.; Xiong, X.; Jian, Z. JAK2/STAT3 Axis Intermediates Microglia/Macrophage Polarization During Cerebral Ischemia/Reperfusion Injury. Neuroscience 2022, 496, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Yin, B.; Ye, Y.; Dekhel, O.Y.A.T.; Xiong, X.; Jian, Z.; Gu, L. The Bidirectional Role of the JAK2/STAT3 Signaling Pathway and Related Mechanisms in Cerebral Ischemia-Reperfusion Injury. Exp. Neurol. 2021, 341, 113690. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Huang, H.; Liu, J.; Li, M.; Liu, M.; Luo, T. Propofol Attenuates Inflammatory Response in LPS-Activated Microglia by Regulating the miR-155/SOCS1 Pathway. Inflammation 2018, 41, 11–19. [Google Scholar] [CrossRef]
- Woodbury, M.E.; Freilich, R.W.; Cheng, C.J.; Asai, H.; Ikezu, S.; Boucher, J.D.; Slack, F.; Ikezu, T. miR-155 Is Essential for Inflammation-Induced Hippocampal Neurogenic Dysfunction. J. Neurosci. 2015, 35, 9764–9781. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-H.; Song, M.-F.; Song, H.-D.; Wang, Y.-W.; Luo, M.-J.; Yin, L.-M. miR-155 Mediates Inflammatory Injury of Hippocampal Neuronal Cells via the Activation of Microglia. Mol. Med. Rep. 2019, 19, 2627–2635. [Google Scholar] [CrossRef]
- Gao, Y.; Han, T.; Han, C.; Sun, H.; Yang, X.; Zhang, D.; Ni, X. Propofol Regulates the TLR4/NF-κB Pathway Through miRNA-155 to Protect Colorectal Cancer Intestinal Barrier. Inflammation 2021, 44, 2078–2090. [Google Scholar] [CrossRef]
- Androulidaki, A.; Iliopoulos, D.; Arranz, A.; Doxaki, C.; Schworer, S.; Zacharioudaki, V.; Margioris, A.N.; Tsichlis, P.N.; Tsatsanis, C. The Kinase Akt1 Controls Macrophage Response to Lipopolysaccharide by Regulating MicroRNAs. Immunity 2009, 31, 220–231. [Google Scholar] [CrossRef]
- Cardoso, A.L.; Guedes, J.R.; Pereira de Almeida, L.; Pedroso de Lima, M.C. miR-155 Modulates Microglia-Mediated Immune Response by down-Regulating SOCS-1 and Promoting Cytokine and Nitric Oxide Production. Immunology 2012, 135, 73–88. [Google Scholar] [CrossRef]
- Moore, C.S.; Rao, V.T.S.; Durafourt, B.A.; Bedell, B.J.; Ludwin, S.K.; Bar-Or, A.; Antel, J.P. miR-155 as a Multiple Sclerosis–Relevant Regulator of Myeloid Cell Polarization. Ann. Neurol. 2013, 74, 709–720. [Google Scholar] [CrossRef]
- Slota, J.A.; Booth, S.A. MicroRNAs in Neuroinflammation: Implications in Disease Pathogenesis, Biomarker Discovery and Therapeutic Applications. Noncoding RNA 2019, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Zingale, V.D.; Gugliandolo, A.; Mazzon, E. miR-155: An Important Regulator of Neuroinflammation. Int. J. Mol. Sci. 2021, 23, 90. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.J.; Akhtar, L.N.; Benveniste, E.N. SOCS1 and SOCS3 in the Control of CNS Immunity. Trends Immunol. 2009, 30, 392–400. [Google Scholar] [CrossRef]
- Xiao, X.; Hou, Y.; Yu, W.; Qi, S. Propofol Ameliorates Microglia Activation by Targeting MicroRNA-221/222-IRF2 Axis. J. Immunol. Res. 2021, 2021, 3101146. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.-Y.; Niu, J.-Z. miR-222 Regulates Brain Injury and Inflammation Following Intracerebral Hemorrhage by Targeting ITGB8. Mol. Med. Rep. 2020, 21, 1145–1153. [Google Scholar] [CrossRef]
- Martino, M.T.D.; Arbitrio, M.; Caracciolo, D.; Cordua, A.; Cuomo, O.; Grillone, K.; Riillo, C.; Caridà, G.; Scionti, F.; Labanca, C.; et al. miR-221/222 as Biomarkers and Targets for Therapeutic Intervention on Cancer and Other Diseases: A Systematic Review. Mol. Ther.-Nucleic Acids 2022, 27, 1191–1224. [Google Scholar] [CrossRef]
- Abak, A.; Amini, S.; Sakhinia, E.; Abhari, A. MicroRNA-221: Biogenesis, Function and Signatures in Human Cancers. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 3094–3117. [Google Scholar] [CrossRef]
- Leung, A.; Trac, C.; Jin, W.; Lanting, L.; Akbany, A.; Sætrom, P.; Schones, D.E.; Natarajan, R. Novel Long Noncoding RNAs Are Regulated by Angiotensin II in Vascular Smooth Muscle Cells. Circ. Res. 2013, 113, 266–278. [Google Scholar] [CrossRef]
- Di Leva, G.; Gasparini, P.; Piovan, C.; Ngankeu, A.; Garofalo, M.; Taccioli, C.; Iorio, M.V.; Li, M.; Volinia, S.; Alder, H.; et al. MicroRNA Cluster 221-222 and Estrogen Receptor α Interactions in Breast Cancer. JNCI J. Natl. Cancer Inst. 2010, 102, 706–721. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Sobenin, I.A.; Orekhov, A.N.; Bobryshev, Y.V. Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling. Biomed Res. Int. 2015, 2015, 354517. [Google Scholar] [CrossRef]
- Cruz, S.A.; Hari, A.; Qin, Z.; Couture, P.; Huang, H.; Lagace, D.C.; Stewart, A.F.R.; Chen, H.-H. Loss of IRF2BP2 in Microglia Increases Inflammation and Functional Deficits after Focal Ischemic Brain Injury. Front. Cell. Neurosci. 2017, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Thomas, K.; Blanco, J.C.G.; Salkowski, C.A.; Vogel, S.N. The Role of the Interferon Regulatory Factors, IRF-1 and IRF-2, in LPS-Induced Cyclooxygenase-2 (COX-2) Expression in Vivo and in Vitro. J. Endotoxin Res. 2002, 8, 381–390. [Google Scholar] [CrossRef]
- Chen, H.-H.; Keyhanian, K.; Zhou, X.; Vilmundarson, R.O.; Almontashiri, N.A.M.; Cruz, S.A.; Pandey, N.R.; Lerma Yap, N.; Ho, T.; Stewart, C.A.; et al. IRF2BP2 Reduces Macrophage Inflammation and Susceptibility to Atherosclerosis. Circ. Res. 2015, 117, 671–683. [Google Scholar] [CrossRef]
- Peng, X.; Li, C.; Yu, W.; Liu, S.; Cong, Y.; Fan, G.; Qi, S. Propofol Attenuates Hypoxia-Induced Inflammation in BV2 Microglia by Inhibiting Oxidative Stress and NF-κB/Hif-1α Signaling. Biomed Res. Int. 2020, 2020, 8978704. [Google Scholar] [CrossRef] [PubMed]
- van Uden, P.; Kenneth, N.S.; Webster, R.; Müller, H.A.; Mudie, S.; Rocha, S. Evolutionary Conserved Regulation of HIF-1β by NF-κB. PLoS Genet. 2011, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.S.; Ghosh, S. NF-κB in Immunobiology. Cell Res. 2011, 21, 223–244. [Google Scholar] [CrossRef]
- Perkins, N.D.; Gilmore, T.D. Good Cop, Bad Cop: The Different Faces of NF-κB. Cell Death Differ. 2006, 13, 759–772. [Google Scholar] [CrossRef]
- Hayden, M.S.; Ghosh, S. Shared Principles in NF-κB Signaling. Cell 2008, 132, 344–362. [Google Scholar] [CrossRef]
- Bonizzi, G.; Karin, M. The Two NF-κB Activation Pathways and Their Role in Innate and Adaptive Immunity. Trends Immunol. 2004, 25, 280–288. [Google Scholar] [CrossRef]
- Liu, R.; Liao, X.-Y.; Pan, M.-X.; Tang, J.-C.; Chen, S.-F.; Zhang, Y.; Lu, P.-X.; Lu, L.J.; Zou, Y.-Y.; Qin, X.-P.; et al. Glycine Exhibits Neuroprotective Effects in Ischemic Stroke in Rats through the Inhibition of M1 Microglial Polarization via the NF-κB P65/Hif-1α Signaling Pathway. J. Immunol. 2019, 202, 1704–1714. [Google Scholar] [CrossRef]
- Azoitei, N.; Becher, A.; Steinestel, K.; Rouhi, A.; Diepold, K.; Genze, F.; Simmet, T.; Seufferlein, T. PKM2 Promotes Tumor Angiogenesis by Regulating HIF-1α through NF-κB Activation. Mol. Cancer 2016, 15, 3. [Google Scholar] [CrossRef] [PubMed]
- Semenza, G.L. Oxygen Sensing, Homeostasis, and Disease. New Engl. J. Med. 2011, 365, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Walmsley, S.R.; Chilvers, E.R.; Thompson, A.A.; Vaughan, K.; Marriott, H.M.; Parker, L.C.; Shaw, G.; Parmar, S.; Schneider, M.; Sabroe, I.; et al. Prolyl Hydroxylase 3 (PHD3) Is Essential for Hypoxic Regulation of Neutrophilic Inflammation in Humans and Mice. J. Clin. Investig. 2011, 121, 1053–1063. [Google Scholar] [CrossRef]
- Palazon, A.; Goldrath, A.W.; Nizet, V.; Johnson, R.S. HIF Transcription Factors, Inflammation, and Immunity. Immunity 2014, 41, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Bonello, S.; Zähringer, C.; BelAiba, R.S.; Djordjevic, T.; Hess, J.; Michiels, C.; Kietzmann, T.; Görlach, A. Reactive Oxygen Species Activate the HIF-1α Promoter Via a Functional NFκB Site. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 755–761. [Google Scholar] [CrossRef]
- Rius, J.; Guma, M.; Schachtrup, C.; Akassoglou, K.; Zinkernagel, A.S.; Nizet, V.; Johnson, R.S.; Haddad, G.G.; Karin, M. NF-κB Links Innate Immunity to the Hypoxic Response through Transcriptional Regulation of HIF-1α. Nature 2008, 453, 807–811. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Xia, X.; Yang, X.; Zhao, R.; Peer, J.; Wang, H.; Tong, Z.; Gao, F.; Lin, H.; et al. Propofol Reduces Microglia Activation and Neurotoxicity through Inhibition of Extracellular Vesicle Release. J. Neuroimmunol. 2019, 333, 476962. [Google Scholar] [CrossRef]
- Frühbeis, C.; Fröhlich, D.; Kuo, W.P.; Krämer-Albers, E.-M. Extracellular Vesicles as Mediators of Neuron-Glia Communication. Front. Cell Neurosci. 2013, 7, 182. [Google Scholar] [CrossRef]
- Mathivanan, S.; Ji, H.; Simpson, R.J. Exosomes: Extracellular Organelles Important in Intercellular Communication. J. Proteom. 2010, 73, 1907–1920. [Google Scholar] [CrossRef]
- Joshi, P.; Turola, E.; Ruiz, A.; Bergami, A.; Libera, D.D.; Benussi, L.; Giussani, P.; Magnani, G.; Comi, G.; Legname, G.; et al. Microglia Convert Aggregated Amyloid-β into Neurotoxic Forms through the Shedding of Microvesicles. Cell Death Differ. 2014, 21, 582–593. [Google Scholar] [CrossRef]
- Bianco, F.; Pravettoni, E.; Colombo, A.; Schenk, U.; Möller, T.; Matteoli, M.; Verderio, C. Astrocyte-Derived ATP Induces Vesicle Shedding and IL-1β Release from Microglia1. J. Immunol. 2005, 174, 7268–7277. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ye, L.; Lu, H.; Chen, H.; Zhang, Y.; Huang, Y.; Zheng, J.C. TNF-α Promotes Extracellular Vesicle Release in Mouse Astrocytes through Glutaminase. J. Neuroinflammation 2017, 14, 87. [Google Scholar] [CrossRef]
- Votyakova, T.V.; Reynolds, I.J. ΔΨm-Dependent and -Independent Production of Reactive Oxygen Species by Rat Brain Mitochondria. J. Neurochem. 2001, 79, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Chinnery, P.F.; Schon, E.A. Mitochondria. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1188–1199. [Google Scholar] [CrossRef]
- Chouchani, E.T.; Pell, V.R.; James, A.M.; Work, L.M.; Saeb-Parsy, K.; Frezza, C.; Krieg, T.; Murphy, M.P. A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury. Cell Metab. 2016, 23, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Eltzschig, H.K.; Eckle, T. Ischemia and Reperfusion—from Mechanism to Translation. Nat. Med. 2011, 17, 1391–1401. [Google Scholar] [CrossRef]
- Suliman, H.B.; Piantadosi, C.A. Mitochondrial Quality Control as a Therapeutic Target. Pharmacol. Rev. 2016, 68, 20–48. [Google Scholar] [CrossRef]
- Yu, W.; Gao, D.; Jin, W.; Liu, S.; Qi, S. Propofol Prevents Oxidative Stress by Decreasing the Ischemic Accumulation of Succinate in Focal Cerebral Ischemia–Reperfusion Injury. Neurochem. Res. 2018, 43, 420–429. [Google Scholar] [CrossRef]
- Kang, J.; Park, E.J.; Jou, I.; Kim, J.-H.; Joe, E. Reactive Oxygen Species Mediate Aβ(25-35)-Induced Activation of BV-2 Microglia. NeuroReport 2001, 12, 1449. [Google Scholar] [CrossRef]
- Korvers, L.; de Andrade Costa, A.; Mersch, M.; Matyash, V.; Kettenmann, H.; Semtner, M. Spontaneous Ca2+ Transients in Mouse Microglia. Cell Calcium 2016, 60, 396–406. [Google Scholar] [CrossRef]
- Sharma, P.; Ping, L. Calcium Ion Influx in Microglial Cells: Physiological and Therapeutic Significance. J. Neurosci. Res. 2014, 92, 409–423. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.; Kann, O.; Ohlemeyer, C.; Hanisch, U.-K.; Kettenmann, H. Elevation of Basal Intracellular Calcium as a Central Element in the Activation of Brain Macrophages (Microglia): Suppression of Receptor-Evoked Calcium Signaling and Control of Release Function. J. Neurosci. 2003, 23, 4410–4419. [Google Scholar] [CrossRef] [PubMed]
- Färber, K.; Kettenmann, H. Functional Role of Calcium Signals for Microglial Function. Glia 2006, 54, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Rostas, J.A.P.; Skelding, K.A. Calcium/Calmodulin-Stimulated Protein Kinase II (CaMKII): Different Functional Outcomes from Activation, Depending on the Cellular Microenvironment. Cells 2023, 12, 401. [Google Scholar] [CrossRef]
- Bell, J.R.; Vila-Petroff, M.; Delbridge, L.M.D. CaMKII-Dependent Responses to Ischemia and Reperfusion Challenges in the Heart. Front. Pharmacol. 2014, 5. [Google Scholar] [CrossRef]
Mechanism | Type of Experiment | Model | Outcome | Reference |
---|---|---|---|---|
PI3K/Akt/Pathway Activation | in-vivo | Rat I/R Injury | Autophagy Activation (Anti-inflammatory Effects) | [24] |
PI3K/Akt/Pathway Activation | in-vitro | (OGD)-Stimulated Primary Microglia | Autophagy Activation (Anti-inflammatory Effects) | [24] |
PI3K/Akt/Pathway Activation | in-vitro | LPS-induced BV-2 microglia | Anti-inflammatory Effects | [27] |
PI3K/Akt/Pathway Inhibition | in-vitro | LPS-induced Primary Mouse Microglia | Anti-inflammatory Effects | [29] |
NADPH oxidase Inhibition | in-vitro | LPS-induced BV2 Cells | Anti-inflammatory Effects | [36] |
Downregulation of TLR4 Expression | in-vivo | (MCA) coagulation | Anti-inflammatory Effects | [14] |
Downregulation of TLR4 Expression | in-vitro | (OGD/R) BV2 microglia | Anti-inflammatory Effects | [48] |
Downregulation of TLR4 Expression, but maintaining GSK-3β | in-vitro | LPS-induced BV-2 microglia | Anti-inflammatory Effects | [51] |
Downregulation of Connexin 43 | in-vitro | hypoxia/reoxygenation-H/R injury | Anti-inflammatory Effects | [52] |
Downregulation of Connexin 43 | ex-vivo | MCS was collected from H/R-injured microglia. | Anti-inflammatory Effects | [52] |
Downregulation of Connexin 43 | in-vivo | Middle cerebral artery occlusion (MCAO) in SD rats | Anti-inflammatory Effects | [52] |
Activation of JAK1/STAT3 pathway | in-vitro | CoCl2-induced hypoxic injured BV2 cells | Anti-inflammatory Effects | [63] |
Regulating the miR-155/SOCS1 Pathway | in-vitro | LPS-induced BV-2 microglia | Anti-inflammatory Effects | [74] |
Regulating MicroRNA-221/222-IRF2 Pathway | in-vitro | LPS-induced BV-2 microglia | Anti-inflammatory Effects | [84] |
Inhibiting NF-κB/Hif-1α Pathway | in-vitro | CoCl2 hypoxic-induced BV2 cells | Anti-inflammatory Effects | [94] |
Inhibiting Extracellular Vesicle Release | in-vitro | LPS-induced BV-2 microglia | Anti-inflammatory Effects | [107] |
Inhibiting ROS and Increasing Antioxidant Activity | in-vitro | CoCl2 hypoxic-induced BV2 cells | Anti-inflammatory Effects | [94] |
Maintaining Intracellular Ca2+ Homeostasis | in-vitro | CoCl2 hypoxic-induced BV2 cells | Anti-inflammatory Effects | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdolmohammadi, P.; Bietar, B.; Zhou, J.; Lehmann, C. Mechanisms of Action of Propofol in Modulating Microglial Activation in Ischemic Stroke. Molecules 2025, 30, 2795. https://doi.org/10.3390/molecules30132795
Abdolmohammadi P, Bietar B, Zhou J, Lehmann C. Mechanisms of Action of Propofol in Modulating Microglial Activation in Ischemic Stroke. Molecules. 2025; 30(13):2795. https://doi.org/10.3390/molecules30132795
Chicago/Turabian StyleAbdolmohammadi, Pouria, Bashir Bietar, Juan Zhou, and Christian Lehmann. 2025. "Mechanisms of Action of Propofol in Modulating Microglial Activation in Ischemic Stroke" Molecules 30, no. 13: 2795. https://doi.org/10.3390/molecules30132795
APA StyleAbdolmohammadi, P., Bietar, B., Zhou, J., & Lehmann, C. (2025). Mechanisms of Action of Propofol in Modulating Microglial Activation in Ischemic Stroke. Molecules, 30(13), 2795. https://doi.org/10.3390/molecules30132795