LC-Orbitrap-MS/MS Analysis of Chosen Glycation Products in Infant Formulas
Abstract
1. Introduction
2. Results
2.1. Development of the Chromatographic Method
2.2. Infant Formula Samples
3. Discussion
4. Materials and Methods
4.1. Infant Formula Samples Preparation
4.2. Chemicals and Reagents
4.3. Preparation of Stock Solutions and Calibration Curves for LC-MS/MS Analysis
4.4. Isolation of Glycation Products from Infant Formulas
4.5. Chromatographic Separation and MS Conditions
- −
- 0–2 min 100% A;
- −
- 2.01–5 min increase to 20% B;
- −
- 5.01–7 min increase to 25% B (75% A: 25% B);
- −
- 7.01–9 min increase to 30% B (70% A: 30% B);
- −
- 9.01–16 min increase to 35% B (65% A: 35% B);
- −
- 16.01–20 min increase to 40% B (60% A: 35% B);
- −
- 20.01–28 min increase to 100% B;
- −
- 28.01–40 min increase to 100% A.
- −
- ion spray voltage: 3.5 kV;
- −
- ion transfer capillary temperature: 320 °C;
- −
- sheath gas flow rate: 30 arbitrary units;
- −
- auxiliary gas flow rate: 4 arbitrary units;
- −
- sweep gas flow rate: 0 arbitrary units;
- −
- S-lens radio frequency level: 50%.
4.6. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
1-DG | 1-deoxyglucosone |
3-DG | 3-deoxyglucosone |
AGC | automatic gain control |
AGEs | advanced glycation end-products |
CEA | Nε-carboxyethylarginine |
CEL | Nε-carboxyethyllysine |
CMA | Nε-carboxymethylarginine |
CML | Nε-carboxymethyllysine |
dAGEs | dietary advanced glycation end-products |
EFSA | European Food Safety Authority |
EGPs | early glycation products |
ELISA | enzyme-linked immunosorbent assay |
ESI | electrospray ionization |
FF | follow-on formula |
FWHM | full width at half maximum |
GOLD | glyoxal lysine dimer |
HESI | heated electrospray ionization |
IF | initial formula |
IGPs | intermediate glycation products |
LC | liquid chromatography |
LOD | limit of detection |
LOQ | limit of quantification |
MG-H1 | methylglyoxal-derived hydroimidazolone |
MGO | methylglyoxal |
MOLD | methylglyoxal lysine dimer |
MRPs | Maillard reaction products |
MS | mass spectrometry |
MS/MS | tandem mass spectrometry |
PES | polyethersulfone |
PFPA | perfluoropropionic anhydride |
PRM | parallel reaction monitoring |
RAGE | receptor for advanced glycation end-products |
RSD% | relative standard deviation |
SD | standard deviation |
S/N | signal-to-noise |
TAGEs | toxic advanced glycation end-products |
UHT | ultra-high temperature |
References
- Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced Glycation End Products and Diabetic Complications. Korean J. Physiol. Pharmacol. 2014, 18, 1. [Google Scholar] [CrossRef]
- Beisswenger, P.J. Glycation and Biomarkers of Vascular Complications of Diabetes. Amino Acids 2012, 42, 1171–1183. [Google Scholar] [CrossRef]
- Henning, C.; Glomb, M.A. Pathways of the Maillard Reaction under Physiological Conditions. Glycoconj. J. 2016, 33, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Shen, M.; Lu, J.; Yang, J.; Huang, Y.; Liu, L.; Fan, H.; Xie, J.; Xie, M. Maillard Reaction Harmful Products in Dairy Products: Formation, Occurrence, Analysis, and Mitigation Strategies. Food Res. Int. 2022, 151, 110839. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-Y.; Qian, H.; Yao, W.-R. Melanoidins Produced by the Maillard Reaction: Structure and Biological Activity. Food Chem. 2011, 128, 573–584. [Google Scholar] [CrossRef]
- Nowak, A.; Przywara-Chowaniec, B.; Damasiewicz-Bodzek, A.; Janoszka, B.; Szumska, M.; Waligóra, S.; Tyrpień-Golder, K. Women Suffering from Systemic Lupus Erythematosus Are Characterized by Low Blood Levels of α-Dicarbonyl Compounds. Arch. Med. Sci. 2024, 20, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W.; Chen, X.; Pyzik, R.; Yong, A.; Striker, G.E.; Vlassara, H. Advanced Glycation End Products in Foods and a Practical Guide to Their Reduction in the Diet. J. Am. Diet. Assoc. 2010, 110, 911–916.e12. [Google Scholar] [CrossRef]
- Szajewska, H.; Socha, P.; Horvath, A.; Rybak, A.; Zalewski, B.; Nehring-Gugulska, M.; Mojska, H.; Czerwionka-Szaflarska, M.; Gajewska, D.; Helwich, E.; et al. Zasady Żywienia Zdrowych Niemowląt. Stanowisko Polskiego Towarzystwa Gastroenterologii, Hepatologii i Żywienia Dzieci. Stand. Med. Pediatr. 2021, 18, 805–822. [Google Scholar] [CrossRef]
- World Health Organization. Infant and Young Child Feeding: Model Chapter for Textbooks for Medical Students and Allied Health Professionals; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Fewtrell, M.; Bronsky, J.; Campoy, C.; Domellöf, M.; Embleton, N.; Fidler Mis, N.; Hojsak, I.; Hulst, J.M.; Indrio, F.; Lapillonne, A.; et al. Complementary Feeding: A Position Paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 119–132. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products. Scientific Opinion on the Essential Composition of Infant and Follow-on Formulae. EFSA J. 2014, 12, 3760. [Google Scholar] [CrossRef]
- Xie, Y.; van der Fels-Klerx, H.J.; van Leeuwen, S.P.J.; Fogliano, V. Occurrence of Dietary Advanced Glycation End-Products in Commercial Cow, Goat and Soy Protein Based Infant Formulas. Food Chem. 2023, 411, 135424. [Google Scholar] [CrossRef] [PubMed]
- Klenovics, K.S.; Boor, P.; Somoza, V.; Celec, P.; Fogliano, V.; Šebeková, K. Advanced Glycation End Products in Infant Formulas Do Not Contribute to Insulin Resistance Associated with Their Consumption. PLoS ONE 2013, 8, e53056. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Explanatory Note to the Scientific and Technical Guidance for the Preparation and Presentation of an Application for Authorisation of an Infant and/or Follow-on Formula Manufactured from Protein Hydrolysates (with a View to Amend Regulation (EU) 2016/127). EFSA Support. Publ. 2020, 17. [Google Scholar] [CrossRef]
- Bohn, T.; Cámara, M.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.; Jos, A.; Maciuk, A.; Mangelsdorf, I.; McNulty, B.; Naska, A.; et al. Nutritional Safety and Suitability of a Specific Protein Hydrolysate Manufactured by Fonterra Co-operative Group Ltd Derived from a Whey Protein Concentrate and Used in Infant Formula and Follow-on Formula. EFSA J. 2025, 23. [Google Scholar] [CrossRef]
- Bohn, T.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.; Katrine Knutsen, H.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Nutritional Safety and Suitability of a Specific Protein Hydrolysate Derived from Whey Protein Concentrate and Used in an Infant and Follow-on Formula Manufactured from Hydrolysed Protein by HIPP-Werk Georg Hipp OHG (Dossier Submitted by Meyer.Science GmbH). EFSA J. 2022, 20. [Google Scholar] [CrossRef]
- Koschinsky, T.; He, C.-J.; Mitsuhashi, T.; Bucala, R.; Liu, C.; Buenting, C.; Heitmann, K.; Vlassara, H. Orally Absorbed Reactive Glycation Products (Glycotoxins): An Environmental Risk Factor in Diabetic Nephropathy. Proc. Natl. Acad. Sci. USA 1997, 94, 6474–6479. [Google Scholar] [CrossRef]
- van der Lugt, T.; Opperhuizen, A.; Bast, A.; Vrolijk, M.F. Dietary Advanced Glycation Endproducts and the Gastrointestinal Tract. Nutrients 2020, 12, 2814. [Google Scholar] [CrossRef]
- Dello Russo, M.; Sirangelo, I.; Lauria, F.; Formisano, A.; Iannuzzi, C.; Hebestreit, A.; Pala, V.; Siani, A.; Russo, P. Dietary Advanced Glycation End Products (AGEs) and Urinary Fluorescent AGEs in Children and Adolescents: Findings from the Italian I.Family Project. Nutrients 2024, 16, 1831. [Google Scholar] [CrossRef]
- Mir, A.R.; Habib, S.; Siddiqui, S.S.; Ali, A.; Moinuddin Neo-Epitopes on Methylglyoxal Modified Human Serum Albumin Lead to Aggressive Autoimmune Response in Diabetes. Int. J. Biol. Macromol. 2016, 86, 799–809. [CrossRef]
- Verzijl, N.; DeGroot, J.; Zaken, C.B.; Braun-Benjamin, O.; Maroudas, A.; Bank, R.A.; Mizrahi, J.; Schalkwijk, C.G.; Thorpe, S.R.; Baynes, J.W.; et al. Crosslinking by Advanced Glycation End Products Increases the Stiffness of the Collagen Network in Human Articular Cartilage: A Possible Mechanism through Which Age Is a Risk Factor for Osteoarthritis. Arthritis Rheum. 2002, 46, 114–123. [Google Scholar] [CrossRef]
- Raupbach, J.; Ott, C.; Koenig, J.; Grune, T. Proteasomal Degradation of Glycated Proteins Depends on Substrate Unfolding: Preferred Degradation of Moderately Modified Myoglobin. Free Radic. Biol. Med. 2020, 152, 516–524. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.; Yang, M.; Liu, X.; Lyu, S.; Liu, B.; Liu, J.; Zhang, T. Effect of Glycation Degree on the Structure and Digestion Properties of Ovalbumin: A Study of Amino Acids and Peptides Release after in Vitro Gastrointestinal Simulated Digestion. Food Chem. 2022, 373, 131331. [Google Scholar] [CrossRef]
- Takeuchi, M.; Sakasai-Sakai, A.; Takata, T.; Takino, J.; Koriyama, Y. Effects of Toxic AGEs (TAGE) on Human Health. Cells 2022, 11, 2178. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, Z.; Li, Y.; Liu, S.; Hu, P.; Luo, E. Advanced Glycation End Products and Reactive Oxygen Species: Uncovering the Potential Role of Ferroptosis in Diabetic Complications. Mol. Med. 2024, 30, 141. [Google Scholar] [CrossRef]
- Song, F.; Schmidt, A.M. Glycation and Insulin Resistance. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1760–1765. [Google Scholar] [CrossRef] [PubMed]
- Mericq, V.; Piccardo, C.; Cai, W.; Chen, X.; Zhu, L.; Striker, G.E.; Vlassara, H.; Uribarri, J. Maternally Transmitted and Food-Derived Glycotoxins. Diabetes Care 2010, 33, 2232–2237. [Google Scholar] [CrossRef]
- Demirer, B.; Samur, G. Possible Effects of Dietary Advanced Glycation End Products on Maternal and Fetal Health: A Review. Nutr. Rev. 2023, 81, 844–856. [Google Scholar] [CrossRef]
- Hellwig, M.; Humpf, H.-U.; Hengstler, J.; Mally, A.; Vieths, S.; Henle, T. Quality Criteria for Studies on Dietary Glycation Compounds and Human Health. J. Agric. Food Chem. 2019, 67, 11307–11311. [Google Scholar] [CrossRef]
- Poojary, M.M.; Zhang, W.; Greco, I.; De Gobba, C.; Olsen, K.; Lund, M.N. Liquid Chromatography Quadrupole-Orbitrap Mass Spectrometry for the Simultaneous Analysis of Advanced Glycation End Products and Protein-Derived Cross-Links in Food and Biological Matrices. J. Chromatogr. A 2020, 1615, 460767. [Google Scholar] [CrossRef]
- Troise, A.D.; Fiore, A.; Wiltafsky, M.; Fogliano, V. Quantification of Nε-(2-Furoylmethyl)-l-Lysine (Furosine), Nε-(Carboxymethyl)-l-Lysine (CML), Nε-(Carboxyethyl)-l-Lysine (CEL) and Total Lysine through Stable Isotope Dilution Assay and Tandem Mass Spectrometry. Food Chem. 2015, 188, 357–364. [Google Scholar] [CrossRef]
- Gong, R.; Wang, Y.; Gao, K.; Zhang, L.; Liu, C.; Wang, Z.; Wang, Y.; Sun, Y. Quantification of Furosine (Nε-(2-Furoylmethyl)-l-Lysine) in Different Parts of Velvet Antler with Various Processing Methods and Factors Affecting Its Formation. Molecules 2019, 24, 1255. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, M.; Chen, Y.; Yu, L.; Wu, M.; Kang, S.; Lin, Q.; Zhang, Q.; Han, L.; Lin, H.; et al. Development of Simultaneous Quantitation Method for 20 Free Advanced Glycation End Products Using UPLC–MS/MS and Clinical Application in Kidney Injury. J. Pharm. Biomed. Anal. 2024, 242, 116035. [Google Scholar] [CrossRef]
- Delatour, T.; Hegele, J.; Parisod, V.; Richoz, J.; Maurer, S.; Steven, M.; Buetler, T. Analysis of Advanced Glycation Endproducts in Dairy Products by Isotope Dilution Liquid Chromatography–Electrospray Tandem Mass Spectrometry. The Particular Case of Carboxymethyllysine. J. Chromatogr. A 2009, 1216, 2371–2381. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Liu, L.; Zhang, J.; Kou, Y.; Du, Y.; Kong, M.; Xie, J.; Shen, M. Evaluation of Potentially Harmful Maillard Reaction Products in Different Types of Commercial Formulae. Food Chem. 2024, 456, 139965. [Google Scholar] [CrossRef]
- Martysiak-Żurowska, D.; Stołyhwo, A. Content of Furosine in Infant Formulae and Follow-on Formulae. Pol. J. Food Nutr. Sci. 2007, 57, 185–190. [Google Scholar]
- Akıllıoğlu, H.G.; Lund, M.N. Quantification of Advanced Glycation End Products and Amino Acid Cross-Links in Foods by High-Resolution Mass Spectrometry: Applicability of Acid Hydrolysis. Food Chem. 2022, 366, 130601. [Google Scholar] [CrossRef]
- Masum, A.K.M.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. Production and Characterization of Infant Milk Formula Powders: A Review. Dry. Technol. 2021, 39, 1492–1512. [Google Scholar] [CrossRef]
- Guo, M.; Ahmad, S. Formulation Guidelines for Infant Formula. In Human Milk Biochemistry and Infant Formula Manufacturing Technology; Woodhead Publishing: Sawston, UK, 2014; pp. 141–171. [Google Scholar]
- Li, Y.; Wu, Y.; Quan, W.; Jia, X.; He, Z.; Wang, Z.; Adhikari, B.; Chen, J.; Zeng, M. Quantitation of Furosine, Furfurals, and Advanced Glycation End Products in Milk Treated with Pasteurization and Sterilization Methods Applicable in China. Food Res. Int. 2021, 140, 110088. [Google Scholar] [CrossRef] [PubMed]
- Rios-Leyvraz, M.; Yao, Q. The Volume of Breast Milk Intake in Infants and Young Children: A Systematic Review and Meta-Analysis. Breastfeed. Med. 2023, 18, 188–197. [Google Scholar] [CrossRef] [PubMed]
Compound | Retention Time [min] | Precursor Ion → Product Ion (m/z) | Collision Energy [eV] |
---|---|---|---|
CML | 8.52 | 205.1183 → 84.0806 | 15 |
CEL | 9.35 | 219.1339 → 84.0806 | 15 |
Furosine | 10.66 | 255.1300 → 84.0806 | 20 |
GOLD | 11.08 | 327.2000 → 84.0806 | 35 |
MOLD | 11.36 | 341.2000 → 84.0806 | 37 |
Compound | Calibration Curve Equation | r |
---|---|---|
CML | y = 9098.45x – 482,962 | r = 0.993 |
CEL | y = 8278.08x – 484,989 | r = 0.988 |
Furosine | y = 8002.84x – 372,779 | r = 0.990 |
GOLD | y = 2469.08x – 144,467 | r = 0.886 |
MOLD | y = 2270.49x – 144,723 | r = 0.996 |
Compound | Recovery (%) for Spiking Level (ng/mL of Infant Formula Extract); n = 6 | |||||
---|---|---|---|---|---|---|
125 ng/mL | RSD [%] | 625 ng/mL | RSD [%] | 1250 ng/mL | RSD [%] | |
CML | 75.00 | 1.38 | 88.43 | 2.73 | 80.31 | 2.30 |
CEL | 88.99 | 1.20 | 91.76 | 3.44 | 81.23 | 2.27 |
Furosine | 31.09 | 2.32 | 72.47 | 1.69 | 71.55 | 1.67 |
GOLD | 100.00 | 1.31 | 121.25 | 2.54 | 121.66 | 2.15 |
MOLD | 79.90 | 1.27 | 96.23 | 2.47 | 94.45 | 1.35 |
Sample | Values in Milk Samples—Mean ± SD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CML [μg/mL] | RSD [%] | CEL [μg/mL] | RSD [%] | Furosine [μg/mL] | RSD [%] | GOLD [μg/mL] | RSD [%] | MOLD [μg/mL] | RSD [%] | |
Initial Formulas (IF) | ||||||||||
A1 L | 3.71 ± 0.55 | 14.81 | 1.65 ± 0.04 | 2.38 | 39.27 ± 1.36 | 3.46 | 1.57 ± 0.06 | 3.59 | 1.84 ± 0.02 | 0.92 |
B1 P | 2.95 ± 0.04 | 1.29 | 1.72 ± 0.03 | 1.92 | 84.38 ± 2.77 | 3.28 | 1.59 ± 0.10 | 6.23 | 1.80 ± 0.02 | 1.18 |
C1 L | 4.99 ± 0.09 | 1.92 | 1.74 ± 0.01 | 0.36 | 45.39 ± 1.19 | 2.63 | 1.67 ± 0.04 | 2.67 | 1.76 ± 0.01 | 0.55 |
D1 L | 3.19 ± 0.14 | 4.35 | 1.67 ± 0.01 | 0.64 | 57.27 ± 2.12 | 3.71 | 1.61 ± 0.07 | 4.37 | 1.74 ± 0.04 | 2.32 |
E1 P | 2.23 ± 0.17 | 7.65 | 1.71 ± 0.04 | 2.09 | 84.03 ± 5.94 | 7.07 | 1.61 ± 0.09 | 5.92 | 1.81 ± 0.03 | 1.41 |
F1 P | 3.90 ± 0.22 | 5.74 | 1.71 ± 0.03 | 1.86 | 77.58 ± 5.09 | 6.56 | 1.57 ± 0.06 | 3.93 | 1.66 ± 0.02 | 1.44 |
G1 P | 2.19 ± 0.02 | 0.84 | 1.81 ± 0.11 | 6.30 | 87.89 ± 2.01 | 2.28 | 1.53 ± 0.01 | 0.55 | 1.74 ± 0.03 | 1.63 |
H1 L | 5.96 ± 0.15 | 2.49 | 1.73 ± 0.04 | 2.22 | 99.23 ± 10.55 | 10.64 | 1.57 ± 0.08 | 5.07 | 1.81 ± 0.02 | 1.26 |
I1 L | 4.04 ± 0.07 | 1.84 | 1.70 ± 0.01 | 0.65 | 60.32 ± 2.62 | 4.34 | 1.66 ± 0.09 | 5.62 | 1.82 ± 0.03 | 1.61 |
J1 P | 2.07 ± 0.19 | 9.06 | 1.66 ± 0.02 | 0.97 | 55.62 ± 6.29 | 11.3 | 1.59 ± 0.05 | 3.08 | 1.82 ± 0.02 | 1.29 |
Follow-on Formulas (FF) | ||||||||||
A2 L | 3.94 ± 0.14 | 3.66 | 1.70 ± 0.01 | 0.60 | 57.68 ± 0.54 | 0.94 | 1.61 ± 0.02 | 1.44 | 1.76 ± 0.07 | 3.73 |
B2 P | 1.82 ± 0.02 | 1.20 | 1.73 ± 0.02 | 1.12 | 86.51 ± 6.41 | 7.41 | 1.52 ± 0.01 | 0.69 | 1.82 ± 0.02 | 1.20 |
C2 P | 1.83 ± 0.05 | 3.00 | 1.67 ± 0.12 | 7.44 | 54.59 ± 4.47 | 8.19 | 1.60 ± 0.12 | 7.54 | 1.80 ± 0.04 | 2.08 |
D2 P | 2.54 ± 0.03 | 1.19 | 1.73 ± 0.01 | 0.60 | 86.44 ± 1.78 | 2.06 | 1.64 ± 0.01 | 0.67 | 1.76 ± 0.04 | 2.41 |
E2 P | 2.35 ± 0.05 | 1.95 | 1.72 ± 0.06 | 3.22 | 102.35 ± 7.40 | 7.23 | 1.61 ± 0.10 | 6.34 | 1.84 ± 0.05 | 2.52 |
F2 P | 4.06 ± 0.17 | 4.25 | 1.73 ± 0.02 | 0.92 | 86.87 ± 4.98 | 5.73 | 1.56 ± 0.04 | 2.48 | 1.71 ± 0.03 | 1.66 |
G2 P | 1.95 ± 0.03 | 1.50 | 1.61 ± 0.01 | 0.62 | 61.63 ± 2.62 | 4.25 | 1.51 ± 0.02 | 1.17 | 1.75 ± 0.03 | 1.55 |
H2 L | 6.27 ± 0.47 | 7.47 | 1.71 ± 0.02 | 0.89 | 77.12 ± 3.36 | 4.36 | 1.55 ± 0.09 | 5.56 | 1.80 ± 0.08 | 4.37 |
I2 P | 2.45 ± 0.34 | 13.87 | 1.66 ± 0.02 | 0.98 | 67.42 ± 4.14 | 6.14 | 1.56 ± 0.06 | 3.74 | 1.84 ± 0.01 | 0.37 |
J2 P | 4.61 ± 0.12 | 2.39 | 1.85 ± 0.03 | 1.37 | 96.56 ± 1.94 | 2.01 | 1.56 ± 0.02 | 1.58 | 1.72 ± 0.03 | 1.77 |
Compound | Formula | Mean [μg/mL of Milk] | Min–Max Range [μg/mL of Milk] | Mean Concentration [mg/100 g of Protein in Milk] |
---|---|---|---|---|
CML | IF | 3.52 | 2.07–5.96 | 25.83 |
FF | 3.18 | 1.82–6.27 | 22.59 | |
CEL | IF | 1.61 | 0.81–1.74 | 11.81 |
FF | 1.71 | 1.61–1.85 | 12.14 | |
Furosine | IF | 69.10 | 39.27–99.23 | 506.97 |
FF | 77.72 | 54.59–102.35 | 551.99 | |
GOLD | IF | 1.60 | 1.53–1.67 | 11.74 |
FF | 1.57 | 1.51–1.64 | 11.15 | |
MOLD | IF | 1.78 | 1.66–1.84 | 13.06 |
FF | 1.78 | 1.71–1.84 | 12.64 |
Sample | Value per 100 mL of Ready-to-Serve Formula | |||
---|---|---|---|---|
Energy Value [kcal] | Protein [g] | Total Carbohydrates (Mono- and Disaccharides) [g] | Lipids [g] | |
Initial Formulas (IF) | ||||
A1 L | 66 | 1.3 | 7.2 (7.0) | 3.4 |
B1 P | 67 | 1.3 | 8.2 (7.7) | 3.3 |
C1 L | 66 | 1.3 | 7.5 (7.4) | 3.4 |
D1 L | 65 | 1.2 | 7.6 (7.6) | 3.2 |
E1 P | 66 | 1.3 | 7.3 (7.2) | 3.4 |
F1 P | 66 | 1.5 | 7.2 (7.0) | 3.4 |
G1 P | 68 | 1.88 | 7.4 (0.77) | 3.5 |
H1 L | 67 | 1.24 | 7.5 (7.3) | 3.5 |
I1 L | 66 | 1.3 | 7.0 (7.0) | 3.6 |
J1 P | 66 | 1.3 | 7.3 (7.2) | 3.4 |
Follow-on Formulas (FF) | ||||
A2 L | 68 | 1.4 | 8.2 (8.1) | 3.2 |
B2 P | 67 | 1.3 | 8.2 (7.4) | 3.2 |
C2 P | 68 | 1.4 | 8.3 (8.2) | 3.2 |
D2 P | 66 | 1.3 | 7.8 (7.6) | 3.3 |
E2 P | 68 | 1.4 | 8.1 (8.0) | 3.2 |
F2 P | 68 | 1.5 | 7.7 (7.5) | 3.3 |
G2 P | 68 | 1.68 | 7.7 (3.5) | 3.4 |
H2 L | 67 | 1.1 | 8.3 (8.3) | 3.2 |
I2 P | 68 | 1.4 | 8.1 (8.0) | 3.2 |
J2 P | 68 | 1.6 | 8.1 (3.5) | 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damasiewicz-Bodzek, A.; Szumska, M.; Nowak, A.; Waligóra, S.; Pastuszka, B.; Stopińska, K.; Janoszka, B. LC-Orbitrap-MS/MS Analysis of Chosen Glycation Products in Infant Formulas. Molecules 2025, 30, 2753. https://doi.org/10.3390/molecules30132753
Damasiewicz-Bodzek A, Szumska M, Nowak A, Waligóra S, Pastuszka B, Stopińska K, Janoszka B. LC-Orbitrap-MS/MS Analysis of Chosen Glycation Products in Infant Formulas. Molecules. 2025; 30(13):2753. https://doi.org/10.3390/molecules30132753
Chicago/Turabian StyleDamasiewicz-Bodzek, Aleksandra, Magdalena Szumska, Agnieszka Nowak, Sławomir Waligóra, Beata Pastuszka, Kamila Stopińska, and Beata Janoszka. 2025. "LC-Orbitrap-MS/MS Analysis of Chosen Glycation Products in Infant Formulas" Molecules 30, no. 13: 2753. https://doi.org/10.3390/molecules30132753
APA StyleDamasiewicz-Bodzek, A., Szumska, M., Nowak, A., Waligóra, S., Pastuszka, B., Stopińska, K., & Janoszka, B. (2025). LC-Orbitrap-MS/MS Analysis of Chosen Glycation Products in Infant Formulas. Molecules, 30(13), 2753. https://doi.org/10.3390/molecules30132753