Electrochemical Assessment of Rhus typhina L. Leaf Extract as a Novel Green Corrosion Inhibitor for OL37 in 1 M HCl Medium
Abstract
:1. Introduction
2. Results and Discussion
2.1. Quantitative and Qualitative Evaluation of Used Extract
2.2. Electrochemical
2.2.1. Potentiodynamic Polarization Technique
2.2.2. Corrosion Kinetic Parameters
2.2.3. Immersion Time
2.2.4. Electrochemical Impedance Spectroscopy
2.2.5. Adsorption Isotherm
2.2.6. The Reaction Mechanism
- (a)
- Without Inhibitor (Acidic medium):
- (b)
- In the presence of ions:
2.3. SEM and EDX Analysis
3. Materials and Methods
3.1. Extract Preparation and Leaves Extraction
- Methanol, 100%, noted as P1;
- Hydroalcoholic mixture of methanol and water (1:1 v/v), noted as P2.
3.2. High-Performance Liquid Chromatography (HPLC) Extracts Characterization
3.3. Electrochemical Studies
3.4. Surface Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RTLE | Rhus typhina L. leaves extract |
HPLC-DAD | High-performance liquid chromatography with diode-array detection |
LC-MS | Liquid chromatography–mass spectrometry |
SEM | Scanning electron microscope |
EDX | Energy dispersive X-ray analysis |
GCI | Green corrosion inhibitors |
OCP | Open circuit potential |
EIS | Electrochemical impedance spectroscopy |
PDP | Potentiodynamic polarization |
XPS | X-ray photoelectron spectroscopy |
AFM | Atomic force microscopy |
RefE | reference electrode |
WE | working electrode OL7 |
CE | platinum sheet counter electrode. |
References
- Fazal, B.R.; Becker, T.; Kinsella, B.; Lepkova, K. A review of plant extracts as green corrosion inhibitors for CO2 corrosion of carbon steel. npj Mater. Degrad. 2022, 6, 5. [Google Scholar] [CrossRef]
- Dwivedi, D.; Lepková, K.; Becker, T. Carbon steel corrosion: A review of key surface properties and characterization methods. RSC Adv. 2017, 7, 4580–4610. [Google Scholar] [CrossRef]
- Lavanya, M.; Machado, A.A. Surfactants as biodegradable sustainable inhibitors for corrosion control in diverse media and conditions: A comprehensive review. Sci. Total Environ. 2024, 908, 168407. [Google Scholar] [CrossRef]
- Brantley, W.; Berzins, D.; Iijima, M.; Tufekçi, E.; Cai, Z. 1-Structure/property relationships in orthodontic alloys. In Orthodontic Applications of Biomaterials; Eliades, T., Brantley, W.A., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 3–38. [Google Scholar]
- Cragnolino, G.A. 2-Corrosion fundamentals and characterization techniques. In Techniques for Corrosion Monitoring; Yang, L., Ed.; Woodhead Publishing: Cambridge, UK, 2008; pp. 6–45. [Google Scholar]
- George Coman, A.B.; Nicolae Costea, M.; Sohaciu, M.; Matei, E.; Predescu, A.; Ciuca, S.; Predescu, C. Corrosion Behavior In Aqueous Environments Of Martensitic Stainless Steels Used In Hydropower Turbine Blades. UPB Sci. Bull. Ser. B 2024, 86, 247–257. [Google Scholar]
- Lazorenko, G.; Kasprzhitskii, A.; Nazdracheva, T.J.C.; Materials, B. Anti-corrosion coatings for protection of steel railway structures exposed to atmospheric environments: A review. Constr. Build. Mater. 2021, 288, 123115. [Google Scholar] [CrossRef]
- Manoj, M.; Kumaravel, A.; Mangalam, R.; Prabunathan, P.; Hariharan, A.; Alagar, M. Exploration of high corrosion resistance property of less hazardous pyrazolidine-based benzoxazines in comparison with bisphenol-F derivatives. J. Coat. Technol. Res. 2020, 17, 921–935. [Google Scholar] [CrossRef]
- Mahraz, M.A.; Salim, R.; Loukili, E.H.; Laftouhi, A.; Haddou, S.; Elrherabi, A.; Bouhrim, M.; Herqash, R.N.; Shahat, A.A.; Eto, B.; et al. Ephedra fragilis plant extract: A groundbreaking corrosion inhibitor for mild steel in acidic environments–electrochemical, EDX, DFT, and Monte Carlo studies. Open Life Sci. 2025, 20, 20221050. [Google Scholar] [CrossRef]
- El Caid, Z.A.; Left, D.B.; Zertoubi, M. An exploratory assessment supported by experimental and modeling approaches for dinitrophenylhydrazine compound as a potent corrosion inhibitor for carbon steel in sulfuric acid solution. J. Mol. Struct. 2024, 1300, 137218. [Google Scholar] [CrossRef]
- Palanisamy, G. Corrosion inhibitors. In Corrosion Inhibitors; IntechOpen: London, UK, 2019. [Google Scholar]
- Sheydaei, M. The Use of Plant Extracts as Green Corrosion Inhibitors: A Review. Surfaces 2024, 7, 380–403. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Wang, C.; Li, Y.; Wu, Y. Exploring the potential of plant extracts as corrosion inhibitors: A comprehensive review. Prog. Org. Coat. 2025, 198, 108915. [Google Scholar] [CrossRef]
- Abdallah, M.; Altass, H.; Al-Gorair, A.S.; Al-Fahemi, J.H.; Jahdaly, B.; Soliman, K. Natural nutmeg oil as a green corrosion inhibitor for carbon steel in 1.0 M HCl solution: Chemical, electrochemical, and computational methods. J. Mol. Liq. 2021, 323, 115036. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, X. Synthesis and evaluation of new type plant extraction corrosion inhibitor. Geoenergy Sci. Eng. 2025, 245, 213495. [Google Scholar] [CrossRef]
- Verma, C.; Ebenso, E.E.; Quraishi, M.A. Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: An overview. J. Mol. Liq. 2017, 233, 403–414. [Google Scholar] [CrossRef]
- Kobzar, Y.L.; Fatyeyeva, K. Ionic liquids as green and sustainable steel corrosion inhibitors: Recent developments. Chem. Eng. J. 2021, 425, 131480. [Google Scholar] [CrossRef]
- Zunita, M.; Kevin, Y. Ionic liquids as corrosion inhibitor: From research and development to commercialization. Results Eng. 2022, 15, 100562. [Google Scholar] [CrossRef]
- Rizvi, M. Characterization, Mechanism, Applications. Nat. Polym. Corros. Inhibitors 2021, 411–434. [Google Scholar]
- Korniy, S.; Zin, I.; Danyliak, M.-O.; Rizun, Y.Y. Eco-friendly metal corrosion inhibitors based on natural polymers (A review). Mater. Sci. 2023, 58, 567–578. [Google Scholar] [CrossRef]
- Ouakki, M.; Aribou, Z.; Dahmani, K.; Saber, I.; Galai, M.; Srhir, B.; Cherkaoui, M.; Verma, C. Natural polymers and their derivatives as corrosion inhibitors. In Phytochemistry in Corrosion Science; CRC Press: Boca Raton, FL, USA, 2024; pp. 76–98. [Google Scholar]
- Alrefaee, S.H.; Rhee, K.Y.; Verma, C.; Quraishi, M.; Ebenso, E.E. Challenges and advantages of using plant extract as inhibitors in modern corrosion inhibition systems: Recent advancements. J. Mol. Liq. 2021, 321, 114666. [Google Scholar] [CrossRef]
- Răuță, D.-I.; Matei, E.; Avramescu, S.-M. Recent Development of Corrosion Inhibitors: Types, Mechanisms, Electrochemical Behavior, Efficiency, and Environmental Impact. Technologies 2025, 13, 103. [Google Scholar] [CrossRef]
- Badawi, A.; Fahim, I. A critical review on green corrosion inhibitors based on plant extracts: Advances and potential presence in the market. Int. J. Corros. Scale Inhib. 2021, 10, 1385–1406. [Google Scholar]
- Kumar, D.; Jain, N.; Jain, V.; Rai, B. Amino acids as copper corrosion inhibitors: A density functional theory approach. Appl. Surf. Sci. 2020, 514, 145905. [Google Scholar] [CrossRef]
- El Ibrahimi, B.; Jmiai, A.; Bazzi, L.; El Issami, S. Amino acids and their derivatives as corrosion inhibitors for metals and alloys. Arab. J. Chem. 2020, 13, 740–771. [Google Scholar] [CrossRef]
- Rasul, H.H.; Mamad, D.M.; Azeez, Y.H.; Omer, R.A.; Omer, K.A.J.C.; Chemistry, T. Theoretical investigation on corrosion inhibition efficiency of some amino acid compounds. Comput. Theor. Chem. 2023, 1225, 114177. [Google Scholar] [CrossRef]
- Megahed, M.M.; AbdElRhiem, E.; Atta, W.; Ghany, N.A.; Abdelbar, M. Investigation and evaluation of the efficiency of palm kernel oil extract for corrosion inhibition of brass artifacts. Sci. Rep. 2025, 15, 4473. [Google Scholar] [CrossRef]
- Benzidia, B.; Hammouch, H.; Dermaj, A.; Benassaoui, H.; Abbout, S.; Hajjaji, N. Investigation of green corrosion inhibitor based on Aloe vera (L.) Burm. F. for the protection of bronze B66 in 3% NaCl. Anal. Bioanal. Electrochem. 2019, 11, 165–177. [Google Scholar]
- Zouarhi, M.J.E. Bibliographical synthesis on the corrosion and protection of archaeological iron by green inhibitors. Electrochem 2023, 4, 103–122. [Google Scholar] [CrossRef]
- Eddy, N.O.; Ibok, U.J.; Garg, R.; Garg, R.; Iqbal, A.; Amin, M.; Mustafa, F.; Egilmez, M.; Galal, A.M. A Brief Review on Fruit and Vegetable Extracts as Corrosion Inhibitors in Acidic Environments. Molecules 2022, 27, 2991. [Google Scholar] [CrossRef]
- Lukova, P.; Katsarov, P.; Pilicheva, B. Application of Starch, Cellulose, and Their Derivatives in the Development of Microparticle Drug-Delivery Systems. Polymers 2023, 15, 3615. [Google Scholar] [CrossRef]
- Huang, L.; Chen, W.-Q.; Wang, S.-S.; Zhao, Q.; Li, H.-J.; Wu, Y.-C. Starch, cellulose and plant extracts as green inhibitors of metal corrosion: A review. Environ. Chem. Lett. 2022, 20, 3235–3264. [Google Scholar] [CrossRef]
- Chen, L.; Lu, D.; Zhang, Y. Organic Compounds as Corrosion Inhibitors for Carbon Steel in HCl Solution: A Comprehensive Review. Materials 2022, 15, 2023. [Google Scholar] [CrossRef]
- Royani, A.; Hanafi, M.; Haldhar, R.; Manaf, A. Evaluation of Morinda citrifolia extract as sustainable inhibitor for mild steel in saline environment. J. Eng. Res. 2024, 12, 321–327. [Google Scholar] [CrossRef]
- Royani, A.; Verma, C.; Mujawar, M.; Alfantazi, A.; Aigbodion, V.; Hanafi, M.; Manaf, A. Enhancing the Corrosion Inhibition Performance of Tinospora Cordifolia Extract Using Different Fractions of Methanol Solvent on Carbon Steel Corrosion in A Seawater- Simulated Solution. Appl. Surf. Sci. Adv. 2023, 18, 100465. [Google Scholar] [CrossRef]
- Royani, A.; Hanafi, M.; Mujawar, M.; Priyotomo, G.; Aigbodion, V.; Musabikha, S.; Manaf, A. Unveiling green corrosion inhibitor of Aloe vera extracts for API 5L steel in seawater environment. Sci. Rep. 2024, 14, 14085. [Google Scholar] [CrossRef]
- Ehsani, A.; Mahjani, M.; Hosseini, M.; Safari, R.; Moshrefi, R.; Shiri, H.M. Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory. J. Colloid. Interface Sci. 2017, 490, 444–451. [Google Scholar] [CrossRef]
- Boudalia, M.; Fernández-Domene, R.M.; Tabyaoui, M.; Bellaouchou, A.; Guenbour, A.; Garcia-Anton, J. Green approach to corrosion inhibition of stainless steel in phosphoric acid of Artemesia herba albamedium using plant extract. J. Mater. Res. Technol. 2019, 8, 5763–5773. [Google Scholar] [CrossRef]
- Kellal, R.; Left, D.B.; Azzi, M.; Zertoubi, M.J. Insight on the corrosion inhibition performance of Glebionis coronaria plant extract in various acidic mediums. J. Appl. Electrochem. 2023, 53, 811–832. [Google Scholar] [CrossRef]
- Fouda, A.E.-A.S.; El-Dossoki, F.I.; Atia, M.F.; Abd El Aziz, F.M.; El-Hossiany, A. Contribution to the corrosion inhibition of aluminum by aqueous extract of Moringa oleifera in 2 M HCl. Discov. Chem. Eng. 2025, 5, 1. [Google Scholar] [CrossRef]
- Fouda, A.; Mohamed, O.; Elabbasy, H.J. Ferula hermonis plant extract as safe corrosion inhibitor for zinc in hydrochloric acid solution. J. Bio- Tribo-Corros. 2021, 7, 135. [Google Scholar] [CrossRef]
- Abdelaziz, S.; Benamira, M.; Messaadia, L.; Boughoues, Y.; Lahmar, H.; Boudjerda, A.J.; Physicochemical, S.A.; Aspects, E. Green corrosion inhibition of mild steel in HCl medium using leaves extract of Arbutus unedo L. plant: An experimental and computational approach. Colloids Surf. A Physicochem. Eng. Aspects 2021, 619, 126496. [Google Scholar] [CrossRef]
- Fouda, A.; El-Awady, G.; El Behairy, W. Prosopis juliflora plant extract as potential corrosion inhibitor for low-carbon steel in 1 M HCl solution. J. Bio- Tribo-Corrosion 2018, 4, 1–12. [Google Scholar] [CrossRef]
- Tan, B.; Xiang, B.; Zhang, S.; Qiang, Y.; Xu, L.; Chen, S.; He, J. Papaya leaves extract as a novel eco-friendly corrosion inhibitor for Cu in H2SO4 medium. J. Colloid. Interface Sci. 2021, 582, 918–931. [Google Scholar] [CrossRef] [PubMed]
- Gapsari, F.; Setyarini, P.H.; Anam, K.; Hadisaputra, S.; Hidayatullah, S.; Purnami; Sulaiman, A.M.; Lai, C.W. Efficacy of Andrographis paniculata leaf extract as a green corrosion inhibitor for mild steel in concentrated sulfuric acid: Experimental and computational insights. Results Surf. Interfaces 2025, 18, 100361. [Google Scholar] [CrossRef]
- Huang, M.; Wang, R.; Xiong, J.; Liu, C.; Wang, J.; Wang, Q. Inhibition effect and adsorption behavior of Michelia alba leaf extract as corrosion inhibitors for Cu in 0.5 M H2SO4. J. Dispers. Sci. Technol. 2025, 1–18. [Google Scholar] [CrossRef]
- Singh, V.; Kumar, S.; Sihmar, A.; Dahiya, H.; Rani, J.; Kumar, S.; Abdi, G.; Abbasi Tarighat, M. A sustainable and green method for controlling acidic corrosion on mild steel using leaves of Araucaria heterophylla. Sci. Rep. 2025, 15, 2225. [Google Scholar] [CrossRef]
- Nguyen, K.D.H.; Manh, T.D.; Nguyen, L.T.P.; Vu, D.T.; Duong Ngo, K.L. Syzygium polyanthum (Wight) Walp. leaf extract as a sustainable corrosion inhibitor for carbon steel in hydrochloric acidic environment. J. Ind. Eng. Chem. 2025, 143, 468–487. [Google Scholar] [CrossRef]
- El-Asri, A.; Rguiti, M.M.; Jmiai, A.; Lin, Y.; El Issami, S. Natal Plum leaf extract as sustainable corrosion inhibitor for Brass in HNO3 medium: Integrated experimental analysis and computational electronic/atomic-scale simulation. J. Taiwan. Inst. Chem. Eng. 2025, 170, 106038. [Google Scholar] [CrossRef]
- Zeng, J.; Xie, B.; He, Y.; Lai, C.; Li, X.; Wei, Y.; Wang, W.; Yao, B.; Wen, X.; Deng, C. Experimental and theoretical insights into Ramie (Boehmeria nivea (L.) Gaudich) leaves extract as an eco-friendly corrosion inhibitor for mild steel in 1.0 M HCl. Surf. Interfaces 2025, 62, 106155. [Google Scholar] [CrossRef]
- Carmona-Hernandez, A.; Barreda-Serrano, M.C.; Saldarriaga-Noreña, H.A.; López-Sesenes, R.; González-Rodríguez, J.G.; Mejía-Sánchez, E.; Ramírez-Cano, J.A.; Orozco-Cruz, R.; Galván-Martínez, R. Insight into the Corrosion Inhibition Performance of Pistia stratiotes Leaf Extract as a Novel Eco-Friendly Corrosion Inhibitor for Mild Steel in 1 M HCl Solution. Molecules 2024, 29, 5243. [Google Scholar] [CrossRef]
- Derfouf, H.; Messaoudi, B.; Attar, T.; Guezzoul, M.H.; Basirun, W.J. Experimental and theoretical study of Atriplex halimus L. leaves extract as an ecologic corrosion inhibitor for XC38 carbon steel in an HCl environment. J. Mol. Liq. 2025, 433, 127785. [Google Scholar] [CrossRef]
- Mamudu, U.; Santos, J.H.; Umoren, S.A.; Alnarabiji, M.S.; Lim, R.C. Investigations of corrosion inhibition of ethanolic extract of Dillenia suffruticosa leaves as a green corrosion inhibitor of mild steel in hydrochloric acid medium. Corros. Commun. 2024, 15, 52–62. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, F. Chemical composition and biological activity of staghorn sumac (Rhus typhina). Food Chem. 2017, 237, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Jin, S.; Feng, J.; Yang, T.; Zhai, M.; Sun, G. High performance liquid chromatography fingerprint combined with two-dimensional quantum fingerprint and antioxidant activity to comprehensively evaluate Rhus typhina L. branches quality. Microchem. J. 2025, 209, 112771. [Google Scholar] [CrossRef]
- Antov, G.; Vilhelmova-Ilieva, N.; Nikolova, M.; Nikolova, I.; Simeonova, L.; Grozdanov, P.; Krasteva, M.; Vladimirova, A.; Gospodinova, Z. In vitro evaluation of anticancer, antiviral, and antioxidant properties of an aqueous methanolic extract of Rhus typhina L. leaves. Int. Food Res. J. 2023, 30, 774–782. [Google Scholar] [CrossRef]
- Kossah, R.; Zhang, H.; Chen, W. Antimicrobial and antioxidant activities of Chinese sumac (Rhus typhina L.) fruit extract. Food Control. 2011, 22, 128–132. [Google Scholar] [CrossRef]
- Arlandini, E.; Gelmini, F.; Testa, C.; Angioletti, S.; Beretta, G. GC-MS analysis and biological activity of hydroalcholic extracts and essential oils of Rhus typhina L. wood (anacardiaceae) in comparison with leaves and fruits. Nat. Prod. Res. 2021, 35, 4764–4768. [Google Scholar] [CrossRef]
- McCune, L.M. Traditional Medicinal Plants of Indigenous Peoples of Canada and Their Antioxidant Activity in Relation to Treatment of Diabetes. In Bioactive Food as Dietary Interventions for Diabetes; Watson, R.R., Preedy, V.R., Eds.; Academic Press: San Diego, CA, USA, 2013; Chapter 22; pp. 221–234. [Google Scholar]
- Zannou, O.; Oussou, K.F.; Chabi, I.B.; Alamou, F.; Awad, N.M.H.; Miassi, Y.E.; Loké, F.C.V.; Abdoulaye, A.; Pashazadeh, H.; Redha, A.A.; et al. Phytochemical and nutritional properties of sumac (Rhus coriaria): A potential ingredient for developing functional foods. J. Future Foods 2025, 5, 21–35. [Google Scholar] [CrossRef]
- Demchik, S.; Rajangam, A.S.; Hall, J.; Singsaas, E. Fatty Acids, Carbohydrates and total proteins of wild sumac (Rhus typhina L.) drupes from the upper Midwest of the United States. Am. J. Essent. Oils Nat. Prod. 2015, 3, 30–34. [Google Scholar]
- Liu, T.; Li, Z.; Li, R.; Cui, Y.; Zhao, Y.; Yu, Z. Composition analysis and antioxidant activities of the Rhus typhina L. stem. J. Pharm. Anal. 2019, 9, 332–338. [Google Scholar] [CrossRef]
- Cocîrlea, M.; Oancea, S. Rhus typhina–from environmental threat to industry development opportunity. Curr. Trends Nat. Sci. 2023, 12, 305–320. [Google Scholar] [CrossRef]
- Răuță, D.L.G.; Marius, E.; Avramescu, S. Corrosion inhibition of mild steel by rhus typhina leaf extract in hcl solutions. UPB Sci. Bull. Ser. B 2024, 86, 12. [Google Scholar]
- Branzoi, F.; Băran, A.; Mihai, M.A.; Zaki, M.Y. The Inhibition Action of Some Brij-Type Nonionic Surfactants on the Corrosion OLC 45 in Various Aggressive Environments. Materials 2024, 17, 1378. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Tian, H.; Zou, F.; Li, W.; Qiang, Y.; Hou, B. Turning Waste into Treasure: Invasive Plant Ambrosia trifida L Leaves as a High-Efficiency Inhibitor for Steel in Simulated Pickling Solutions. Materials 2024, 17, 3758. [Google Scholar] [CrossRef] [PubMed]
- Verma, C.; Lgaz, H.; Verma, D.; Ebenso, E.E.; Bahadur, I.; Quraishi, M. Molecular dynamics and Monte Carlo simulations as powerful tools for study of interfacial adsorption behavior of corrosion inhibitors in aqueous phase: A review. J. Mol. Liq. 2018, 260, 99–120. [Google Scholar] [CrossRef]
Nr.crt. | Extract | Extract Concentration | Conditions | Metal Surface | Efficiency | Ref. |
---|---|---|---|---|---|---|
1. | Andrographis paniculata leaf | 400 ppm | H2SO4 | Mild steel | 95.14% | [46] |
2. | Michelia alba leaf | not mentioned | H2SO4 | Cu | 94.72% | [47] |
3. | Araucaria heterophylla leaf | 1000 ppm | HCl | Mild steel | 83.94% | [48] |
4. | Syzygium polyanthum (Wight) Walp. leaf | 2000 ppm | HCl | Carbon steel | 94.65 ± 0.94% | [49] |
5. | Natal Plum leaf | 2.5 g/L | HNO3 | Brass alloy | 98% | [50] |
6. | Boehmeria nivea (L.) Gaudich leaf | 1000 mg L−1 | HCl | Mild steel | 93.4% | [51] |
7. | Pistia stratiotes leaf | 400 ppm | HCl | Mild steel | 93.7% | [52] |
8. | Atriplex halimus L. leaf | 600 mg/L | HCl | Carbon steel | 95.1% | [53] |
9. | Dillenia suffruticosa leaves | 1000 ppm | HCl | Mild steel | 81.4% | [54] |
Compound | P1 Initial (mg/L) | P2 Initial (mg/L) |
---|---|---|
Gallic acid | 96.86 | 71.09 |
Protocatehuic acid | 2.79 | 2.09 |
Caffeic acid | 35.68 | 27.30 |
Chlorogenic acid | 5.96 | 16.64 |
Syringic acid | 13.32 | 9.32 |
Ferulic acid | 130.57 | 193.99 |
Sinapic acid | 381.69 | 397.98 |
Ellagic acid | 190.44 | 179.20 |
Rosmarinic acid | 35.96 | 29.22 |
Retention Time (min.) | Compound Name | Chemical Structure |
---|---|---|
5.90 | Gallic acid | |
11.87 | 3-O-methylgallic acid | |
33.14 | beta-1,2,3,4,6-penta-O-galloyl-D-glucopyranose |
Sample | Adsorption Efficiency (%) |
---|---|
Gallic acid | |
P1 1000 | 58.84 |
P2 1000 | 73.73 |
P1 800 | 34.09 |
P2 800 | 52.97 |
3-O-methylgallic acid | |
P1 1000 | 59.66 |
P2 1000 | 72.77 |
P1 800 | 31.49 |
P2 800 | 50.30 |
beta-1,2,3,4,6-penta-O-galloyl-D-glucopyranose | |
P1 1000 | 67.45 |
P2 1000 | 77.65 |
P1 800 | 40.28 |
P2 800 | 40.97 |
Concentration (ppm) | icorr (mA·cm−2) | Rp Ω·cm−2 | Rmpy | Pmm/year | Kg g/m2·h | −Ecorr (mV) | ba (mV·dec−1) | −bc (mV·dec−1) | E (%) | θ |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.855 | 20 | 399 | 10.12 | 9 | 531 | 86 | 113 | - | - |
20 | 0.29 | 66 | 135 | 3.43 | 3.05 | 470 | 67 | 86 | 66 | 0.66 |
50 | 0.162 | 91 | 75.6 | 1.91 | 1.70 | 469 | 67 | 113 | 81 | 0.81 |
100 | 0.149 | 121 | 69.53 | 1.76 | 1.56 | 466 | 84 | 123 | 84 | 0.84 |
300 | 0.136 | 108 | 63.46 | 1.61 | 1.43 | 462 | 71 | 109 | 85 | 0.85 |
500 | 0.112 | 126 | 52.26 | 1.32 | 1.17 | 455 | 63 | 99 | 87 | 0.87 |
800 | 0.104 | 176 | 48.563 | 1.23 | 1.19 | 450 | 68 | 113 | 88 | 0.88 |
1000 | 0.059 | 243 | 25.9 | 0.65 | 0.58 | 488 | 63 | 81 | 93 | 0.93 |
Concentration (ppm) | icorr (mA·cm−2) | Rp Ω·cm−2 | Rmpy | Pmm/year | Kg g/m2·h | −Ecorr (mV) | ba (mV·dec−1) | −bc (mV·dec−1) | E (%) | θ |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.855 | 20 | 399 | 10.12 | 9 | 531 | 86 | 113 | - | - |
20 | 0.183 | 80 | 85.4 | 2.16 | 1.93 | 464 | 69 | 103 | 79 | 0.79 |
50 | 0.140 | 121 | 65.33 | 1.65 | 1.47 | 476 | 84 | 116 | 84 | 0.84 |
100 | 0.132 | 105 | 61.6 | 1.56 | 1.39 | 438 | 65 | 95 | 85 | 0.85 |
300 | 0.122 | 109 | 56.9 | 1.44 | 1.28 | 462 | 63 | 99 | 86 | 0.86 |
500 | 0.094 | 128 | 43.8 | 1.11 | 0.99 | 462 | 60 | 82 | 89 | 0.89 |
800 | 0.078 | 145 | 36.4 | 0.92 | 0.82 | 440 | 80 | 113 | 91 | 0.91 |
1000 | 0.055 | 236 | 23.33 | 0.59 | 0.53 | 424 | 56 | 94 | 94 | 0.94 |
Immersion Time (h) | icorr (mA·cm−2) | Rp Ω·cm−2 | Rmpy | Pmm/year | Kg g/m2·h | −Ecorr (mV) | ba (mV·dec−1) | −bc (mV·dec−1) | E (%) | θ |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.059 | 243 | 25.9 | 0.65 | 0.58 | 488 | 63 | 81 | 93 | 0.93 |
24 | 0.04 | 324 | 18.7 | 0.47 | 0.42 | 487 | 94 | 64 | 95 | 0.95 |
48 | 0.22 | 66 | 102 | 2.61 | 2.31 | 440 | 84 | 66 | 74 | 0.74 |
72 | 0.36 | 46 | 168 | 4.26 | 3.79 | 449 | 103 | 71 | 58 | 0.58 |
96 | 0.41 | 40 | 191 | 4.85 | 4.31 | 460 | 109 | 70 | 53 | 0.53 |
144 | 0.50 | 37 | 233 | 5.92 | 5.25 | 481 | 115 | 82 | 43 | 0.43 |
Immersion Time (h) | icorr (mA·cm−2) | Rp Ω·cm−2 | Rmpy | Pmm/year | Kg g/m2h | −Ecorr (mV) | ba (mV·dec−1) | −bc (mV·dec−1) | E (%) | θ |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.055 | 236 | 23.33 | 0.59 | 0.53 | 424 | 56 | 94 | 94 | 0.94 |
24 | 0.033 | 371 | 14.4 | 0.39 | 0.33 | 440 | 104 | 71 | 95 | 0.95 |
48 | 0.127 | 107 | 59.26 | 1.50 | 1.33 | 425 | 91 | 68 | 85 | 0.85 |
72 | 0.098 | 136 | 45.73 | 1.16 | 1.03 | 424 | 88 | 64 | 88 | 0.88 |
96 | 0.102 | 133 | 47.6 | 1.28 | 1.07 | 429 | 87 | 64 | 88 | 0.88 |
144 | 0.11 | 139 | 51.33 | 1.30 | 1.16 | 434 | 98 | 62 | 87 | 0.87 |
Concentration (ppm) | RS () | Rct () | Q-Yo | Q-n | χ |
---|---|---|---|---|---|
0 | 0.72 | 6.32 | 0.00518 | 0.74 | 4.255 × 10−3 |
20 | 1.00 | 50 | 0.000528 | 0.87 | 1.561 × 10−3 |
50 | 1.08 | 60 | 0.001102 | 0.89 | 2.525 × 10−3 |
100 | 0.89 | 60 | 0.000531 | 0.88 | 1.900 × 10−3 |
300 | 0.86 | 70 | 0.000666 | 0.87 | 1.585 × 10−3 |
500 | 0.79 | 74 | 0.000329 | 0.89 | 1.190 × 10−3 |
800 | 0.36 | 86 | 0.0004257 | 0.90 | 4.784 × 10−3 |
1000 | 0.78 | 214 | 0.00023 | 0.89 | 3.398 × 10−3 |
Concentration (ppm) | Rct () | Q-Yo | Q-n | χ | |
---|---|---|---|---|---|
0 | 0.72 | 6.32 | 0.00518 | 0.74 | 4.255 × 10−3 |
20 | 0.84 | 50 | 0.00063 | 0.89 | 1.503 × 10−3 |
50 | 0.72 | 60 | 0.0001653 | 0.88 | 1.814 × 10−3 |
100 | 0.79 | 67 | 0.000241 | 0.88 | 2.477 × 10−3 |
300 | 0.67 | 72 | 0.000279 | 0.89 | 1.880 × 10−3 |
500 | 0.69 | 74 | 0.000494 | 0.88 | 2.175 × 10−3 |
800 | 0.89 | 121 | 0.000196 | 0.89 | 5.169 × 10−3 |
1000 | 0.58 | 223 | 0.000185 | 0.88 | 3.253 × 10−3 |
Immersion Time (h) | RS () | Rct () | Q-Yo | Q-n | χ |
---|---|---|---|---|---|
0 h | 0.78 | 214 | 0.00023 | 0.89 | 3.398 × 10−3 |
24 h | 0.85 | 152 | 0.00041 | 0.85 | 4.558 × 10−3 |
48 h | 1.93 | 62 | 0.00529 | 0.82 | 9.875 × 10−3 |
72 h | 0.63 | 49 | 0.00122 | 0.86 | 2.111 × 10−3 |
96 h | 1.11 | 44 | 0.00198 | 0.82 | 1.454 × 10−3 |
144 h | 1.15 | 38 | 0.002684 | 0.78 | 6.705 × 10−3 |
Immersion Time (h) | Rct () | Q-Yo | Q-n | χ | |
---|---|---|---|---|---|
0 h | 0.58 | 223 | 0.00018 | 0.88 | 3.253 × 10−3 |
24 h | 1.57 | 185 | 0.00851 | 0.88 | 4.570 × 10−3 |
48 h | 1.91 | 150 | 0.00562 | 0.87 | 2.178 × 10−3 |
72 h | 1.22 | 179 | 0.00193 | 092 | 1.640 × 10−3 |
96 h | 1.85 | 166 | 0.00145 | 0.89 | 2.631 × 10−3 |
144 h | 1.28 | 118 | 0.00463 | 0.86 | 2.983 × 10−3 |
The System | Kads, M−1 | (KJmol−1) | The Type of Adsorption |
---|---|---|---|
P1 | 2.17 × 104 | −34.09 | Chemisorption and physical adsorption |
P2 | 3.91 × 104 | −35.51 | Chemisorption and physical adsorption |
C (%) | Si (%) | Mn (%) | Fe (%) | P (%) | S (%) | Al (%) | Ni (%) | Cr (%) |
---|---|---|---|---|---|---|---|---|
0.15 | 0.09 | 0.4 | 99.293 | 0.023 | 0.02 | 0.022 | 0.001 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Răuță, D.-I.; Brânzoi, F.; Truşcă, R.-D.; Avramescu, S.-M.; Matei, E. Electrochemical Assessment of Rhus typhina L. Leaf Extract as a Novel Green Corrosion Inhibitor for OL37 in 1 M HCl Medium. Molecules 2025, 30, 2660. https://doi.org/10.3390/molecules30122660
Răuță D-I, Brânzoi F, Truşcă R-D, Avramescu S-M, Matei E. Electrochemical Assessment of Rhus typhina L. Leaf Extract as a Novel Green Corrosion Inhibitor for OL37 in 1 M HCl Medium. Molecules. 2025; 30(12):2660. https://doi.org/10.3390/molecules30122660
Chicago/Turabian StyleRăuță (Gheorghe), Denisa-Ioana, Florina Brânzoi, Roxana-Doina Truşcă, Sorin-Marius Avramescu, and Ecaterina Matei. 2025. "Electrochemical Assessment of Rhus typhina L. Leaf Extract as a Novel Green Corrosion Inhibitor for OL37 in 1 M HCl Medium" Molecules 30, no. 12: 2660. https://doi.org/10.3390/molecules30122660
APA StyleRăuță, D.-I., Brânzoi, F., Truşcă, R.-D., Avramescu, S.-M., & Matei, E. (2025). Electrochemical Assessment of Rhus typhina L. Leaf Extract as a Novel Green Corrosion Inhibitor for OL37 in 1 M HCl Medium. Molecules, 30(12), 2660. https://doi.org/10.3390/molecules30122660