Host–Guest Interactions of Cucurbit[7]uril with Nabumetone and Naproxen: Spectroscopic, Calorimetric, and DFT Studies in Aqueous Solution
Abstract
1. Introduction
2. Results and Discussion
2.1. Mass Spectrometry
2.2. NMR Spectroscopy
2.3. Isothermal Titration Calorimetry
2.4. Computational Analysis
3. Materials and Methods
3.1. Materials
3.2. Mass Spectrometry
3.3. NMR Spectroscopy
3.4. Isothermal Titration Microcalorimetry
3.5. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steed, J.W.; Atwood, J.L. Supramolecular Chemistry; John Wiley& Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Yin, H.; Wang, Z.; Wang, R. Modulation of Chemical and Biological Properties of Biomedically Relevant Guest Molecules by Cucurbituril-Type Hosts. In Handbook of Macrocyclic Supramolecular Assembly; Liu, Y., Chen, Y., Zhang, H.-Y., Eds.; Springer: Singapore, 2019; pp. 1–25. [Google Scholar] [CrossRef]
- Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. The Cucurbit[n]Uril Family. Angew. Chem. Int. Ed. 2005, 44, 4844–4870. [Google Scholar] [CrossRef] [PubMed]
- Barrow, S.J.; Kasera, S.; Rowland, M.J.; del Barrio, J.; Scherman, O.A. Cucurbituril-Based Molecular Recognition. Chem. Rev. 2015, 115, 12320–12406. [Google Scholar] [CrossRef] [PubMed]
- Aktanova, A.; Abramova, T.; Pashkina, E.; Boeva, O.; Grishina, L.; Kovalenko, E.; Kozlov, V. Assessment of the Biocompatibility of Cucurbiturils in Blood Cells. Nanomaterials 2021, 11, 1356. [Google Scholar] [CrossRef] [PubMed]
- Aav, R.; Kaabel, S.; Fomitšenko, M. Cucurbiturils: Synthesis, Structures, Formation Mechanisms, and Nomenclature. In Comprehensive Supramolecular Chemistry II; Elsevier: Amsterdam, The Netherlands, 2017; pp. 203–220. [Google Scholar] [CrossRef]
- Yin, H.; Cheng, Q.; Bardelang, D.; Wang, R. Challenges and Opportunities of Functionalized Cucurbiturils for Biomedical Applications. JACS Au 2023, 3, 2356–2377. [Google Scholar] [CrossRef]
- Das, D. Applications of Cucurbiturils in Medicinal Chemistry and Chemical Biology. Front. Chem. 2019, 7, 23. [Google Scholar] [CrossRef]
- Yin, H.; Wang, R. Applications of Cucurbit[n]Urils (N = 7 or 8) in Pharmaceutical Sciences and Complexation of Biomolecules. Isr. J. Chem. 2018, 58, 188–198. [Google Scholar] [CrossRef]
- Macartney, D.H. Cucurbiturils in Drug Binding and Delivery, In Comprehensive Supramolecular Chemistry II; Elsevier: Amsterdam, The Netherlands, 2017; pp. 479–494. [Google Scholar] [CrossRef]
- Wyman, I.W.; Macartney, D.H. Host–Guest Complexations of Local Anaesthetics by Cucurbit[7]Uril in Aqueous Solution. Org. Biomol. Chem. 2010, 8, 247–252. [Google Scholar] [CrossRef]
- Feng, H.; Kan, J.; Redshaw, C.; Bian, B.; Tao, Z.; Xiao, X. Supramolecular Drug Inclusion Complex Constructed from Cucurbit[7]Uril and the Hepatitis B Drug Adefovir. Supramol. Chem. 2019, 31, 260–267. [Google Scholar] [CrossRef]
- Boraste, D.R.; Chakraborty, G.; Ray, A.K.; Shankarling, G.S.; Pal, H. Supramolecular Host-Guest Interaction of Antibiotic Drug Ciprofloxacin with Cucurbit[7]Uril Macrocycle: Modulations in Photophysical Properties and Enhanced Photostability. J. Photochem. Photobiol. A 2018, 358, 26–37. [Google Scholar] [CrossRef]
- Wheate, N.J.; Buck, D.P.; Day, A.I.; Collins, J.G. Cucurbit[n]Uril Binding of Platinum Anticancer Complexes. Dalton Trans. 2006, 3, 451–458. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, C.; Yang, K.; Chen, X.; Wang, R. Cucurbituril-Based Supramolecular Polymers for Biomedical Applications. Angew. Chem. Int. Ed. 2022, 61, e202206763. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhou, H.; Jiao, R.; Liu, H.; Qin, C.; Xu, L.; Chen, Y. Supramolecular Chemotherapy: Host–Guest Complexes of Heptaplatin-Cucurbit[7]Uril toward Colorectal Normal and Tumor Cells. Langmuir 2021, 37, 5475–5482. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, X.; Luo, J.; Yi, S.; Guo, T.; Liao, Y.; Yu, C.; Zhang, X. Cucurbit[7]Uril-Based Host–Guest Complexes for Improving Bioavailability and Reducing Side Effects of Piroxicam. Int. J. Pharm. 2024, 660, 124351. [Google Scholar] [CrossRef] [PubMed]
- Pereva, S.; Sarafska, T.; Petrov, V.; Angelova, S.; Spassov, T. Inclusion complexes of (S)-naproxen and native cyclodextrins: Supramolecular structure and stability. J. Mol. Liq. 2021, 1235, 130218. [Google Scholar] [CrossRef]
- Klarić, D.; Kelrajter, M.; Čikoš, A.; Budimir, A.; Galić, N. Inclusion Complexes of Nabumetone with β-Cyclodextrins: Spectroscopic, Spectrometric and Calorimetric Studies in Solution. J. Mol. Liq. 2024, 397, 124152. [Google Scholar] [CrossRef]
- Klarić, D.; Soldin, Ž.; Vincze, A.; Szolláth, R.; Balogh, G.T.; Jug, M.; Galić, N. Biopharmaceutical Characterization and Stability of Nabumetone–Cyclodextrins Complexes Prepared by Grinding. Pharmaceutics 2024, 16, 1493. [Google Scholar] [CrossRef]
- Todd, P.A.; Clissold, S.P. Naproxen. Drugs 1990, 40, 91–137. [Google Scholar] [CrossRef]
- Degim, T.; Zaimoglu, V.; Akay, C.; Degim, Z. pH-Metric logK calculations of famotidine, naproxen, nizatidine, ranitidine and salicylic acid. Il Farm. 2001, 56, 659–663. [Google Scholar] [CrossRef]
- Hedner, T.; Samulesson, O.; Währborg, P.; Wadenvik, H.; Ung, K.-A.; Ekbom, A. Nabumetone. Drugs 2004, 64, 2315–2343. [Google Scholar] [CrossRef]
- Meetani, M.A.; Alhalabi, A.; Al-Tabaji, M.K.; Al-Hemyari, A.; Saadeh, H.A.; Saleh, N. Cucurbituril—Assisted Sensitive Fluorescence Detection and Quantitation of Naproxen Drug in Wastewater Samples: Guest-Host Characterization and HPLC Investigation. Front. Chem. 2022, 10, 1093231. [Google Scholar] [CrossRef]
- Casas-Hinestroza, J.L.; Bueno, M.; Ibáñez, E.; Cifuentes, A. Recent Advances in Mass Spectrometry Studies of Non-Covalent Complexes of Macrocycles—A Review. Anal. Chim. Acta 2019, 1081, 32–50. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhu, X.; Bian, B.; Xiao, X.; Tao, Z.; Redshaw, C.A. Study of the Interaction between Cucurbit[7]Uril and Alkyl Substituted 4-Pyrrolidinopyridinium Salts. Chemistry 2020, 2, 262–273. [Google Scholar] [CrossRef]
- Yang, F.; Dearden, D.V. Gas Phase Cucurbit[n]Uril Chemistry. Isr. J. Chem. 2011, 51, 551–558. [Google Scholar] [CrossRef]
- Zlibut, E.; May, J.C.; Wei, Y.; Gessmann, D.; Wood, C.S.; Bernat, B.A.; Pugh, T.E.; Palmer-Jones, L.; Cosquer, R.P.; Dybeck, E.; et al. Noncovalent Host−Guest Complexes of Artemisinin with α-, β-, and γ-Cyclodextrin Examined by Structural Mass Spectrometry Strategies. Anal. Chem. 2023, 95, 8180–8188. [Google Scholar] [CrossRef]
- Weiß, A.; Dutschke, M.; Vogt, C.; Zuber, J. Determination of Binding Constants and Gas Phase Stabilities of Artificial Carbohydrate Receptor Complexes Using Electrospray Mass Spectrometry. ACS Omega 2024, 9, 45309–45318. [Google Scholar] [CrossRef]
- Zhang, S.; Grimm, L.; Miskolczy, Z.; Biczók, L.; Biedermann, F.; Nau, W.M. Binding Affinities of Cucurbit[n]Urils with Cations. Chem. Commun. 2019, 55, 14131–14134. [Google Scholar] [CrossRef]
- Wheate, N.J.; Vora, V.; Anthony, N.G.; McInnes, F.J. Host–Guest Complexes of the Antituberculosis Drugs Pyrazinamide and Isoniazid with Cucurbit[7]Uril. J. Incl. Phenom. Macrocycl. Chem. 2010, 68, 359–367. [Google Scholar] [CrossRef]
- Buczkowski, A.; Tokarz, P.; Stepniak, A.; Lewkowski, J.; Rodacka, A.; Palecz, B. Spectroscopic and Calorimetric Studies of Interactions between Mitoxantrone and Cucurbituril Q7 in Aqueous Solutions. J. Mol. Liq. 2019, 290, 111190. [Google Scholar] [CrossRef]
- Al Tbakhi, B.; Nsairat, H.; Alshaer, W.; Al-Kadash, A.; Helal, W.; Alrawashdeh, L.; Day, A.; Assaf, K.I.; Hassouneh, R.; Odeh, F.; et al. Cinnamaldehyde–Cucurbituril Complex: Investigation of Loading Efficiency and Its Role in Enhancing Cinnamaldehyde in Vitro Anti-Tumor Activity. RSC Adv. 2022, 12, 7540–7549. [Google Scholar] [CrossRef]
- Kaifer, A.E. Portal Effects on the Stability of Cucurbituril Complexes. Isr. J. Chem. 2018, 58, 244–249. [Google Scholar] [CrossRef]
- Biedermann, F.; Uzunova, V.D.; Scherman, O.A.; Nau, W.M.; De Simone, A. Release of High-Energy Water as an Essential Driving Force for the High-Affinity Binding of Cucurbit[n]Urils. J. Am. Chem. Soc. 2012, 134, 15318–15323. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, F.; Nau, W.M.; Schneider, H.-J. The Hydrophobic Effect Revisited—Studies with Supramolecular Complexes Imply High-Energy Water as a Noncovalent Driving Force. Angew. Chem. Int. Ed. 2014, 53, 11158–11171. [Google Scholar] [CrossRef] [PubMed]
- Usenik, A.; Leko, K.; Petrović Peroković, V.; Car, Ž.; Ribić, R.; Pičuljan, K.; Hanževački, M.; Draženović, J.; Požar, J. Hydrophobically Driven Hosting—What about the Guest? J. Mol. Liq. 2023, 388, 122774. [Google Scholar] [CrossRef]
- Usenik, A.; Alešković, M.; Roca, S.; Markuš, I.; Šekutor, M.; Požar, J. Hosting of Diamantane Alcohols in Water and Hydrogen-Bonded Organic Solvents: The (Non-)Classical Hydrophobic Effect. New J. Chem. 2023, 47, 18745–18755. [Google Scholar] [CrossRef]
- González-Álvarez, M.J.; Carmona, T.; Evren, D.; Mendicuti, F. Binding of a Neutral Guest to Cucurbiturils: Photophysics, Thermodynamics and Molecular Modelling. Supramol. Chem. 2014, 26, 414–426. [Google Scholar] [CrossRef]
- Lu, T.; Chen, Q. Visualization Analysis of Weak Interactions in Chemical Systems. In Comprehensive Computational Chemistry, 1st ed.; Yáñez, M., Boyd, R.J., Eds.; Elsevier: Oxford, UK, 2024; pp. 240–264. [Google Scholar] [CrossRef]
- Lu, T.; Chen, Q. Independent Gradient Model Based on Hirshfeld Partition: A New Method for Visual Study of Interactions in Chemical Systems. J. Comput. Chem. 2022, 4, 539–555. [Google Scholar] [CrossRef]
- Yin, H.; Rosas, R.; Gigmes, D.; Ouari, O.; Wang, R.; Kermagoret, A.; Bardelang, D. Metal Actuated Ring Translocation Switches in Water. Org. Lett. 2018, 20, 3187–3191. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Abraham, M.H.; Zissimos, A.M. Fast Calculation of van Der Waals Volume as a Sum of Atomic and Bond Contributions and Its Application to Drug Compounds. J. Org. Chem. 2003, 68, 7368–7373. [Google Scholar] [CrossRef] [PubMed]
- Nau, W.M.; Florea, M.; Assaf, K.I. Deep Inside Cucurbiturils: Physical Properties and Volumes of Their Inner Cavity Determine the Hydrophobic Driving Force for Host–Guest Complexation. Isr. J. Chem. 2011, 51, 559–577. [Google Scholar] [CrossRef]
- Mecozzi, S.; Rebek, J., Jr. The 55% Solution: A Formula for Molecular Recognition in the Liquid State. Chem. Eur. J. 1998, 4, 1016–1022. [Google Scholar] [CrossRef]
- Assaf, K.I.; Florea, M.; Antony, J.; Henriksen, N.M.; Yin, J.; Hansen, A.; Qu, Z.; Sure, R.; Klapstein, D.; Gilson, M.K.; et al. HYDROPHOBE Challenge: A Joint Experimental and Computational Study on the Host–Guest Binding of Hydrocarbons to Cucurbiturils, Allowing Explicit Evaluation of Guest Hydration Free-Energy Contributions. J. Phys. Chem. B 2017, 121, 11144–11162. [Google Scholar] [CrossRef] [PubMed]
- Assaf, K.I.; Faraj, A.N.; Abu-Nameh, E.S.M.; Alnajjar, M.A. Supramolecular Complexation of Phenylephrine by Cucurbit[7]Uril in Aqueous Solution. RSC Adv. 2024, 14, 13286–13290. [Google Scholar] [CrossRef] [PubMed]
- Grishaeva, T.N.; Masliy, A.N.; Kuznetsov, A.M. Water Structuring inside the Cavities of Cucurbit[n]Urils (n = 5–8): A Quantum-Chemical Forecast. J. Incl. Phenom. Macrocycl. Chem. 2017, 89, 299–313. [Google Scholar] [CrossRef]
- Gabelica, V.; Galic, N.; De Pauw, E. On the Specificity of Cyclodextrin Complexes Detected by Electrospray Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2002, 13, 946–953. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Kumar, P.S.V.; Raghavendra, V.; Subramanian, V. Bader’s Theory of Atoms in Molecules (AIM) and Its Applications to Chemical Bonding. J. Chem. Sci. 2016, 128, 1527–1536. [Google Scholar] [CrossRef]
- Lu, T. A Comprehensive Electron Wavefunction Analysis Toolbox for Chemists, Multiwfn. J. Chem. Phys. 2024, 161, 082503. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Todorova, N.A.; Schwarz, F.P. The Role of Water in the Thermodynamics of Drug Binding to Cyclodextrin. J. Chem. Thermodyn. 2007, 39, 1038–1048. [Google Scholar] [CrossRef]
- Valero, M.; Costa, S.M.B.; Ascenso, J.R.; Mercedes Velázquez, M.; Rodríguez, L.J. Complexation of the Non-Steroidal Anti-Inflammatory Drug Nabumetone with Modified and Unmodified Cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 1999, 35, 663–677. [Google Scholar] [CrossRef]
Proton | NAB δ/ppm | NAB-CB7 1:1 δ/ppm |
---|---|---|
1 | 7.62 | 6.56–6.85 |
3 | 7.36 | 6.56–6.85 |
4 | 7.76 | 6.56–6.85 |
5 | 7.29 | 6.56–6.85 |
7 | 7.15 | 6.56–6.85 |
8 | 7.73 | 6.56–6.85 |
11 | 2.97 | 2.79 |
12 | 2.91 | 2.63 |
14 | 2.13 | 2.35 |
15 | 3.87 | 3.93 |
Proton | NAP δ/ppm | NAP-CB7 1:1 δ/ppm |
---|---|---|
1 | 7.70 | 6.20–6.96 |
3 | 7.41 | 6.20–6.96 |
4 | 7.77 | 6.20–6.96 |
5 | 7.30 | 6.20–6.96 |
7 | 7.16 | 6.20–6.96 |
8 | 7.77 | 6.20–6.96 |
11 | 3.77 | 3.69 |
13 | 1.43 | 1.23 |
14 | 3.88 | 3.65 |
Complex | ||||
---|---|---|---|---|
NAB-CB7 | 4.66 ± 0.01 | −26.7 ± 0.1 | −20.3 ± 0.9 | 6.3 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klarić, D.; Borko, V.; Parlov Vuković, J.; Pilepić, V.; Budimir, A.; Galić, N. Host–Guest Interactions of Cucurbit[7]uril with Nabumetone and Naproxen: Spectroscopic, Calorimetric, and DFT Studies in Aqueous Solution. Molecules 2025, 30, 2558. https://doi.org/10.3390/molecules30122558
Klarić D, Borko V, Parlov Vuković J, Pilepić V, Budimir A, Galić N. Host–Guest Interactions of Cucurbit[7]uril with Nabumetone and Naproxen: Spectroscopic, Calorimetric, and DFT Studies in Aqueous Solution. Molecules. 2025; 30(12):2558. https://doi.org/10.3390/molecules30122558
Chicago/Turabian StyleKlarić, David, Valentina Borko, Jelena Parlov Vuković, Viktor Pilepić, Ana Budimir, and Nives Galić. 2025. "Host–Guest Interactions of Cucurbit[7]uril with Nabumetone and Naproxen: Spectroscopic, Calorimetric, and DFT Studies in Aqueous Solution" Molecules 30, no. 12: 2558. https://doi.org/10.3390/molecules30122558
APA StyleKlarić, D., Borko, V., Parlov Vuković, J., Pilepić, V., Budimir, A., & Galić, N. (2025). Host–Guest Interactions of Cucurbit[7]uril with Nabumetone and Naproxen: Spectroscopic, Calorimetric, and DFT Studies in Aqueous Solution. Molecules, 30(12), 2558. https://doi.org/10.3390/molecules30122558