The Multitarget Antinociceptive Compound Affinin and Its Effects on Hypothermia, Hypolocomotion, and Sickness Behavior in Lipopolysaccharide-Treated Mice
Abstract
:1. Introduction
2. Results
2.1. Effect of Affinin on Locomotor Activity
2.2. Affinin-Induced Analgesia: The Cannabinoid Tetrad Test
2.3. Involvement of the CB1 Receptors and the TRPA1 and TRPV1 Channels in the Analgesic Effect of Affinin
2.4. Effects of Affinin on Behavior in LPS-Induced Hypothermic Mice
2.5. Evaluation of the Anti-Inflammatory Effect of Affinin in an LPS-Induced Hypothermia Model
2.6. Quantification of Serum Cytokines: IL-1β, TNF-α, and IL-6
3. Discussion
4. Materials and Methods
4.1. Animals and Ethical Statement
4.2. Extraction and Isolation
4.3. Drugs
4.4. Open-Field Test
4.5. Cannabinoid Tetrad Test
4.6. LPS-Induced Hypothermia
4.7. Cytokine Measurements
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boonen, J.; Bronselaer, A.; Nielandt, J.; Veryser, L.; De Tré, G.; De Spiegeleer, B. Alkamid Database: Chemistry, Occurrence and Functionality of Plant N-Alkylamides. J. Ethnopharmacol. 2012, 142, 563–590. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-C.; Fan, N.-C.; Lin, M.-H.; Chu, I.-R.; Huang, S.-J.; Hu, C.-Y.; Han, S.-Y. Anti-Inflammatory Effect of Spilanthol from Spilanthes Acmella on Murine Macrophage by Down-Regulating LPS-Induced Inflammatory Mediators. J. Agric. Food Chem. 2008, 56, 2341–2349. [Google Scholar] [CrossRef] [PubMed]
- Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. High Therapeutic Potential of Spilanthes Acmella: A Review. EXCLI J. 2013, 12, 291–312. [Google Scholar] [PubMed]
- Castro-Ruiz, J.E.; Rojas-Molina, A.; Luna-Vázquez, F.J.; Rivero-Cruz, F.; García-Gasca, T.; Ibarra-Alvarado, C. Affinin (Spilanthol), Isolated from Heliopsis Longipes, Induces Vasodilation via Activation of Gasotransmitters and Prostacyclin Signaling Pathways. Int. J. Mol. Sci. 2017, 18, 218. [Google Scholar] [CrossRef]
- Rios, Y. Natural Alkamides: Pharmacology, Chemistry and Distribution. Drug Discov. Res. Pharmacogn. 2012, 244, 107–144. [Google Scholar] [CrossRef]
- García-Chávez, A.; Ramírez-Chávez, E.; Molina-Torres, J. El Género Heliopsis (Heliantheae; Asteraceae) En México y Las Alcamidas Presentes En Sus Raíces. Acta Bot. Mex. 2004, 69, 115–131. [Google Scholar] [CrossRef]
- Cilia-López, V.G.; Juárez-Flores, B.I.; Aguirre-Rivera, J.R.; Reyes-Agüero, J.A. Analgesic Activity of Heliopsis Longipes and Its Effect on the Nervous System. Pharm. Biol. 2010, 48, 195–200. [Google Scholar] [CrossRef]
- Déciga-Campos, M.; Rios, M.Y.; Aguilar-Guadarrama, A.B. Antinociceptive Effect of Heliopsis Longipes Extract and Affinin in Mice. Planta Med. 2010, 76, 665–670. [Google Scholar] [CrossRef]
- Woodhams, S.G.; Sagar, D.R.; Burston, J.J.; Chapman, V. The Role of the Endocannabinoid System in Pain. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 119–143. ISBN 9783662464502. [Google Scholar]
- Hung, C.Y.; Tan, C.H. TRP Channels in Nociception and Pathological Pain. In Advances in Experimental Medicine and Biology; Springer Nature: Singapore, 2018; Volume 1099, pp. 13–27. ISBN 9789811317569. [Google Scholar]
- Moore, C.; Gupta, R.; Yong, S.J. Regulation of Pain and Itch by TRP Channels. Neurosci. Bull. 2018, 34, 120–142. [Google Scholar] [CrossRef]
- de La Rosa-Lugo, V.; Acevedo-Quiroz, M.; Déciga-Campos, M.; Rios, Y.M. Antinociceptive Effect of Natural and Synthetic Alkamides Involves TRPV1 Receptors. J. Pharm. Pharmacol. 2017, 69, 884–895. [Google Scholar] [CrossRef]
- Valencia-Guzmán, C.J.; Castro-Ruiz, J.E.; García-Gasca, T.; Rojas-Molina, A.; Romo-Mancillas, A.; Luna-Vázquez, F.J.; Rojas-Molina, J.I.; Ibarra-Alvarado, C. Endothelial TRP Channels and Cannabinoid Receptors Are Involved in Affinin-Induced Vasodilation. Fitoterapia 2021, 153, 104985. [Google Scholar] [CrossRef] [PubMed]
- Metna-Laurent, M.; Mondésir, M.; Grel, A.; Vallée, M.; Piazza, P.V. Cannabinoid-Induced Tetrad in Mice. Curr. Protoc. Neurosci. 2017, 80, 9.59.1–9.59.10. [Google Scholar] [CrossRef] [PubMed]
- Dickson, K.; Lehmann, C. Inflammatory Response to Different Toxins in Experimental Sepsis Models. Int. J. Mol. Sci. 2019, 20, 4341. [Google Scholar] [CrossRef]
- Déciga-Campos, M.; Arriaga-Alba, M.; Ventura-Martínez, R.; Aguilar-Guadarrama, B.; Rios, M.Y. Pharmacological and Toxicological Profile of Extract from Heliopsis Longipes and Affinin. Drug Dev. Res. 2012, 73, 130–137. [Google Scholar] [CrossRef]
- Rios, Y.; Aguilar-Guadarrama, A.B.; del Carmen Gutierrez, M. Analgesic Activity of Affinin, an Alkamide from Heliopsis Longipes (Compositae). J. Ethnopharmacol. 2007, 110, 364–367. [Google Scholar] [CrossRef]
- Cariño-Cortés, R.; Gayosso-De-Lucio, J.A.; Ortiz, M.I.; Sánchez-Gutiérrez, M.; García-Reyna, P.B.; Cilia-López, V.G.; Pérez-Hernández, N.; Moreno, E.; Ponce-Monter, H. Antinociceptive, Genotoxic and Histopathological Study of Heliopsis Longipes S.F. Blake in Mice. J. Ethnopharmacol. 2010, 130, 216–221. [Google Scholar] [CrossRef]
- Crunfli, F.; Vilela, F.C.; Giusti-Paiva, A. Cannabinoid CB1 Receptors Mediate the Effects of Dipyrone. Clin. Exp. Pharmacol. Physiol. 2015, 42, 246–255. [Google Scholar] [CrossRef]
- Deuis, J.R.; Dvorakova, L.S.; Vetter, I. Methods Used to Evaluate Pain Behaviors in Rodents. Front. Mol. Neurosci. 2017, 10, 284. [Google Scholar] [CrossRef]
- Raasing, L.R.M.; Vogels, O.J.M.; Veltkamp, M.; Van Swol, C.F.P.; Grutters, J.C. Current View of Diagnosing Small Fiber Neuropathy. J. Neuromuscul. Dis. 2021, 8, 185–207. [Google Scholar] [CrossRef]
- Elufioye, T.O.; Habtemariam, S.; Adejare, A. Chemistry and Pharmacology of Alkylamides from Natural Origin. Rev. Bras. Farmacogn. 2020, 30, 622–640. [Google Scholar] [CrossRef]
- Reynoso-Moreno, I.; Najar-Guerrero, I.; Escareno, N.; Flores-Soto, M.E.; Gertsch, J.; Viveros-Paredes, J.M. An Endocannabinoid Uptake Inhibitor from Black Pepper Exerts Pronounced Anti-Inflammatory Effects in Mice. J. Agric. Food Chem. 2017, 65, 9435–9442. [Google Scholar] [CrossRef] [PubMed]
- Munjuluri, S.; Wilkerson, D.A.; Sooch, G.; Chen, X.; White, F.A.; Obukhov, A.G. Capsaicin and TRPV1 Channels in the Cardiovascular System: The Role of Inflammation. Cells 2022, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Kano, M.; Ohno-Shosaku, T.; Hashimotodani, Y.; Uchigashima, M. Endocannabinoid-Mediated Control of Synaptic Transmission. Physiol. Rev. 2009, 89, 309–380. [Google Scholar] [CrossRef]
- Dogrul, A.; Seyrek, M.; Yalcin, B.; Ulugol, A. Involvement of Descending Serotonergic and Noradrenergic Pathways in CB1 Receptor-Mediated Antinociception. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2012, 38, 97–105. [Google Scholar] [CrossRef]
- Thakore, P.; Earley, S. Transient Receptor Potential Channels and Endothelial Cell Calcium Signaling. Comprehesive Physiol. 2019, 9, 1249–1277. [Google Scholar] [CrossRef]
- Story, G.M.; Peier, A.M.; Reeve, A.J.; Eid, S.R.; Mosbacher, J.; Hricik, T.R.; Earley, T.J.; Hergarden, A.C.; Andersson, D.A.; Hwang, S.W.; et al. ANKTM1, a TRP-like Channel Expressed in Nociceptive Neurons, Is Activated by Cold Temperatures. Cell 2003, 112, 819–829. [Google Scholar] [CrossRef]
- Andrei, S.R.; Sinharoy, P.; Bratz, I.N.; Damron, D.S. TRPA1 Is Functionally Co-Expressed with TRPV1 in Cardiac Muscle: Co-Localization at z-Discs, Costameres and Intercalated Discs. Channels 2016, 10, 395–409. [Google Scholar] [CrossRef]
- Qian, X.; Francis, M.; Solodushko, V.; Earley, S.; Taylor, M.S. Recruitment of Dynamic Endothelial Ca2+ Signals by the TRPA1 Channel Activator AITC in Rat Cerebral Arteries. Microcirculation 2013, 2, 138–148. [Google Scholar] [CrossRef]
- Bandell, M.; Story, G.M.; Hwang, S.W.; Viswanath, V.; Eid, S.R.; Petrus, M.J.; Earley, T.J.; Patapoutian, A. Noxious Cold Ion Channel TRPA1 Is Activated by Pungent Compounds and Bradykinin. Neuron 2004, 41, 849–857. [Google Scholar] [CrossRef]
- Bautista, D.M.; Jordt, S.E.; Nikai, T.; Tsuruda, P.R.; Read, A.J.; Poblete, J.; Yamoah, E.N.; Basbaum, A.I.; Julius, D. TRPA1 Mediates the Inflammatory Actions of Environmental Irritants and Proalgesic Agents. Cell 2006, 124, 1269–1282. [Google Scholar] [CrossRef]
- Torres-Narváez, J.C.; Pérez-Torres, I.; Castrejón-Téllez, V.; Varela-López, E.; Oidor-Chan, V.H.; Guarner-Lans, V.; Vargas-González, Á.; Martínez-Memije, R.; Flores-Chávez, P.; Cervantes-Yañez, E.Z.; et al. The Role of the Activation of the TRPV1 Receptor and of Nitric Oxide in Changes in Endothelial and Cardiac Function and Biomarker Levels in Hypertensive Rats. Int. J. Environ. Res. Public Health 2019, 16, 3576. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.A.; Gentry, C.; Alenmyr, L.; Killander, D.; Lewis, S.E.; Andersson, A.; Bucher, B.; Galzi, J.L.; Sterner, O.; Bevan, S.; et al. TRPA1 Mediates Spinal Antinociception Induced by Acetaminophen and the Cannabinoid Δ9-Tetrahydrocannabiorcol. Nat. Commun. 2011, 2, 551. [Google Scholar] [CrossRef] [PubMed]
- Gouin, O.; L’Herondelle, K.; Lebonvallet, N.; Le Gall-Ianotto, C.; Sakka, M.; Buhé, V.; Plée-Gautier, E.; Carré, J.L.; Lefeuvre, L.; Misery, L.; et al. TRPV1 and TRPA1 in Cutaneous Neurogenic and Chronic Inflammation: Pro-Inflammatory Response Induced by Their Activation and Their Sensitization. Protein Cell 2017, 8, 644–661. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cui, L.; Xu, H.; Liu, S.; Zhu, F.; Yan, F.; Shen, S.; Zhu, M. TRPV1 Agonism Inhibits Endothelial Cell Inflammation via Activation of ENOS/NO Pathway. Atherosclerosis 2017, 260, 13–19. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, M.; Zhou, F.; Cao, W.; Bi, L.; Xie, Y.; Yang, Q.; Wang, S. Cinnamaldehyde Ameliorates LPS-Induced Cardiac Dysfunction via TLR4-NOX4 Pathway: The Regulation of Autophagy and ROS Production. J. Mol. Cell. Cardiol. 2016, 101, 11–24. [Google Scholar] [CrossRef]
- Haba, R.; Shintani, N.; Onaka, Y.; Kanoh, T.; Wang, H.; Takenaga, R.; Hayata, A.; Hirai, H.; Nagata, K.Y.; Nakamura, M.; et al. Central CRTH2, a Second Prostaglandin D2 Receptor, Mediates Emotional Impairment in the Lipopolysaccharide and Tumor-Induced Sickness Behavior Model. J. Neurosci. 2014, 34, 2514–2523. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, H.; Pertovaara, A.; Wang, J.; Carlson, S. Anxiety- and Activity-Related Effects of Paracetamol on Healthy and Neuropathic Rats. Pharmacol. Res. Perspect. 2018, 6, e00367. [Google Scholar] [CrossRef]
- Mul Fedele, M.L.; Aiello, I.; Caldart, C.S.; Golombek, D.A.; Marpegan, L.; Paladino, N. Differential Thermoregulatory and Inflammatory Patterns in the Circadian Response to LPS-Induced Septic Shock. Front. Cell. Infect. Microbiol. 2020, 10, 100. [Google Scholar] [CrossRef]
- Rossol, M.; Heine, H.; Meusch, U.; Quandt, D.; Klein, C.; Sweet, M.J.; Hauschildt, S. LPS-Induced Cytokine Production in Human Monocytes and Macrophages. Crit. Rev. Immunol. 2011, 31, 379–446. [Google Scholar] [CrossRef]
- Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The Pro- and Anti-Inflammatory Properties of the Cytokine Interleukin-6. Biochim. Biophys. Acta Mol. Cell Res. 2011, 1813, 878–888. [Google Scholar] [CrossRef]
- de Freitas Blanco, V.S.; Michalak, B.; Zelioli, Í.A.M.; de Oliveira, A.D.S.S.; Rodrigues, M.V.N.; Ferreira, A.G.; Garcia, V.L.; Cabral, F.A.; Kiss, A.K.; Rodrigues, R.A.F. Isolation of Spilanthol from Acmella Oleracea Based on Green Chemistry and Evaluation of Its in Vitro Anti-Inflammatory Activity. J. Supercrit. Fluids 2018, 140, 372–379. [Google Scholar] [CrossRef]
- Dantzer, R. Cytokine, Sickness Behavior, and Depression. Immunol. Allergy Clin. N. Am. 2009, 29, 247–264. [Google Scholar] [CrossRef] [PubMed]
- Santana-Coelho, D.; Hodges, S.L.; Quintero, S.I.; Womble, P.D.; Sullens, D.G.; Narvaiz, D.A.; Herrera, R.; Sekeres, M.J.; Lugo, J.N. Lipopolysaccharide-Induced Sickness Behavior Is Not Altered in Male Fmr1-Deficient Mice. Brain Behav. 2023, 13, e3142. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Reis, F.D.C.; Heppenstall, P.; Wende, H.; Siemens, J. The TRPM2 Channel Is a Hypothalamic Heat Sensor That Limits Fever and Can Drive Hypothermia. Science 2016, 353, 1393–1398. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Wang, B.; Mao, J. The Pathogenesis and Treatment of the “Cytokine Storm’’ in COVID-19. J. Infect. 2020, 80, 607–613. [Google Scholar] [CrossRef]
- Reynoso-Moreno, I.; Chicca, A.; Flores-Soto, M.E.; Viveros-Paredes, J.M.; Gertsch, J. The Endocannabinoid Reuptake Inhibitor WOBE437 Is Orally Bioavailable and Exerts Indirect Polypharmacological Effects via Different Endocannabinoid Receptors. Front. Mol. Neurosci. 2018, 11, 180. [Google Scholar] [CrossRef]
- Ochoa-Muñoz, L.I. Norma Oficial Mexicana NOM-062-ZOO-1999, Especificaciones Técnicas Para La Producción, Cuidado y Uso de Los Animales de Laboratorio; Diario Oficial de la Federación: Ciudad de Mexico, Mexico, 2001; pp. 1–58. Available online: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf (accessed on 26 April 2025).
- Singh, H.; Schulze, D.R.; McMahon, L.R. Tolerance and Cross-Tolerance to Cannabinoids in Mice: Schedule-Controlled Responding and Hypothermia. Psychopharmacology 2011, 215, 665–675. [Google Scholar] [CrossRef]
- Yao, L.; Chen, S.; Tang, H.; Huang, P.; Wei, S.; Liang, Z.; Chen, X.; Yang, H.; Tao, A.; Chen, R.; et al. Transient Receptor Potential Ion Channels Mediate Adherens Junctions Dysfunction in a Toluene Diisocyanate-Induced Murine Asthma Model. Toxicol. Sci. 2019, 168, 160–170. [Google Scholar] [CrossRef]
- Yao, D.; Li, R.; Hao, J.; Huang, H.; Wang, X.; Ran, L.; Fang, Y.; He, Y.; Wang, W.; Liu, X.; et al. Melatonin Alleviates Depression-like Behaviors and Cognitive Dysfunction in Mice by Regulating the Circadian Rhythm of AQP4 Polarization. Transl. Psychiatry 2023, 13, 310. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luz-Martínez, B.A.; Viveros-Paredes, J.M.; Rojas-Molina, A.; Ibarra-Alvarado, C. The Multitarget Antinociceptive Compound Affinin and Its Effects on Hypothermia, Hypolocomotion, and Sickness Behavior in Lipopolysaccharide-Treated Mice. Molecules 2025, 30, 2554. https://doi.org/10.3390/molecules30122554
Luz-Martínez BA, Viveros-Paredes JM, Rojas-Molina A, Ibarra-Alvarado C. The Multitarget Antinociceptive Compound Affinin and Its Effects on Hypothermia, Hypolocomotion, and Sickness Behavior in Lipopolysaccharide-Treated Mice. Molecules. 2025; 30(12):2554. https://doi.org/10.3390/molecules30122554
Chicago/Turabian StyleLuz-Martínez, Beatriz A., Juan M. Viveros-Paredes, Alejandra Rojas-Molina, and César Ibarra-Alvarado. 2025. "The Multitarget Antinociceptive Compound Affinin and Its Effects on Hypothermia, Hypolocomotion, and Sickness Behavior in Lipopolysaccharide-Treated Mice" Molecules 30, no. 12: 2554. https://doi.org/10.3390/molecules30122554
APA StyleLuz-Martínez, B. A., Viveros-Paredes, J. M., Rojas-Molina, A., & Ibarra-Alvarado, C. (2025). The Multitarget Antinociceptive Compound Affinin and Its Effects on Hypothermia, Hypolocomotion, and Sickness Behavior in Lipopolysaccharide-Treated Mice. Molecules, 30(12), 2554. https://doi.org/10.3390/molecules30122554