Studying the Formation of Fullerenes During Catagenesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Starting Material
2.2. Temperature Dependency of PAH Growth
2.3. Formation of Fullerenes During Reaction
3. Conclusions
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horsfield, B.; Rullkotter, J. Diagenesis, catagenesis, and metagenesis of organic matter: Chapter 10: Part III. Processes. In The Petroleum System-From Source to Trap; Magoon, L.B., Dow, W.G., Eds.; American Association of Petroleum Geologists AAPG Memoir: Tulsa, OK, USA, 1994; Volume 60. [Google Scholar] [CrossRef]
- Alshareef, A.H. Asphaltenes: Definition, Properties, and Reactions of Model Compounds. Energy Fuels 2020, 34, 16–30. [Google Scholar] [CrossRef]
- Gawel, I.; Bociarska, D.; Biskupski, P. Effect of asphaltenes on hydroprocessing of heavy oils and residua. Appl. Catal. A-Gen. 2005, 295, 89–94. [Google Scholar] [CrossRef]
- Alomair, O.A.; Almusallam, A.S. Heavy Crude Oil Viscosity Reduction and the Impact of Asphaltene Precipitation. Energy Fuels 2013, 27, 7267–7276. [Google Scholar] [CrossRef]
- Kissin, Y.V. Catagenesis of light aromatic compounds in petroleum. Org. Geochem. 1998, 29, 947–962. [Google Scholar] [CrossRef]
- Wang, E.; Ding, J. Reaction between the i-C4H5 radical and propargyl radical (C3H3): A theoretical study. Chem. Phys. Lett. 2021, 768, 138407. [Google Scholar] [CrossRef]
- Miller, J.A.; Klippenstein, S.J. The Recombination of Propargyl Radicals and Other Reactions on a C6H6 Potential. J. Phys. Chem. A 2003, 107, 7783–7799. [Google Scholar] [CrossRef]
- Lindstedt, R.P.; Skevis, G. Benene formation chemistry in premixed 1,3-butadiene flames. In Proceedings of the Symposium (International) on Combustion, Napoli, Italy, 28 July 1996; pp. 703–709. [Google Scholar]
- Kaiser, R.I.; Zhao, L.; Lu, W.; Ahmed, M.; Zagidullin, M.V.; Azyazov, V.N.; Mebel, A.M. Formation of Benzene and Naphthalene through Cyclopentadienyl-Mediated Radical–Radical Reactions. J. Phys. Chem. Let. 2022, 13, 208–213. [Google Scholar] [CrossRef]
- Jursic, B.; Zdravkovski, Z. DFT study of the Diels–Alder reactions between ethylene with buta-1, 3-diene and cyclopentadiene. J. Am. Chem. Soc. 1995, 1223–1226. [Google Scholar] [CrossRef]
- Reizer, E.; Viskolcz, B.; Fiser, B. Formation and growth mechanisms of polycyclic aromatic hydrocarbons: A mini-review. Chemosphere 2022, 291, 132793. [Google Scholar] [CrossRef]
- Kislov, V.V.; Islamova, N.I.; Kolker, A.M.; Lin, S.H.; Mebel, A.M. Hydrogen Abstraction Acetylene Addition and Diels−Alder Mechanisms of PAH Formation: A Detailed Study Using First Principles Calculations. J. Chem. Theo. Comput. 2005, 1, 908–924. [Google Scholar] [CrossRef]
- Siegmann, K.; Sattler, K. Formation mechanism for polycyclic aromatic hydrocarbons in methane flames. J. Chem. Phys. 2000, 112, 698–709. [Google Scholar] [CrossRef]
- Fort, E.H.; Donovan, P.M.; Scott, L.T. Diels−Alder Reactivity of Polycyclic Aromatic Hydrocarbon Bay Regions: Implications for Metal-Free Growth of Single-Chirality Carbon Nanotubes. J. Am. Chem. Soc. 2009, 131, 16006–16007. [Google Scholar] [CrossRef]
- Shukla, B.; Koshi, M. A highly efficient growth mechanism of polycyclic aromatic hydrocarbons. Phys. Chem. Chem. Phys. 2010, 12, 2427–2437. [Google Scholar] [CrossRef] [PubMed]
- Georganta, E.; Rahman, R.K.; Raj, A.; Sinha, S. Growth of polycyclic aromatic hydrocarbons (PAHs) by methyl radicals: Pyrene formation from phenanthrene. Combust Flame 2017, 185, 129–141. [Google Scholar] [CrossRef]
- Shukla, B.; Koshi, M. Comparative study on the growth mechanisms of PAHs. Combust Flame 2011, 158, 369–375. [Google Scholar] [CrossRef]
- Farmani, Z.; Vetere, A.; Poidevin, C.; Auer, A.A.; Schrader, W. Studying natural Buckyballs and Buckybowls in fossil materials. Angew. Chem. 2020, 132, 15118–15123. [Google Scholar] [CrossRef]
- Farmani, Z.; Vetere, A.; Pfander, N.; Lehmann, C.W.; Schrader, C.W. Naturally Occurring Allotropes of Carbon. Anal. Chem. 2024, 96, 2968–2974. [Google Scholar] [CrossRef] [PubMed]
- Dubrovsky, R.; Bezmelnitsyn, V.; Eletskii, A. Plasma fullerene production from powdered carbon black. Carbon 2004, 42, 1063–1066. [Google Scholar] [CrossRef]
- Caraman, M.; Lazar, G.; Stamate, M.; Lazar, I. Arc discharge installation for fullerene production. Carbon 2006, 53, 273–278. [Google Scholar] [CrossRef]
- Kondyli, A.; Schrader, W. Understanding “Fouling” in Extremely Complex Petroleum Mixtures. ACS Appl. Energy Mater. 2020, 3, 7251–7256. [Google Scholar] [CrossRef]
- Kondyli, A.; Schrader, W. Study of Crude Oil Fouling from Sulfur-Containing Compounds Using High-Resolution Mass Spectrometry. Energy Fuels 2021, 35, 13022–13029. [Google Scholar] [CrossRef]
- Kondyli, A.; Schrader, W. Investigation of the Behavior of Hydrocarbons during Crude Oil Fouling by High-Resolution Electrospray Ionization Mass Spectrometry. Energies 2024, 17, 1299. [Google Scholar] [CrossRef]
- Kondyli, A.; Schrader, W. High-resolution GC/MS studies of a light crude oil fraction. J. Mass Spectrom. 2019, 54, 47–54. [Google Scholar] [CrossRef]
- Wang, Z.; Fingas, M.; Sergy, G. Chemical characterization of crude oil residues from an arctic beach by GC/MS and GC/FID. Environ. Sci. Technol. 1995, 29, 2622–2631. [Google Scholar] [CrossRef] [PubMed]
- Blomberg, J.; Schoenmakers, P.J.; Beens, J.; Tijssen, R. Compehensive two-dimensional gas chromatography (GC× GC) and its applicability to the characterization of complex (petrochemical) mixtures. J. High Resolut. Chromatogr. 1997, 20, 539–544. [Google Scholar] [CrossRef]
- Hegazi, A.H.; Andersson, J.T. Limitations to GC-MS determination of sulfur-containing polycyclic aromatic compounds in geochemical, petroleum, and environmental investigations. Energy Fuels 2007, 21, 3375–3384. [Google Scholar] [CrossRef]
- Guricza, L.M.; Schrader, W. Electrospray ionization for determination of non-polar polyaromatic hydrocarbons and polyaromatic heterocycles in heavy crude oil asphaltenes. J. Mass Spectrom. 2015, 50, 549–557. [Google Scholar] [CrossRef]
- Lafleur, A.L.; Taghizadeh, K.; Howard, J.B.; Anacleto, J.F.; Quilliam, M.A. Characterization of flame-generated C10 to C160 polycyclic aromatic hydrocarbons by atmospheric-pressure chemical ionization mass spectrometry with liquid introduction via heated nebulizer interface. J. Am. Soc. Mass Spectrom. 1996, 7, 276–286. [Google Scholar] [CrossRef]
- Cai, S.-S.; Syage, J.A.; Hanold, K.A.; Balogh, M.P. Ultra Performance Liquid Chromatography−Atmospheric Pressure Photoionization-Tandem Mass Spectrometry for High-Sensitivity and High-Throughput Analysis of U.S. Environmental Protection Agency 16 Priority Pollutants Polynuclear Aromatic Hydrocarbons. Anal. Chem. 2009, 81, 2123–2128. [Google Scholar] [CrossRef]
- Núñez, O.; Gallart-Ayala, H.; Martins, C.P.B.; Moyano, E.; Galceran, M.T. Atmospheric Pressure Photoionization Mass Spectrometry of Fullerenes. Anal. Chem. 2012, 84, 5316–5326. [Google Scholar] [CrossRef]
- Xie, S.-Y.; Deng, S.-L.; Yu, L.-J.; Huang, R.-B.; Zheng, L.-S. Separation and identification of perchlorinated polycyclic aromatic hydrocarbons and fullerenes (C60, C70) by coupling high-performance liquid chromatography with ultraviolet absorption spectroscopy and atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A 2001, 932, 43–53. [Google Scholar] [CrossRef]
- Smith, D.F.; Schaub, T.M.; Kim, S.; Rodgers, R.P.; Rahimi, P.; Teclemariam, A.; Marshall, A.G. Characterization of acidic species in Athabasca bitumen and bitumen heavy vacuum gas oil by negative-ion ESI FT-ICR MS with and without acid-ion exchange resin prefractionation. Energy Fuels 2008, 22, 2372–2378. [Google Scholar] [CrossRef]
- Pinkston, D.S.; Duan, P.; Gallardo, V.A.; Habicht, S.C.; Tan, X.; Qian, K.; Gray, M.; Mullen, K.; Kenttamaa, H.I. Analysis of Asphaltenes and Asphaltene Model Compounds by Laser-Induced Acoustic Desorption/Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2009, 23, 5564–5570. [Google Scholar] [CrossRef]
- Park, J.W.; Cho, Y.; Son, S.; Kim, S.; Lee, K.B. Characterization and Structural Classification of Heteroatom Components of Vacuum-Residue-Derived Asphaltenes Using APPI (+) FT-ICR Mass Spectrometry. Energy Fuels 2021, 35, 13756–13765. [Google Scholar] [CrossRef]
- Palacio Lozano, D.C.; Gavard, R.; Arenas-Diaz, J.P.; Thomas, M.J.; Stranz, D.D.; Mejía-Ospino, E.; Guzman, A.; Spencer, S.E.F.; Rossell, D.; Barrow, M.P. Pushing the analytical limits: New insights into complex mixtures using mass spectra segments of constant ultrahigh resolving power. Chem. Sci. 2019, 10, 6966–6978. [Google Scholar] [CrossRef]
- Neumann, A.; Kafer, U.; Groger, T.; Wilharm, T.; Zimmermann, R.; Ruger, C.P. Investigation of Aging Processes in Bitumen at the Molecular Level with High-Resolution Fourier-Transform Ion Cyclotron Mass Spectrometry and Two-Dimensional Gas Chromatography Mass Spectrometry. Energy Fuels 2020, 34, 10641–10654. [Google Scholar] [CrossRef]
- Eckert, P.A.; Roach, P.J.; Laskin, A.; Laskin, J. Chemical Characterization of Crude Petroleum Using Nanospray Desorption Electrospray Ionization Coupled with High-Resolution Mass Spectrometry. Anal. Chem. 2012, 84, 1517–1525. [Google Scholar] [CrossRef]
- Goranov, A.I.; Wozniak, A.S.; Bostick, K.W.; Zimmerman, A.R.; Mitra, S.; Hatcher, P.G. Photochemistry after fire: Structural transformations of pyrogenic dissolved organic matter elucidated by advanced analytical techniques. Geochim. Et Cosmochim. Acta 2020, 290, 271–292. [Google Scholar] [CrossRef]
- Vetere, A.; Schrader, W. Mass spectrometric coverage of complex mixtures: Exploring the carbon space of crude oil. ChemistrySelect 2017, 2, 849–853. [Google Scholar] [CrossRef]
- Yalçin, M.N.; Littke, R.; Sachsenhofer, R.F. Thermal History of Sedimentary Basins. In Petroleum and Basin Evolution: Insights from Petroleum Geochemistry, Geology and Basin Modeling; Welte, D.H., Horsfield, B., Baker, D.R., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 71–167. [Google Scholar]
- Radke, M.; Horsfield, B.; Littke, R.; Rullkötter, J. Maturation and Petroleum Generation. In Petroleum and Basin Evolution: Insights from Petroleum Geochemistry, Geology and Basin Modeling; Welte, D.H., Horsfield, B., Baker, D.R., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 169–229. [Google Scholar]
- Gélinas, Y.; Baldock, J.A.; Hedges, J.I. Organic Carbon Composition of Marine Sediments: Effect of Oxygen Exposure on Oil Generation Potential. Science 2001, 294, 145–148. [Google Scholar] [CrossRef]
- Wu, L.M.; Zhou, C.H.; Keeling, J.; Tong, D.S.; Yu, W.H. Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation. Earth-Sci. Rev. 2012, 115, 373–386. [Google Scholar] [CrossRef]
- Mango, F.D. The stability of hydrocarbons under the time–temperature conditions of petroleum genesis. Nature 1991, 352, 146–148. [Google Scholar] [CrossRef]
- Pepper, A.S.; Corvi, P.J. Simple kinetic models of petroleum formation. Part I: Oil and gas generation from kerogen. Mar. Pet. Geol. 1995, 12, 291–319. [Google Scholar] [CrossRef]
- Greensfelder, B.; Voge, H.; Good, G. Catalytic cracking of pure hydrocarbons. Ind. Eng. Chem. 1945, 37, 1168–1176. [Google Scholar] [CrossRef]
- Greensfelder, B.; Voge, H.; Good, G. Catalytic and thermal cracking of pure hydrocarbons: Mechanisms of Reaction. Ind. Eng. Chem. 1949, 41, 2573–2584. [Google Scholar] [CrossRef]
- Mehta, N.; Gaikar, V.G. Revisiting Reaction Network Modeling of Thermal Cracking of Hydrocarbons. Ind. Eng. Chem. Res. 2023, 62, 18973–18988. [Google Scholar] [CrossRef]
- Wu, G.; Katsumura, Y.; Matsuura, C.; Ishigure, K.; Kubo, J. Radiation Effect on the Thermal Cracking of n-Hexadecane. 1. Products from Radiation-Thermal Cracking. Ind. Eng. Chem. Res. 1997, 36, 1973–1978. [Google Scholar] [CrossRef]
- Sadrameli, S.M. Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review. Fuel 2015, 140, 102–115. [Google Scholar] [CrossRef]
- Frolich, P.K.; Simard, R.; White, A. Formation of Butadiene by Cracking of Hydrocarbons. Ind. Eng. Chem. 1930, 22, 240–241. [Google Scholar] [CrossRef]
- Kunzru, D.; Shah, Y.T.; Stuart, E.B. Thermal cracking of 2-Pentene. Ind. Eng. Chem. 1973, 12, 339–344. [Google Scholar] [CrossRef]
- Egloff, G.; Hulla, G. Conversion of Hydrocarbons into Butadiene. Chem. Rev. 1944, 35, 279–333. [Google Scholar] [CrossRef]
- Pedley, J.B. Thermochemical Data of Organic Compounds; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Dreschmann, J.; Vetere, A.; Schrader, W. Structural details of small non-IPR fullerenes: Experimental and theoretical insights. Carbon 2025, 238, 120239. [Google Scholar] [CrossRef]
- Zhuo, C.; Hall, B.; Richter, H.; Levendis, Y. Synthesis of carbon nanotubes by sequential pyrolysis and combustion of polyethylene. Carbon 2010, 48, 4024–4034. [Google Scholar] [CrossRef]
- Taylor, R.; Langley, G.J.; Kroto, H.W.; Walton, D.R.M. Formation of C60 by pyrolysis of naphthalene. Nature 1993, 366, 728–731. [Google Scholar] [CrossRef]
- Wang, J.; Shen, B.; Lan, M.; Kang, D.; Wu, C. Carbon nanotubes (CNTs) production from catalytic pyrolysis of waste plastics: The influence of catalyst and reaction pressure. Catal. Today 2020, 351, 50–57. [Google Scholar] [CrossRef]
- Lv, X.; Zhang, T.; Luo, Y.; Zhang, Y.; Wang, Y.; Zhang, G. Study on carbon nanotubes and activated carbon hybrids by pyrolysis of coal. J. Anal. Appl. Pyrolysis 2020, 146, 104717. [Google Scholar] [CrossRef]
- Shaikjee, A.; Coville, N.J. The role of the hydrocarbon source on the growth of carbon materials. Carbon 2012, 50, 3376–3398. [Google Scholar] [CrossRef]
- Leon, G.; Martin, J.W.; Bringley, E.J.; Akroyd, J.; Kraft, M. The role of oxygenated species in the growth of graphene, fullerenes and carbonaceous particles. Carbon 2021, 182, 203–213. [Google Scholar] [CrossRef]
- Holm, A.I.S.; Johansson, H.A.B.; Cederquist, H.; Zettergren, H. Dissociation and multiple ionization energies for five polycyclic aromatic hydrocarbon molecules. J. Chem. Phys. 2011, 134, 044301. [Google Scholar] [CrossRef]
- Vetere, A.; Alachraf, M.W.; Panda, S.K.; Andersson, J.T.; Schrader, W. Studying the fragmentation mechanism of selected components present in crude oil by collision-induced dissociation mass spectrometry. Rapid Commun. Mass Spectrom. 2018, 32, 2141–2151. [Google Scholar] [CrossRef]
- Chen, T.; Gatchell, M.; Stockett, M.H.; Delaunay, R.; Domaracka, A.; Micelotta, E.R.; Tielens, A.G.G.M.; Rousseau, P.; Adoui, L.; Huber, B.A.; et al. Formation of H2 from internally heated polycyclic aromatic hydrocarbons: Excitation energy dependence. J. Chem. Phys. 2015, 142, 144305. [Google Scholar] [CrossRef] [PubMed]
Fractions | Hydrocarbon Classes (Relative Amounts of the Total Assigned Peaks [%]) | ||
---|---|---|---|
Alkanes | Cycloalkanes | Aromatics | |
T1 | 58.99 | 38.80 | 2.21 |
T4 | 49.08 | 26.80 | 24.12 |
T5 | 52.42 | 16.03 | 31.54 |
T6 | 64.01 | 25.17 | 10.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dreschmann, J.; Schrader, W. Studying the Formation of Fullerenes During Catagenesis. Molecules 2025, 30, 2516. https://doi.org/10.3390/molecules30122516
Dreschmann J, Schrader W. Studying the Formation of Fullerenes During Catagenesis. Molecules. 2025; 30(12):2516. https://doi.org/10.3390/molecules30122516
Chicago/Turabian StyleDreschmann, Jens, and Wolfgang Schrader. 2025. "Studying the Formation of Fullerenes During Catagenesis" Molecules 30, no. 12: 2516. https://doi.org/10.3390/molecules30122516
APA StyleDreschmann, J., & Schrader, W. (2025). Studying the Formation of Fullerenes During Catagenesis. Molecules, 30(12), 2516. https://doi.org/10.3390/molecules30122516