Conjugated Polymer Nanoparticles and Thin Films of Defect-Free Cyclic P3HT: Effects of Polymer Topology on the Nanostructure
Abstract
:1. Introduction
2. Results and Discussion
2.1. Formation of P3HT NPs
2.2. Optical Properties of P3HT NPs
2.3. Solvatochromic Properties of P3HT NPs
2.4. Grazing Incidence X-Ray Scattering (GIXS) of P3HT Thin Films
3. Materials and Methods
3.1. Materials
3.2. Formation of P3HT NPs
3.3. Swelling of P3HT NPs
3.4. DLS
3.5. ζ-Potential
3.6. SEM
3.7. UV–Vis Spectroscopy
3.8. Thin Film Preparation for GIXS
3.9. GIXS Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haque, F.M.; Grayson, S.M. The synthesis, properties and potential applications of cyclic polymers. Nat. Chem. 2020, 12, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Roovers, J. Viscoelastic properties of polybutadiene rings. Macromolecules 1988, 21, 1517–1521. [Google Scholar] [CrossRef]
- Pasquino, R.; Vasilakopoulos, T.C.; Jeong, Y.C.; Lee, H.; Rogers, S.; Sakellariou, G.; Allgaier, J.; Takano, A.; Brás, A.R.; Chang, T.; et al. Viscosity of ring polymer melts. ACS Macro Lett. 2013, 2, 874–878. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Matsubara, K.; Ohta, Y.; Nakano, T.; Kawaguchi, D.; Takahashi, Y.; Takano, A.; Matsushita, Y. Melt rheology of ring polystyrenes with ultrahigh purity. Macromolecules 2015, 48, 3140–3147. [Google Scholar] [CrossRef]
- Honda, S.; Yamamoto, T.; Tezuka, Y. Topology-directed control on thermal stability: Micelles formed from linear and cyclized amphiphilic block copolymers. J. Am. Chem. Soc. 2010, 132, 10251–10253. [Google Scholar] [CrossRef]
- Honda, S.; Yamamoto, T.; Tezuka, Y. Tuneable enhancement of the salt and thermal stability of polymeric micelles by cyclized amphiphiles. Nat. Commun. 2013, 4, 1574. [Google Scholar] [CrossRef]
- Tezuka, Y.; Ohtsuka, T.; Adachi, K.; Komiya, R.; Ohno, N.; Okui, N. A defect-free ring polymer: Size-controlled cyclic poly(tetrahydrofuran) consisting exclusively of the monomer unit. Macromol. Rapid Commun. 2008, 29, 1237–1241. [Google Scholar] [CrossRef]
- Córdova, M.E.; Lorenzo, A.T.; Müller, A.J.; Hoskins, J.N.; Grayson, S.M. A comparative study on the crystallization behavior of analogous linear and cyclic poly(ε-caprolactones). Macromolecules 2011, 44, 1742–1746. [Google Scholar] [CrossRef]
- Iyoda, M.; Yamakawa, J.; Rahman, M.J. Conjugated macrocycles: Concepts and applications. Angew. Chem. Int. Ed. 2011, 50, 10522–10553. [Google Scholar] [CrossRef]
- Omachi, H.; Matsuura, S.; Segawa, Y.; Itami, K. A modular and size-selective synthesis of [n]cycloparaphenylenes: A step toward the selective synthesis of [n, n] single-walled carbon nanotubes. Angew. Chem. Int. Ed. 2010, 49, 10202–10205. [Google Scholar] [CrossRef]
- Bednarz, M.; Reineker, P.; Mena-Osteritz, E.; Bӓuerle, P. Optical absorption spectra of linear and cyclic thiophenes-selection rules manifestation. J. Lumin. 2004, 110, 225–231. [Google Scholar] [CrossRef]
- Yamamoto, T.; Hosokawa, M.; Nakamura, M.; Sato, S.; Isono, T.; Tajima, K.; Satoh, T.; Sato, M.; Tezuka, Y.; Saeki, A.; et al. Synthesis, isolation, and properties of all head-to-tail cyclic poly(3-hexylthiophene): Fully delocalized exciton over the defect-free ring polymer. Macromolecules 2018, 51, 9284–9293. [Google Scholar] [CrossRef]
- Sato, R.; Utagawa, A.; Fushimi, K.; Li, F.; Isono, T.; Tajima, K.; Satoh, T.; Sato, S.; Hirata, H.; Kikkawa, Y.; et al. Molecular weight-dependent oxidation and optoelectronic properties of defect-free macrocyclic poly(3-hexylthiophene). Polymers 2023, 15, 666. [Google Scholar] [CrossRef] [PubMed]
- Moule, A.J.; Allard, S.; Kronenberg, N.M.; Tsami, A.; Scherf, U.; Meerholz, K. Effect of polymer nanoparticle formation on the efficiency of polythiophene based “bulk-heterojunction” solar cells. J. Phys. Chem. C 2008, 112, 12583–12589. [Google Scholar] [CrossRef]
- MacFarlane, L.R.; Shaikh, H.; Garcia-Hernandez, J.D.; Vespa, M.; Fukui, T.; Manners, I. Functional nanoparticles through π-conjugated polymer self-assembly. Nat. Rev. Mater. 2021, 6, 7–26. [Google Scholar] [CrossRef]
- Kang, S.; Yoon, T.W.; Kim, G.-Y.; Kang, B. Review of conjugated polymer nanoparticles: From formulation to applications. ACS Appl. Nano Mater. 2022, 5, 17436–17460. [Google Scholar] [CrossRef]
- Zhou, X.J.; Belcher, W.; Dastoor, P. Solar paint: From synthesis to printing. Polymers 2014, 6, 2832–2844. [Google Scholar] [CrossRef]
- Chambon, S.; Schatz, C.; Sebire, V.; Pavageau, B.; Wantz, G.; Hirsch, L. Organic semiconductor core-shell nanoparticles designed through successive solvent displacements. Mater. Horiz. 2014, 1, 431–438. [Google Scholar] [CrossRef]
- Zucchetti, E.; Zangoli, M.; Bargigia, I.; Bossio, C.; Di Maria, F.; Barbarella, G.; D’Andrea, C.; Lanzani, G.; Antognazza, M.R. Poly(3-hexylthiophene) nanoparticles for biophotonics: Study of the mutual interaction with living cells. J. Mater. Chem. B 2017, 5, 565–574. [Google Scholar] [CrossRef]
- Schwarz, K.N.; Farley, S.B.; Smith, T.A.; Ghiggino, K.P. Charge generation and morphology in P3HT: PCBM nanoparticles prepared by mini-emulsion and reprecipitation methods. Nanoscale 2015, 7, 19899–19904. [Google Scholar] [CrossRef]
- Lamer, V.K.; Dinegar, R.H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854. [Google Scholar] [CrossRef]
- Schubert, S.; Delaney, J.T., Jr.; Schubert, U.S. Nanoprecipitation and nanoformulation of polymers: From history to powerful possibilities beyond poly(lactic acid). Soft Matter 2011, 7, 1581–1588. [Google Scholar] [CrossRef]
- Arno, M.C.; Williams, R.J.; Bexis, P.; Pitto-Barry, A.; Kirby, N.; Dove, A.P.; O’Reilly, R.K. Exploiting topology-directed nanoparticle disassembly for triggered drug delivery. Biomaterials 2018, 180, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Karnik, R.; Gu, F.; Basto, P.; Cannizzaro, C.; Dean, L.; Kyei-Manu, W.; Langer, R.; Farokhzad, O.C. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett. 2008, 8, 2906–2912. [Google Scholar] [CrossRef]
- Kimura, N.; Maeki, M.; Sato, Y.; Note, Y.; Ishida, A.; Tani, H.; Harashima, H.; Tokeshi, M. Development of the iLiNP device: Fine tuning the lipid nanoparticle size within 10 nm for drug delivery. ACS Omega 2018, 3, 5044–5051. [Google Scholar] [CrossRef]
- Maeki, M.; Okada, Y.; Uno, S.; Sugiura, K.; Suzuki, Y.; Okuda, K.; Sato, Y.; Ando, M.; Yamazaki, H.; Takeuchi, M.; et al. Mass production system for RNA-loaded lipid nanoparticles using piling up microfluidic devices. Appl. Mater. Today 2023, 31, 101754. [Google Scholar] [CrossRef]
- Nagarjuna, G.; Baghgar, M.; Labastide, J.A.; Algaier, D.D.; Barnes, M.D.; Venkataraman, D. Tuning aggregation of poly(3-hexylthiophene) within nanoparticles. ACS Nano 2012, 6, 10750–10758. [Google Scholar] [CrossRef]
- Turner, S.T.; Pingel, P.; Steyrleuthner, R.; Crossland, E.J.W.; Ludwigs, S.; Neher, D. Quantitative analysis of bulk heterojunction films using linear absorption spectroscopy and solar cell performance. Adv. Funct. Mater. 2011, 21, 4640–4652. [Google Scholar] [CrossRef]
- Inganäs, O.; Salaneck, W.R.; Österholm, J.E.; Laakso, J. Thermochromic and solvatochromic effects in poly(3-hexylthiophene). Synth. Met. 1988, 22, 395–406. [Google Scholar] [CrossRef]
- Nayak, J.N.; Aralaguppi, M.I.; Naidu, B.V.K.; Aminabhavi, T.M. Thermodynamic properties of water plus tetrahydrofuran and water plus 1,4-dioxane mixtures at (303.15, 313.15, and 323.15) K. J. Chem. Eng. Data 2004, 49, 468–474. [Google Scholar] [CrossRef]
- Lee, B.; Park, I.; Yoon, J.; Park, S.; Kim, J.; Kim, K.W.; Chang, T.; Ree, M. Structural analysis of block copolymer thin films with grazing incidence small-angle X-ray scattering. Macromolecules 2005, 38, 4311–4323. [Google Scholar] [CrossRef]
- Osaka, I.; Takimiya, K. Backbone orientation in semiconducting polymers. Polymer 2015, 59, A1–A15. [Google Scholar] [CrossRef]
- Sirringhaus, H.; Brown, P.J.; Friend, R.H.; Nielsen, M.M.; Bechgaard, K.; Langeveld-Voss, B.M.W.; Spiering, A.J.H.; Janssen, R.A.J.; Meijer, E.W.; Herwig, P.; et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401, 685–688. [Google Scholar] [CrossRef]
- Chua, L.-L.; Dipankar, M.; Sivaramakrishnan, S.; Gao, X.; Qi, D.; Wee, A.T.S.; Ho, P.K.H. Large damage threshold and small electron escape depth in X-ray absorption spectroscopy of a conjugated polymer thin film. Langmuir 2006, 22, 8587–8594. [Google Scholar] [CrossRef]
l-21 c | c-21 c | l-26 c | c-26 c | l-43 c | c-43 c | ||
---|---|---|---|---|---|---|---|
Mn,SEC (kg mol−1) | 3.5 | 2.9 | 4.3 | 3.1 | 7.2 | 5.7 | |
Mp,SEC (kg mol−1) | 3.5 | 2.9 | 4.1 | 3.1 | 8.7 | 6.2 | |
Mw/Mn | 1.05 | 1.04 | 1.08 | 1.05 | 1.13 | 1.19 | |
z-average size (nm) a | 82 ± 6 | 42 ± 5 | 110 ± 20 | 55 ± 3 | 86 ± 9 | 33 ± 1 | |
ζ-potential (mV) b | –56 ± 2 | –45 ± 1 | –54 ± 1 | –34 ± 4 | –64 ± 3 | –42 ± 5 | |
in the NPs dispersion state in water | λmax, water (nm) | 505 | 481 | 507 | 484 | 510 | 500 |
Δλmax, water (nm) | 24 | 23 | 10 | ||||
in THF solution | λmax, THF (nm) | 439 | 432 | 441 | 435 | 444 | 442 |
Δλmax, THF (nm) | 7 | 6 | 2 |
l-21 | c-21 | l-26 | c-26 | l-43 | c-43 | |||
---|---|---|---|---|---|---|---|---|
d-spacing [nm] | (100) lamella | Vertical | 1.80 | 1.67 | 1.71 | 1.72 | 1.76 | 1.76 |
Horizontal | 1.63 | 1.68 | 1.66 | 1.68 | 1.70 | 1.67 | ||
(010) π–π stacking | Vertical | 0.44 | - | 0.42 | 0.41 | - | 0.41 | |
Horizontal | 0.41 | 0.41 | 0.41 | 0.41 | 0.40 | 0.40 | ||
Molecular Orientation | edge-on | bimodal (edge-on/face-on mixture) | edge-on | bimodal (edge-on/face-on mixture) | edge-on | random |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, T.; Maeki, M.; Tokeshi, M.; Gao, T.; Li, F.; Isono, T.; Tajima, K.; Satoh, T.; Sato, S.-i.; Yamamoto, T. Conjugated Polymer Nanoparticles and Thin Films of Defect-Free Cyclic P3HT: Effects of Polymer Topology on the Nanostructure. Molecules 2025, 30, 2490. https://doi.org/10.3390/molecules30122490
Watanabe T, Maeki M, Tokeshi M, Gao T, Li F, Isono T, Tajima K, Satoh T, Sato S-i, Yamamoto T. Conjugated Polymer Nanoparticles and Thin Films of Defect-Free Cyclic P3HT: Effects of Polymer Topology on the Nanostructure. Molecules. 2025; 30(12):2490. https://doi.org/10.3390/molecules30122490
Chicago/Turabian StyleWatanabe, Tomohisa, Masatoshi Maeki, Manabu Tokeshi, Tianle Gao, Feng Li, Takuya Isono, Kenji Tajima, Toshifumi Satoh, Shin-ichiro Sato, and Takuya Yamamoto. 2025. "Conjugated Polymer Nanoparticles and Thin Films of Defect-Free Cyclic P3HT: Effects of Polymer Topology on the Nanostructure" Molecules 30, no. 12: 2490. https://doi.org/10.3390/molecules30122490
APA StyleWatanabe, T., Maeki, M., Tokeshi, M., Gao, T., Li, F., Isono, T., Tajima, K., Satoh, T., Sato, S.-i., & Yamamoto, T. (2025). Conjugated Polymer Nanoparticles and Thin Films of Defect-Free Cyclic P3HT: Effects of Polymer Topology on the Nanostructure. Molecules, 30(12), 2490. https://doi.org/10.3390/molecules30122490