A Two-Photon Zn(II) Complex Photosensitizer with pH/Viscosity Dual Response for Enhanced Tumor Therapy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optical Properties
2.2. Quantification of ROS
2.3. Subcellular Organelle Co-Localized Imaging
2.4. Visualization of Lysosomal Viscosity Changes and Apoptosis
2.5. Visualization of Intracellular pH Changes
2.6. Photodynamic Therapy at the Cellular Level
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhen, W.; An, S.; Wang, S.; Hu, W.; Li, Y.; Jiang, X.; Li, J. Precise Subcellular Organelle Targeting for Boosting Endogenous-Stimuli-Mediated Tumor Therapy. Adv. Mater. 2021, 33, 2101572. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Gong, N.; Zhong, L.; Sun, J.; Liang, X.J. Future of Nanotherapeutics: Targeting the Cellular Sub-Organelles. Biomaterials 2016, 97, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Jhaveri, A.; Torchilin, V. Intracellular Delivery of Nanocarriers and Targeting to Subcellular Organelles. Expert Opin. Drug Deliv. 2016, 13, 49–70. [Google Scholar] [CrossRef] [PubMed]
- Bainton, D.F. The Discovery of Lysosomes. J. Cell Biol. 1981, 91, 66s–76s. [Google Scholar] [CrossRef]
- Tang, T.; Yang, Z.Y.; Wang, D.; Yang, X.Y.; Wang, J.; Li, L.; Yu, S.C. The Role of Lysosomes in Cancer Development and Progression. Cell Biosci. 2020, 10, 131. [Google Scholar] [CrossRef]
- Bonam, S.R.; Wang, F.; Muller, S. Lysosomes as a Therapeutic Target. Nat. Rev. Drug Discov. 2019, 18, 923–948. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.; Yoon, J. Organelle-Targeted Photosensitizers for Precision Photodynamic Therapy. ACS Appl. Mater. Interfaces 2021, 13, 19543–19571. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, T.; Li, Y.; Huang, G.; White, M.A.; Gao, J. Investigation of Endosome and Lysosome Biology by Ultra pH-Sensitive Nanoprobes. Adv. Drug Deliv. Rev. 2017, 113, 87–96. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of Persulfate (PS) and Peroxymonosulfate (PMS) and Application for the Degradation of Emerging Contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Ye, H.; Zhou, Y.; Liu, X.; Chen, Y.; Duan, S.; Zhu, R.; Yin, L. Recent Advances on Reactive Oxygen Species-Responsive Delivery and Diagnosis System. Biomacromolecules 2019, 20, 2441–2463. [Google Scholar] [CrossRef]
- Bera, K.; Kiepas, A.; Godet, I.; Li, Y.; Mehta, P.; Ifemembi, B.; Konstantopoulos, K. Extracellular Fluid Viscosity Enhances Cell Migration and Cancer Dissemination. Nature 2022, 611, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Xi, W.; Xiao, P.; Huang, H.; Hu, Y.; Huang, X. A Minireview of Fluorescent Probes for the Dual Detection of Viscosity and pH, Design and Biological Applications. Dye. Pigment. 2024, 231, 112412. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Jin, T.; Sun, K.; Yang, J. pH/Viscosity Dual-Response Fluorescent Probes as Highly Selective Tumor Visualization Tools. Sens. Actuators B Chem. 2023, 375, 132935. [Google Scholar] [CrossRef]
- Karges, J.; Basu, U.; Blacque, O.; Chao, H.; Gasser, G. Polymeric Encapsulation of Novel Homoleptic Bis(dipyrrinato) Zinc(II) Complexes with Long Lifetimes for Applications as Photodynamic Therapy Photosensitisers. Angew. Chem. Int. Ed. 2019, 131, 14472–14478. [Google Scholar] [CrossRef]
- Wei, X.; Guo, X.H.; Guo, J.F.; He, T.F.; Qin, G.Y.; Zou, L.Y.; Ren, A.M. Photophysical Exploration of Zn(II) Polypyridine Photosensitizers in Two-Photon Photodynamic Therapy, Insights from Theory. Inorg. Chem. 2022, 61, 18729–18742. [Google Scholar] [CrossRef]
- Irshad, R.; Asim, S.; Mansha, A.; Arooj, Y. Naphthalene and Its Derivatives: Efficient Fluorescence Probes for Detecting and Imaging Purposes. J. Fluoresc. 2023, 33, 1273–1303. [Google Scholar] [CrossRef]
- Wang, C.; Chi, W.; Qiao, Q.; Tan, D.; Xu, Z.; Liu, X. Twisted Intramolecular Charge Transfer (TICT) and Twists Beyond TICT: From Mechanisms to Rational Designs of Bright and Sensitive Fluorophores. Chem. Soc. Rev. 2021, 50, 12656–12678. [Google Scholar] [CrossRef]
- Penfold, N.J.W.; Lovett, J.R.; Warren, N.J.; Verstraete, P.; Smets, J.; Armes, S.P. pH-Responsive Non-Ionic Diblock Copolymers: Protonation of a Morpholine End-Group Induces an Order-Order Transition. Polym. Chem. 2016, 7, 79–88. [Google Scholar] [CrossRef]
- Feng, Q.; Yang, T.; Ma, L.; Li, X.; Yuan, H.; Zhang, M.; Fan, L. Morpholine-Functionalized Multicomponent Metallacage as a Vector for Lysosome-Targeted Cell Imaging. ACS Appl. Mater. Interfaces 2022, 14, 38594–38603. [Google Scholar] [CrossRef]
- Steinmark, I.E.; James, A.L.; Chung, P.H.; Morton, P.E.; Parsons, M.; Dreiss, C.A.; Suhling, K. Targeted Fluorescence Lifetime Probes Reveal Responsive Organelle Viscosity and Membrane Fluidity. PLoS ONE 2019, 14, e0211165. [Google Scholar] [CrossRef]
- Feng, L.; Dong, Z.; Tao, D.; Zhang, Y.; Liu, Z. The Acidic Tumor Microenvironment: A Target for Smart Cancer Nano-Theranostics. Natl. Sci. Rev. 2018, 5, 269–286. [Google Scholar] [CrossRef]
- Diana, R.; Panunzi, B. The Role of Zinc(II) Ion in Fluorescence Tuning of Tridentate Pincers: A Review. Molecules 2020, 25, 4984. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, Y.; He, S.; Wu, S.; Yang, C. Singlet Oxygen: Properties, Generation, Detection, and Environmental Applications. J. Hazard. Mater. 2024, 461, 132538. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Liu, X.; Kafuti, Y.S.; Kim, H.; Wang, J.; Peng, X.; Yoon, J. Fluorescent Dyes Based on Rhodamine Derivatives for Bioimaging and Therapeutics: Recent Progress, Challenges, and Prospects. Chem. Soc. Rev. 2023, 52, 5607–5651. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, M.; Yuan, Z. Methods for the Detection of Reactive Oxygen Species. Anal. Methods 2018, 10, 4625–4638. [Google Scholar] [CrossRef]
- Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental Implications of Hydroxyl Radicals (•OH). Chem. Rev. 2015, 115, 13051–13092. [Google Scholar] [CrossRef]
- Fernandes, D.C.; Wosniak, J.J.; Pescatore, L.A.; Bertoline, M.A.; Liberman, M.; Laurindo, F.R.; Santos, C.X. Analysis of DHE-Derived Oxidation Products by HPLC in the Assessment of Superoxide Production and NADPH Oxidase Activity in Vascular Systems. Am. J. Physiol.-Cell Physiol. 2007, 292, C413–C422. [Google Scholar] [CrossRef]
- Madamsetty, V.S.; Mohammadinejad, R.; Uzieliene, I.; Nabavi, N.; Dehshahri, A.; García-Couce, J.; Seyfoddin, A. Dexamethasone: Insights into Pharmacological Aspects, Therapeutic Mechanisms, and Delivery Systems. ACS Biomater. Sci. Eng. 2022, 8, 1763–1790. [Google Scholar] [CrossRef]
- Boya, P.; Kroemer, G. Lysosomal Membrane Permeabilization in Cell Death. Oncogene 2008, 27, 6434–6451. [Google Scholar] [CrossRef]
- Starke, R.M.; Chalouhi, N.; Ali, M.S.; Jabbour, P.M.; Tjoumakaris, S.I.; Gonzalez, L.F.; Dumont, A.S. The Role of Oxidative Stress in Cerebral Aneurysm Formation and Rupture. Curr. Neurovasc. Res. 2013, 10, 247–255. [Google Scholar] [CrossRef]
- Radad, K.; Al-Shraim, M.; Al-Emam, A.; Wang, F.; Kranner, B.; Rausch, W.D.; Moldzio, R. Rotenone: From Modelling to Implication in Parkinson’s Disease. Folia Neuropathol. 2019, 57, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Tang, Y.; Wang, R.; Najafi, M. Mechanisms of Cancer Cell Death Induction by Paclitaxel: An Updated Review. Apoptosis 2022, 27, 647–667. [Google Scholar] [CrossRef] [PubMed]
- Fiers, W.; Beyaert, R.; Declercq, W.; Vandenabeele, P. More than One Way to Die: Apoptosis, Necrosis and Reactive Oxygen Damage. Oncogene 1999, 18, 7719–7730. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Guan, S.-Q.; Wang, Y.-P.; Pan, M. A Two-Photon Zn(II) Complex Photosensitizer with pH/Viscosity Dual Response for Enhanced Tumor Therapy. Molecules 2025, 30, 2430. https://doi.org/10.3390/molecules30112430
Zhang Y, Guan S-Q, Wang Y-P, Pan M. A Two-Photon Zn(II) Complex Photosensitizer with pH/Viscosity Dual Response for Enhanced Tumor Therapy. Molecules. 2025; 30(11):2430. https://doi.org/10.3390/molecules30112430
Chicago/Turabian StyleZhang, Yu, Shao-Qi Guan, Ya-Ping Wang, and Mei Pan. 2025. "A Two-Photon Zn(II) Complex Photosensitizer with pH/Viscosity Dual Response for Enhanced Tumor Therapy" Molecules 30, no. 11: 2430. https://doi.org/10.3390/molecules30112430
APA StyleZhang, Y., Guan, S.-Q., Wang, Y.-P., & Pan, M. (2025). A Two-Photon Zn(II) Complex Photosensitizer with pH/Viscosity Dual Response for Enhanced Tumor Therapy. Molecules, 30(11), 2430. https://doi.org/10.3390/molecules30112430