Chemical Profiling and Tyrosinase Inhibition Mechanism of Phenylethanoid Glycosides from Corallodiscus flabellatus
Abstract
1. Introduction
2. Results
2.1. Structural Elucidation
2.2. Effects of Phenylethanol Glycosides on Mushroom Tyrosinase
2.3. Molecular Docking Analysis
3. Discussion
4. Materials and Methods
4.1. Instrument and Materials
4.2. Plant Material
4.3. Extraction and Isolation
4.4. Spectroscopic Data of the New Compounds
4.5. Tyrosinase Inhibition Assay
4.6. Molecular Docking
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, C.; Liu, H. How plants protect themselves from ultraviolet-B radiation stress. Plant Physiol. 2021, 187, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, J.C.; Buide, M.L.; Whittall, J.B.; Valladares, F.; Narbona, E. UV radiation increases phenolic compound protection but decreases reproduction in Silene littorea. PLoS ONE 2020, 15, e0231611. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.-W.; Ma, Z.; Ma, Y.-Q.; Zhu, Y.; Lei, M.-Q.; Hao, C.-Y.; Chen, L.-Y.; Xu, Z.-Q.; Huang, X. Role of melatonin in UV-B signaling pathway and UV-B stress resistance in Arabidopsis thaliana. Plant Cell Environ. 2021, 44, 114–129. [Google Scholar] [CrossRef] [PubMed]
- Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China; Science Press: Beijing, China, 1990; Volume 69. [Google Scholar]
- Zeng, M.; Feng, A.; Li, M.; Liu, M.; Guo, P.; Zhang, Y.; Zhang, Q.; Zhang, B.; Cao, B.; Jia, J.; et al. Corallodiscus flabellata B. L. Burtt extract and isonuomioside A ameliorate Aβ25−35-induced brain injury by inhibiting apoptosis, oxidative stress, and autophagy via the NMDAR2B/CamK II/PKG pathway. Phytomedicine 2022, 101, 154114. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Zeng, M.; Hao, F.; Zhao, C.; Zhang, B.; Wu, Y.; Zhang, Y.; Li, M.; Feng, W.; Zheng, X. Two polyphenols isolated from Corallodiscus flabellata B. L. Burtt ameliorate amyloid β-protein induced Alzheimer’s disease neuronal injury by improving mitochondrial homeostasis. Behav. Brain Res. 2022, 440, 114264. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Wang, S.; Liu, M.; Gan, M.; Li, S.; Yang, Y.; Wang, Y.; He, W.; Shi, J. Glycosides from the Stem Bark of Fraxinus sieboldiana. J. Nat. Prod. 2007, 70, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, Y.; Tanahashi, T.; Shintaku, M.; Sakai, T.; Nagakura, N. Parida Secoiridoid glucosides from Fraxinus americana. Phytochemistry 2000, 55, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.M.; Liu, Y.L.; Li, X.R.; Feng, Y.L.; Yang, S.L. Two New Phenylglycol Derivatives Isolated from Syringa reticulata var. mandshurica and Their Antifungal Activities. Chem. Pharm. Bull. 2009, 57, 863–866. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Case, R. Phenolic glycosides and ionone glycoside from the stem of Sargentodoxa cuneata. Phytochemistry 2005, 66, 2752–2758. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, J.; Fu, X.; Wang, Z.; Du, C.; Fu, M.; Huang, L.; Yuan, C.; Yang, J.; Hao, X.; et al. One new phenylpropanoid glycoside from Paraboea rufescens and their chemotaxonomic significance. Biochem. Syst. Ecol. 2024, 113, 104794. [Google Scholar] [CrossRef]
- Sugiyama, M.; Kikuchi, M. Phenylethanoid glycosides from Osmanthus asiaticus. Phytochemistry 1993, 32, 1553–1555. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-J.; Lee, M.-S.; Lee, K.-T.; Sohn, I.-C.; Han, Y.-N.; Miyamoto, K.-I. Studies on Constituents with Cytotoxic Activity from the Stem Bark of Syringa velutina. Chem. Pharm. Bull. 1999, 47, 1029–1031. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.-K.; Li, J.; Feng, W.-S.; Bi, Y.-F.; Ji, C.-R. Isolation and structural identification of phenylethanoid glycosides from Corallodiscus flabellata. Acta Pharm. Sin. 2003, 38, 116–119. [Google Scholar]
- Owen, R.W.; Mier, W.; Giacosa, A.; Hull, W.E.; Spiegelhalder, B.; Bartsch, H. Identification of Lignans as Major Components in the Phenolic Fraction of Olive Oil. Clin. Chem. 2000, 46, 976–988. [Google Scholar] [CrossRef] [PubMed]
- Karioti, A.; Protopappa, A.; Megoulas, N.; Skaltsa, H. Identification of tyrosinase inhibitors from Marrubium velutinum and Marrubium cylleneum. Bioorg. Med. Chem. 2007, 15, 2708–2714. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.-M.; Kawahata, T.; Hattori, M.; Otake, T.; Wang, L.; Daneshtalab, M. Synthesis, anti-HIV and anti-oxidant activities of caffeoyl 5,6-anhydroquinic acid derivatives. Bioorg. Med. Chem. 2010, 18, 863–869. [Google Scholar] [CrossRef] [PubMed]
No. | Compound 1 | Compound 2 | ||
---|---|---|---|---|
13C | 1H | 13C | 1H | |
1 | 129.9 | 129.8 | ||
2 | 115.4 | 6.67 (1H, d, J = 2.0 Hz) | 115.4 | 6.69 (1H, overlap) |
3 | 145.2 | 145.2 | ||
4 | 144.9 | 145.0 | ||
5 | 114.0 | 6.69 (1H, d, J = 8.0 Hz) | 114.2 | 6.68 (1H, d, J = 8.1 Hz) |
6 | 118.0 | 6.56 (1H, dd, J = 8.0, 2.0 Hz) | 118.1 | 6.57 (1H, dd, J = 8.1, 2.3 Hz) |
α(8) | 73.5 | 3.57, 2.93 (each 1H, overlap) | 73.1 | 3.58, 2.94 (each 1H, m) |
β(7) | 82.3 | 4.22 (1H, m) | 81.7 | 4.21 (1H, dd, J = 8.1, 3.5 Hz) |
1′ | 103.3 | 4.20 (1H, d, J = 7.8 Hz) | 102.8 | 4.15 (1H, d, J = 7.8 Hz) |
2′ | 73.2 | 3.57 (1H, overlap) | 73.2 | 3.78 (1H, m) |
3′ | 75.4 | 3.24 (1H, t, J = 6.9) | 75.5 | 3.23 (1H, t, J = 8.3 Hz) |
4′ | 70.1 | 2.96 (1H, m) | 70.1 | 2.96 (1H, m) |
5′ | 76.6 | 3.12 (1H, overlap) | 76.6 | 3.12 (1H, m) |
6′ | 67.6 | 3.84, 3.34 (each 1H, overlap) | 67.7 | 3.85, 3.32 (each 1H, m) |
1″ | 109.1 | 4.82 (1H, d, J = 3.1 Hz) | 109.2 | 4.85 (1H, d, J = 3.0 Hz) |
2″ | 75.8 | 3.74 (1H, d, J = 3.1 Hz) | 75.8 | 3.75 (1H, d, J = 3.2 Hz) |
3″ | 78.8 | 78.8 | ||
4″ | 73.2 | 3.83, 3.57 (each 1H, overlap) | 73.1 | 3.83, 3.56 (each 1H, m) |
5″ | 63.1 | 3.30 (2H, overlap) | 63.1 | 3.33 (2H, s) |
7-OCH3′ | 55.9 | 3.10 (3H, s) | 55.8 | 3.09 (3H, s) |
Compound | Arbutin | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Inhibition Rate | ||||||||||||
Concentration (mg/mL) | ||||||||||||
0.05 | 0.46 | 0.27 | 0.11 | −0.29 | −0.02 | −0.98 | −0.52 | 0.11 | −2.05 | −1.40 | ||
0.1 | 0.62 | 0.11 | 0.11 | −0.64 | −0.10 | −1.08 | −0.64 | 0.29 | −2.42 | −0.84 | ||
0.2 | 0.90 | 0.11 | 0.07 | −0.78 | −0.69 | −0.96 | −0.80 | 0.46 | −1.42 | −0.78 | ||
0.3 | 0.86 | −0.04 | 0.02 | −0.67 | −1.00 | −0.71 | −0.54 | 0.76 | −0.98 | −0.80 | ||
0.4 | 0.97 | −0.22 | −0.24 | −0.60 | −0.60 | −1.29 | −0.60 | 0.71 | −0.90 | −0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, H.-b.; Yao, Y.; Li, H.-z. Chemical Profiling and Tyrosinase Inhibition Mechanism of Phenylethanoid Glycosides from Corallodiscus flabellatus. Molecules 2025, 30, 2296. https://doi.org/10.3390/molecules30112296
Deng H-b, Yao Y, Li H-z. Chemical Profiling and Tyrosinase Inhibition Mechanism of Phenylethanoid Glycosides from Corallodiscus flabellatus. Molecules. 2025; 30(11):2296. https://doi.org/10.3390/molecules30112296
Chicago/Turabian StyleDeng, Hong-bo, Yao Yao, and Hai-zhou Li. 2025. "Chemical Profiling and Tyrosinase Inhibition Mechanism of Phenylethanoid Glycosides from Corallodiscus flabellatus" Molecules 30, no. 11: 2296. https://doi.org/10.3390/molecules30112296
APA StyleDeng, H.-b., Yao, Y., & Li, H.-z. (2025). Chemical Profiling and Tyrosinase Inhibition Mechanism of Phenylethanoid Glycosides from Corallodiscus flabellatus. Molecules, 30(11), 2296. https://doi.org/10.3390/molecules30112296