Exploring the Influence of Chalcogens on Metalloporphyrins: A DFT Study
Abstract
:1. Introduction
2. Results
2.1. Metalloporphyrins Composition
2.2. Structural Analysis of Metalloporphyrins with Thiol Termination
2.3. Electronic Structure Properties
2.4. Conceptual DFT-Based Electronic Structure Reactivity Descriptors for Thiol-Terminated Metalloporphyrins
2.5. Comparison of Thiol-Terminated Metalloporphryins to -SeH- and -TeH-Terminated Metalloporphyrins
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DFT | Density Functional Theory |
References
- Zhan, X.; Kim, D.; Ullah, Z.; Lee, W.; Gross, Z.; Churchill, D.G. Photophysics of corroles and closely related systems for emergent solar energy, medicinal, and materials science applications. Coord. Chem. Rev. 2023, 495, 215363. [Google Scholar] [CrossRef]
- Deng, D.; Chang, Y.; Liu, W.; Ren, M.; Xia, N.; Hao, Y. Advancements in Biosensors Based on the Assembles of Small Organic Molecules and Peptides. Biosensors 2023, 13, 773. [Google Scholar] [CrossRef] [PubMed]
- Arnaut, L.G.; Pereira, M.M. Overcoming the challenges of infrared photosensitizers in photodynamic therapy: The making of redaporfin. ChemComm. 2023, 59, 9457–9468. [Google Scholar] [CrossRef]
- Lee, H.; Park, H.; Ryu, D.Y.; Jang, W.-D. Porphyrin-based supramolecular polymers. Chem. Soc. Rev. 2023, 52, 1947–1974. [Google Scholar] [CrossRef]
- Monteiro, C.J.; Faustino, M.A.F.; Serpa, C. Porphyrin-Based Compounds: Synthesis and Application. Molecules 2023, 28, 7108. [Google Scholar] [CrossRef]
- Ostovan, A.; Papior, N.; Naghavi, S.S. Half-metallic porphyrin-based molecular junctions for spintronic applications. Phys. Rev. B 2021, 104, 235435. [Google Scholar] [CrossRef]
- Zhou, X.-Y.; He, B.; Zhang, Y.; Ni, J.-Y.; Liu, Q.-P.; Wang, M.; Shen, H.-M.; She, Y.-B. Selective and Efficient Catalytic Oxygenation of Alkyl Aromatics Employing H2O2 Catalyzed by Simple Porphyrin Iron (II) under Mild Conditions. Processes 2023, 11, 1187. [Google Scholar] [CrossRef]
- Martin, D.J.; Mercado, B.Q.; Mayer, J.M. All Four Atropisomers of Iron Tetra (o-N, N, N-Trimethylanilinium) Porphyrin in Both the Ferric and Ferrous States. Inorg. Chem. 2021, 60, 5240–5251. [Google Scholar] [CrossRef]
- Jurow, M.; Schuckman, A.E.; Batteas, J.D.; Drain, C.M. Porphyrins as molecular electronic components of functional devices. Coord. Chem. Rev. 2010, 254, 2297–2310. [Google Scholar] [CrossRef]
- Rask, A.; Zimmerman, P.M. The many-body electronic interactions of Fe (II)–porphyrin. J. Chem. Phys. 2022, 156, 094110. [Google Scholar] [CrossRef]
- Gross, A.J.; Bucher, C.; Coche-Guerente, L.; Labbé, P.; Downard, A.J.; Moutet, J.-C. Nickel (II) tetraphenylporphyrin modified surfaces via electrografting of an aryldiazonium salt. Electrochem. Commun. 2011, 13, 1236–1239. [Google Scholar] [CrossRef]
- Chen, D.; Jin, Z.; Xing, H. Titanium–porphyrin metal–organic frameworks as visible-light-driven catalysts for highly efficient sonophotocatalytic reduction of Cr (VI). Langmuir 2022, 38, 12292–12299. [Google Scholar] [CrossRef]
- Chang, I.J.; Jeon, Y.S.; Hwang, K.J. Synthesis and band gap analysis of designed porphyrin derivatives containing electron donating and accepting group. Bull. Korean Chem. Soc. 2019, 40, 173–179. [Google Scholar] [CrossRef]
- Sanders, J.K.; Bampos, N.; Clyde-Watson, Z.; Darling, S.L.; Hawley, J.C.; Kim, H.J.; Mak, C.C.; Webb, S.J. Axial coordination chemistry of metalloporphyrins. ChemInform 2003, 34. [Google Scholar] [CrossRef]
- Windischbacher, A.; Puschnig, P. Computational study on the adsorption of small molecules to surface-supported Ni-porphyrins. Inorganica Chim. Acta 2023, 558, 121719. [Google Scholar] [CrossRef]
- Zhou, Q.; Yamada, A.; Feng, Q.; Hoskins, A.; Dunietz, B.D.; Lewis, K.M. Modification of molecular conductance by in situ deprotection of thiol-based porphyrin. ACS Appl. Mater. Interfaces 2017, 9, 15901–15906. [Google Scholar] [CrossRef]
- Bashir, B.; Alotaibi, M.M.; Clayborne, A.Z. Computational investigation of structural, electronic, and spectroscopic properties of Ni and Zn metalloporphyrins with varying anchoring groups. J. Chem. Phys. 2024, 160, 134305. [Google Scholar] [CrossRef]
- Sarmah, A.; Hobza, P. Directly linked metalloporphyrins: A quest for bio-inspired materials. Mater. Adv. 2020, 1, 1895–1908. [Google Scholar] [CrossRef]
- Schuth, N.; Mebs, S.; Huwald, D.; Wrzolek, P.; Schwalbe, M.; Hemschemeier, A.; Haumann, M. Effective intermediate-spin iron in O2-transporting heme proteins. Proc. Natl. Acad. Sci. USA 2017, 114, 8556–8561. [Google Scholar] [CrossRef]
- Cao, M.; Gao, A.; Liu, Y.; Zhou, Y.; Sun, Z.; Li, Y.; He, F.; Li, L.; Mo, L.; Liu, R. Theoretical study on electronic structural properties of catalytically reactive metalloporphyrin intermediates. Catalysts 2020, 10, 224. [Google Scholar] [CrossRef]
- Balducci, L.; Bianchi, D.; Bortolo, R.; D’Aloisio, R.; Ricci, M.; Tassinari, R.; Ungarelli, R. Direct oxidation of benzene to phenol with hydrogen peroxide over a modified titanium silicalite. Angew. Chem. 2003, 115, 5087–5090. [Google Scholar] [CrossRef]
- Reimers, J.; Lü, T.; Crossley, M.; Hush, N. Molecular electronic properties of fused rigid porphyrin-oligomer molecular wires. Chem. Phys. Lett. 1996, 256, 353–359. [Google Scholar] [CrossRef]
- Ayalew, M.E. DFT studies on molecular structure, thermodynamics parameters, HOMO-LUMO and spectral analysis of pharmaceuticals compound quinoline (Benzo [b] Pyridine). J. Biophys. Chem. 2022, 13, 29–42. [Google Scholar] [CrossRef]
- Gershoni-Poranne, R.; Rahalkar, A.P.; Stanger, A. The predictive power of aromaticity: Quantitative correlation between aromaticity and ionization potentials and HOMO–LUMO gaps in oligomers of benzene, pyrrole, furan, and thiophene. Phys. Chem. Chem. Phys. 2018, 20, 14808–14817. [Google Scholar] [CrossRef]
- Ballabio, M.; Cánovas, E. Electron Transfer at Quantum Dot–Metal Oxide Interfaces for Solar Energy Conversion. ACS Nanoscience Au 2022, 2, 367–395. [Google Scholar] [CrossRef]
- Gujarathi, P.B. Recent emerging applications of porphyrins and Metalloporphyrins and their analogue in diverse areas. Pharma. Innov. 2020, 9, 80–86. [Google Scholar] [CrossRef]
- Yang, X.F.; Dong, Y.J.; Yu, H.L.; Tao, X.X.; Liu, Y.S. Rotating single molecule-based devices: Single-spin switching, negative differential electrical and thermoelectric resistance. Chem. Phys. 2024, 577, 112131. [Google Scholar] [CrossRef]
- Hertwig, R.H.; Koch, W. On the parameterization of the local correlation functional. What is Becke-3-LYP? Chem. Phys. Lett. 1997, 268, 345–351. [Google Scholar] [CrossRef]
- Goerigk, L. How do DFT-DCP, DFT-NL, and DFT-D3 compare for the description of London-dispersion effects in conformers and general thermochemistry? J. Chem. Theory Comput. 2014, 10, 968–980. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Revealing the nature of intermolecular interaction and configurational preference of the nonpolar molecular dimers (H2)2,(N2)2, and (H2)(N2). J. Mol. Model. 2013, 19, 5387–5395. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Pearson, R.G. The electronic chemical potential and chemical hardness. J. Mol. Struc. THEOCHEM 1992, 255, 261–270. [Google Scholar] [CrossRef]
- Bhatia, M. An overview of conceptual-DFT based insights into global chemical reactivity of volatile sulfur compounds (VSCs). Comput. Toxicol. 2023, 29, 100295. [Google Scholar] [CrossRef]
- Padmanabhan, J.; Parthasarathi, R.; Elango, M.; Subramanian, V.; Krishnamoorthy, B.; Gutierrez-Oliva, S.; Toro-Labbé, A.; Roy, D.; Chattaraj, P. Multiphilic descriptor for chemical reactivity and selectivity. J. Phys. Chem. A 2007, 111, 9130–9138. [Google Scholar] [CrossRef]
- Ratti, C.; Richard, P.; Tabard, A.; Guilard, R. Synthesis and characterization of a new series of titanium (IV) porphyrins co-ordinated to a disulphur or a diselenium ligand. J. Chem. Soc. Chem. Commun. 1989, 2, 69–70. [Google Scholar] [CrossRef]
- Scheidt, W.R.; Reed, C.A. Stereochemistry of the toluene solvate of. alpha,. beta,. gamma,. delta.-tetraphenylporphinatochromium (II). Inorg. Chem. 1978, 17, 710–714. [Google Scholar] [CrossRef]
- Kirner, J.F.; Reed, C.A.; Scheidt, W.R. Stereochemistry of manganese porphyrins. 2. The toluene solvate of. alpha,. beta,. gamma,. delta.-tetraphenylporphinatomanganese (II) at 20 and-175. degree. C. J. Am. Chem. Soc. 1977, 99, 1093–1101. [Google Scholar] [CrossRef]
- Wondimagegn, T.; Rauk, A. The structures and stabilities of the complexes of biologically available ligands with Fe (III)–porphine: An ab initio study. J. Phys. Chem. B 2011, 115, 569–579. [Google Scholar] [CrossRef]
- Collman, J.P.; Hoard, J.; Kim, N.; Lang, G.; Reed, C.A. Synthesis, stereochemistry, and structure-related properties of. alpha,. beta,. gamma,. delta.-tetraphenylporphinatoiron (II). J. Am. Chem. Soc. 1975, 97, 2676–2681. [Google Scholar] [CrossRef]
- Scheidt, W.R. Stereochemistry of low-spin cobalt porphyrins. III. Crystal structure and molecular stereochemistry of bis (piperidine)-. alpha,. beta,. gamma,. delta.-tetraphenylporphinatocobalt (II). J. Am. Chem. Soc. 1974, 96, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, E.B.; Miller, C.K.; Webb, L.E. Crystal and molecular structures of some metal tetraphenylporphines. J. Am. Chem. Soc. 1964, 86, 2342–2347. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian, Version 16, Revision C.02; Gaussian, Inc.: Wallingford, CT, USA, 2016.
System | M-N | N-C1pp | C1pp-Cβ | Cβ-Cβ′ | C1pp-C2pp-C3Ph-C4Ph |
---|---|---|---|---|---|
ScDPPSH | 2.09 | 1.38 | 1.43 | 1.37 | 69.23 |
TiDPPSH | 2.07 | 1.39 | 1.44 | 1.37 | 67.93 |
VDPPSH | 2.06 | 1.38 | 1.43 | 1.36 | 68.26 |
CrDPPSH | 2.05 | 1.38 | 1.44 | 1.36 | 69.09 |
MnDPPSH | 2.03 | 1.38 | 1.44 | 1.36 | 69.64 |
FeDPPSH | 2.01 | 1.38 | 1.44 | 1.36 | 70.63 |
CoDPPSH | 1.99 | 1.37 | 1.43 | 1.36 | 71.29 |
CuDPPSH | 2.03 | 1.37 | 1.44 | 1.36 | 69.97 |
System | M | N | C2pp | SH |
---|---|---|---|---|
ScDPPSH | 0.99 | 0.01 | 0.06 | −0.50 |
TiDPPSH | 0.50 | 0.20 | 0.08 | −0.50 |
VDPPSH | 0.58 | 0.22 | 0.20 | −0.50 |
CrDPPSH | 0.53 | 0.26 | 0.29 | −0.50 |
MnDPPSH | 0.70 | 0.25 | 0.24 | −0.50 |
FeDPPSH | 0.76 | 0.26 | 0.61 | −0.50 |
CoDPPSH | 0.87 | 0.32 | 0.63 | −0.50 |
CuDPPSH | 0.60 | 0.27 | 0.61 | −0.50 |
System | µ (eV) | η (eV) | σ (eV) | ω (eV) |
---|---|---|---|---|
ScDPPSH | −3.35 | 1.05 | 0.48 | 5.33 |
TiDPPSH | −3.54 | 1.35 | 0.37 | 4.64 |
VDPPSH | −3.77 | 1.89 | 0.26 | 3.75 |
CrDPPSH | −4.06 | 2.76 | 0.18 | 2.98 |
MnDPPSH | −3.59 | 1.82 | 0.27 | 3.53 |
FeDPPSH | −4.06 | 2.73 | 0.18 | 30.3 |
CoDPPSH | −3.99 | 3.03 | 0.17 | 2.63 |
CuDPPSH | −4.08 | 2.76 | 0.18 | 3.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, B.; Clayborne, A.Z. Exploring the Influence of Chalcogens on Metalloporphyrins: A DFT Study. Molecules 2025, 30, 2254. https://doi.org/10.3390/molecules30112254
Bashir B, Clayborne AZ. Exploring the Influence of Chalcogens on Metalloporphyrins: A DFT Study. Molecules. 2025; 30(11):2254. https://doi.org/10.3390/molecules30112254
Chicago/Turabian StyleBashir, Beenish, and Andre Z. Clayborne. 2025. "Exploring the Influence of Chalcogens on Metalloporphyrins: A DFT Study" Molecules 30, no. 11: 2254. https://doi.org/10.3390/molecules30112254
APA StyleBashir, B., & Clayborne, A. Z. (2025). Exploring the Influence of Chalcogens on Metalloporphyrins: A DFT Study. Molecules, 30(11), 2254. https://doi.org/10.3390/molecules30112254