Therapeutic Advantages of Isoflavone Glycoside and Aglycone Forms of Sophoricoside in the Amelioration of Postmenopausal Symptoms: Bone Health, Metabolic Regulation, and Systemic Inflammation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening and Selection of Probiotic Strains for Biotransformation
2.2. Fermentation-Based Biotransformation of Sophoricoside to Genistein
2.3. Effects of Treatment on Body Weight and Thermoregulatory Symptoms in OVX Rats
2.4. Postmenopausal Biochemical Marker Profiles
2.5. Impact on Vaginal Epithelial Keratinization
2.6. Morphological Changes in Uterine and Adipose Tissues
2.7. Adipose Tissue Gene Expression Alterations
2.8. Bone Tissue Histomorphology and Molecular Gene Expression
2.9. Systemic Genistein Absorption and Distribution
2.10. Comparison with Non-Hormonal Approaches for Postmenopausal Symptom Management
3. Materials and Methods
3.1. Sample Preparation
3.2. High-Performance Liquid Chromatography (HPLC) Analysis
3.3. Liquid Chromatography–Mass Spectrometry (LC-MS) Quantification of Genistein
3.4. Experimental Animal Model and Ovariectomy Procedure
3.5. Assessment of Vasomotor Symptoms
3.6. Evaluation of Vaginal Epithelial Cell Changes (Vagina Cornification)
3.7. Tissue Morphology and Adipose Tissue Analysis
3.8. Hormonal and Biochemical Parameter Measurements
3.9. Gene Expression Analysis in Bone and Adipose Tissues
3.10. Quantitative Real-Time Polymerase Chain Reaction (qPCR) Analysis
3.11. Histomorphometric Analysis of Trabecular Bone
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HRT | hormone replacement therapy |
OVX | ovariectomy |
Rex | Styphnolobium japonicum L. fruit extract |
Rex-AG | Rex aglycone form |
E2 | 17β-estradiol |
PAE | Panax ginseng extract |
HPLC | high-performance liquid chromatography |
LC-MS | liquid chromatography–mass spectrometry |
SD rat | Sprague–Dawley rat |
ELISA | enzyme-linked immunosorbent assay |
AST | aspartate aminotransferase |
ALP | alkaline phosphatase |
TG | triglyceride |
qPCR | quantitative real-time polymerase chain reaction |
cDNA | complementary DNA |
EDTA | ethylenediaminetetraacetic acid |
H&E | hematoxylin and eosin |
ANOVA | analysis of variance |
FABP4 | fatty acid-binding protein 4 |
KLF | Krüppel-like factor |
PPARγ | peroxisome proliferator-activated receptor γ |
IL-6 | interleukin 6 |
TNF-α | tumor necrosis factor α |
RANKL | receptor activator of nuclear factor κB ligand |
TGF-β | transforming growth factor β |
References
- Ilankoon, I.M.P.S.; Samarasinghe, K.; Elgán, C. Menopause is a natural stage of aging: A qualitative study. BMC Women’s Health 2021, 21, 47. [Google Scholar] [CrossRef]
- Hodis, H.N.; Mack, W.J. Menopausal hormone replacement therapy and reduction of all-cause mortality and cardiovascular disease: It is about time and timing. Cancer J. 2022, 28, 208–223. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-R.; Chen, K.-H. Utilization of isoflavones in soybeans for women with menopausal syndrome: An overview. Int. J. Mol. Sci. 2021, 22, 3212. [Google Scholar] [CrossRef] [PubMed]
- Krebs, E.E.; Ensrud, K.E.; MacDonald, R.; Wilt, T.J. Phytoestrogens for treatment of menopausal symptoms: A systematic review. Obstet. Gynecol. 2004, 104, 824–836. [Google Scholar] [CrossRef]
- Desmawati, D.; Sulastri, D. Phytoestrogens and their health effect. Open Access Maced. J. Med. Sci. 2019, 7, 495–499. [Google Scholar] [CrossRef]
- Feng, C.; Jin, S.; Xia, X.X.; Guan, Y.; Luo, M.; Zu, Y.G.; Fu, Y.J. Effective bioconversion of sophoricoside to genistein from Fructus sophorae using immobilized Aspergillus niger and Yeast. World J. Microbiol. Biotechnol. 2015, 31, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Setchell, K.D.; Brown, N.M.; Zimmer-Nechemias, L.; Brashear, W.T.; Wolfe, B.E.; Kirschner, A.S.; Heubi, J.E. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am. J. Clin. Nutr. 2002, 76, 447–453. [Google Scholar] [CrossRef]
- Florindo, R.N.; Souza, V.P.; Manzine, L.R.; Camilo, C.M.; Marana, S.R.; Polikarpov, I.; Nascimento, A.S. Structural and biochemical characterization of a GH3 β-glucosidase from the probiotic bacteria Bifidobacterium adolescentis. Biochimie 2018, 148, 107–115. [Google Scholar] [CrossRef]
- Duke, J.A.; Ayensu, E.S. Medicinal Plants of CHINA; Reference Publications: Algonac: Michigan, MI, USA, 1985. [Google Scholar]
- He, X.; Bai, Y.; Zhao, Z.; Wang, X.; Fang, J.; Huang, L.; Zeng, M.; Zhang, Q.; Zhang, Y.; Zheng, X. Local and traditional uses, phytochemistry, and pharmacology of Sophora japonica L.: A review. J. Ethnopharmacol. 2016, 187, 160–182. [Google Scholar] [CrossRef]
- Han, H.M.; Hong, S.H.; Park, H.S.; Jung, J.C.; Kim, J.S.; Lee, Y.T.; Lee, E.W.; Choi, Y.H.; Kim, B.W.; Kim, C.M.; et al. Protective effects of Fructus sophorae extract on collagen-induced arthritis in BALB/c mice. Exp. Ther. Med. 2017, 13, 146–154. [Google Scholar] [CrossRef]
- Joo, S.S.; Won, T.J.; Kang, H.C.; Lee, D.I. Isoflavones extracted from Sophorae fructus upregulate IGF-I and TGF-beta and inhibit osteoclastogenesis in rat bone marrow cells. Arch. Pharmacal Res. 2004, 27, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, K.W.; Kim, H.-K.; Chae, S.-W.; Jung, J.-C.; Kwon, S.H.; Rheu, C.H. The effect of rexflavone (Sophorae fructus extract) on menopausal symptoms in postmenopausal women: A randomized double-blind placebo controlled clinical trial. Arch. Pharmacal Res. 2010, 33, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, E.; Corr, S.C. Lactobacillus spp. for gastrointestinal health: Current and future perspectives. Front. Immunol. 2022, 13, 840245. [Google Scholar] [CrossRef]
- Rhayat, L.; Maresca, M.; Nicoletti, C.; Perrier, J.; Brinch, K.S.; Christian, S.; Devillard, E.; Eckhardt, E. Effect of Bacillus subtilis strains on intestinal barrier function and inflammatory response. Front. Immunol. 2019, 10, 431111. [Google Scholar] [CrossRef]
- Kim, S.-K.; Guevarra, R.B.; Kim, Y.-T.; Kwon, J.; Kim, H.; Cho, J.H.; Kim, H.B.; Lee, J.-H. Role of probiotics in human gut microbiome-associated diseases. J. Microbiol. Biotechnol. 2019, 29, 1335–1340. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, M.; Zheng, Y.; Miao, K.; Qu, X. The carbohydrate metabolism of Lactiplantibacillus plantarum. Int. J. Mol. Sci. 2021, 22, 13452. [Google Scholar] [CrossRef]
- Kaźmierczak-Siedlecka, K.; Daca, A.; Folwarski, M.; Witkowski, J.M.; Bryl, E.; Makarewicz, W. The role of Lactobacillus plantarum 299v in supporting treatment of selected diseases. Cent. Eur. J. Immunol. 2020, 45, 488–493. [Google Scholar] [CrossRef]
- Choi, H.S.; Kim, S.Y.; Park, Y.; Jung, E.Y.; Suh, H.J. Enzymatic transformation of ginsenosides in Korean Red Ginseng (Panax ginseng Meyer) extract prepared by Spezyme and Optidex. J. Ginseng Res. 2014, 38, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Park, H. The role of gut microbiota in ginsenoside metabolism and biotransformation of ginsenoside by lactic acid bacteria. Curr. Top. Lact. Acid Bact. Probiotics 2019, 5, 1–12. [Google Scholar] [CrossRef]
- Langa, S.; Peirotén, Á.; Curiel, J.A.; de la Bastida, A.R.; Landete, J.M. Isoflavone metabolism by lactic acid bacteria and its application in the development of fermented soy food with beneficial effects on human health. Foods 2023, 12, 1293. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Liu, L.; Cui, H. Ovariectomy induces abdominal fat accumulation by improving gonadotropin-releasing hormone secretion in mouse. Biochem. Biophys. Res. Commun. 2022, 588, 111–117. [Google Scholar] [CrossRef]
- Wellberg, E.A.; Corleto, K.A.; Checkley, L.A.; Jindal, S.; Johnson, G.; Higgins, J.A.; Obeid, S.; Anderson, S.M.; Thor, A.D.; Schedin, P.J.; et al. Preventing ovariectomy-induced weight gain decreases tumor burden in rodent models of obesity and postmenopausal breast cancer. Breast Cancer Res. 2022, 24, 42. [Google Scholar] [CrossRef] [PubMed]
- Newton, K.M.; Carpenter, J.S.; Guthrie, K.A.; Anderson, G.L.; Caan, B.; Cohen, L.S.; Ensrud, K.E.; Freeman, E.W.; Joffe, H.; Sternfeld, B.; et al. Methods for the design of vasomotor symptom trials: The menopausal strategies: Finding lasting answers to symptoms and health network. Menopause 2014, 21, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Bian, C.; Bai, B.; Gao, Q.; Li, S.; Zhao, Y. 17β-estradiol regulates glucose metabolism and insulin secretion in rat islet β cells through GPER and Akt/mTOR/GLUT2 pathway. Front. Endocrinol. 2019, 10, 531. [Google Scholar] [CrossRef]
- Mann, S.N.; Pitel, K.S.; Nelson-Holte, M.H.; Iwaniec, U.T.; Turner, R.T.; Sathiaseelan, R.; Kirkland, J.L.; Schneider, A.; Morris, K.T.; Malayannan, S.; et al. 17α-Estradiol prevents ovariectomy-mediated obesity and bone loss. Exp. Gerontol. 2020, 142, 111113. [Google Scholar] [CrossRef] [PubMed]
- Sunita, P.; Pattanayak, S.P. Phytoestrogens in postmenopausal indications: A theoretical perspective. Pharmacogn. Rev. 2011, 5, 41–47. [Google Scholar] [CrossRef]
- Daniel, J.M.; Lindsey, S.H.; Mostany, R.; Schrader, L.A.; Zsombok, A. Cardiometabolic health, menopausal estrogen therapy and the brain: How effects of estrogens diverge in healthy and unhealthy preclinical models of aging. Front. Neuroendocrinol. 2023, 70, 101068. [Google Scholar] [CrossRef]
- Lizcano, F.; Guzmán, G. Estrogen deficiency and the origin of obesity during menopause. BioMed Res. Int. 2014, 2014, 757461. [Google Scholar] [CrossRef]
- Kuo, T.-R.; Chen, C.-H. Bone biomarker for the clinical assessment of osteoporosis: Recent developments and future perspectives. Biomark. Res. 2017, 5, 18. [Google Scholar] [CrossRef]
- Mukaiyama, K.; Kamimura, M.; Uchiyama, S.; Ikegami, S.; Nakamura, Y.; Kato, H. Elevation of serum alkaline phosphatase (ALP) level in postmenopausal women is caused by high bone turnover. Aging Clin. Exp. Res. 2015, 27, 413–418. [Google Scholar] [CrossRef]
- Lakshmi, D.; Pujari, S. Study of bone turnover markers—Alkaline phosphatase and urinary hydroxyproline in postmenopausal women. Int. J. Clin. Biochem. Res. 2021, 8, 12–14. [Google Scholar] [CrossRef]
- Jiang, T.; Zeng, Q.; He, J. Do alkaline phosphatases have great potential in the diagnosis, prognosis, and treatment of tumors? Transl. Cancer Res. 2023, 12, 2932–2945. [Google Scholar] [CrossRef]
- Tariq, S.; Tariq, S.; Lone, K.P.; Khaliq, S. Alkaline phosphatase is a predictor of bone mineral density in postmenopausal females. Pak. J. Med. Sci. 2019, 35, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Adhikari, L.; Karmacharya, I.; Kaphle, M. Menopausal symptoms among postmenopausal women of a selected municipality: A cross-sectional survey. J. Nepal Med. Assoc. 2021, 59, 1155–1160. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Herrera, G.G.; Tam, K.K.; Lizarraga, J.S.; Beedle, M.T.; Winuthayanon, W. Estrogen action in the epithelial cells of the mouse vagina regulates neutrophil infiltration and vaginal tissue integrity. Sci. Rep. 2018, 8, 11247. [Google Scholar] [CrossRef]
- Alvisi, S.; Gava, G.; Orsili, I.; Giacomelli, G.; Baldassarre, M.; Seracchioli, R.; Meriggiola, M.C. Vaginal health in menopausal women. Medicina 2019, 55, 615. [Google Scholar] [CrossRef] [PubMed]
- Naumova, I.; Castelo-Branco, C. Current treatment options for postmenopausal vaginal atrophy. Int. J. Women’s Health 2018, 10, 387–395. [Google Scholar] [CrossRef]
- Goldstein, I. Recognizing and treating urogenital atrophy in postmenopausal women. J. Women’s Health 2010, 19, 425–432. [Google Scholar] [CrossRef]
- Ambikairajah, A.; Walsh, E.; Tabatabaei-Jafari, H.; Cherbuin, N. Fat mass changes during menopause: A metaanalysis. Am. J. Obstet. Gynecol. 2019, 221, 393–409.e350. [Google Scholar] [CrossRef]
- Davis, S.R.; Castelo-Branco, C.; Chedraui, P.; Lumsden, M.A.; Nappi, R.E.; Shah, D.; Villaseca, P. Understanding weight gain at menopause. Climacteric 2012, 15, 419–429. [Google Scholar] [CrossRef]
- García-Niño, W.R.; Zazueta, C. New insights of Krüppel-like transcription factors in adipogenesis and the role of their regulatory neighbors. Life Sci. 2021, 265, 118763. [Google Scholar] [CrossRef] [PubMed]
- Ron, I.; Mdah, R.; Zemet, R.; Ulman, R.Y.; Rathaus, M.; Brandt, B.; Mazaki-Tovi, S.; Hemi, R.; Barhod, E.; Tirosh, A. Adipose tissue-derived FABP4 mediates glucagon-stimulated hepatic glucose production in gestational diabetes. Diabetes Obes. Metab. 2023, 25, 3192–3201. [Google Scholar] [CrossRef]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and obesity: Role and clinical implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef] [PubMed]
- Motawi, T.K.; Shaker, O.G.; Ismail, M.F.; Sayed, N.H. Peroxisome proliferator-activated receptor gamma in obesity and colorectal cancer: The role of epigenetics. Sci. Rep. 2017, 7, 10714. [Google Scholar] [CrossRef] [PubMed]
- Kern, L.; Mittenbühler, M.J.; Vesting, A.J.; Ostermann, A.L.; Wunderlich, C.M.; Wunderlich, F.T. Obesity-induced TNFα and IL-6 signaling: The missing link between obesity and inflammation-driven liver and colorectal cancers. Cancers 2019, 11, 24. [Google Scholar] [CrossRef]
- Sinatora, R.V.; Chagas, E.F.B.; Mattera, F.O.P.; Mellem, L.J.; Santos, A.; Pereira, L.P.; Aranão, A.L.C.; Guiguer, E.L.; Araújo, A.C.; Haber, J.; et al. Relationship of inflammatory markers and metabolic syndrome in postmenopausal women. Metabolites 2022, 12, 73. [Google Scholar] [CrossRef]
- Greendale, G.A.; Huang, M.; Cauley, J.A.; Harlow, S.; Finkelstein, J.S.; Karlamangla, A.S. Premenopausal and early postmenopausal trabecular bone score (TBS) and fracture risk: Study of Women’s Health Across the Nation (SWAN). Bone 2020, 140, 115543. [Google Scholar] [CrossRef]
- Yousefzadeh, N.; Kashfi, K.; Jeddi, S.; Ghasemi, A. Ovariectomized rat model of osteoporosis: A practical guide. EXCLI J. 2020, 19, 89–107. [Google Scholar] [CrossRef]
- Ono, T.; Hayashi, M.; Sasaki, F.; Nakashima, T. RANKL biology: Bone metabolism, the immune system, and beyond. Inflamm. Regen. 2020, 40, 2. [Google Scholar] [CrossRef]
- Tokunaga, T.; Mokuda, S.; Kohno, H.; Yukawa, K.; Kuranobu, T.; Oi, K.; Yoshida, Y.; Hirata, S.; Sugiyama, E. TGFβ1 regulates human RANKL-induced osteoclastogenesis via suppression of NFATc1 expression. Int. J. Mol. Sci. 2020, 21, 800. [Google Scholar] [CrossRef]
- Thangavel, P.; Puga-Olguín, A.; Rodríguez-Landa, J.F.; Zepeda, R.C. Genistein as potential therapeutic candidate for menopausal symptoms and other related diseases. Molecules 2019, 24, 3892. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Thurston, R.C.; Joffe, H. Vasomotor symptoms and menopause: Findings from the study of women’s health across the nation. Obstet. Gynecol. Clin. N. Am. 2011, 38, 489–501. [Google Scholar] [CrossRef]
- Roberts, H.; Hickey, M. Managing the menopause: An update. Maturitas 2016, 86, 53–58. [Google Scholar] [CrossRef]
- Muschter, D.; Göttl, C.; Vogel, M.; Grifka, J.; Straub, R.H.; Grässel, S. Reactivity of rat bone marrow-derived macrophages to neurotransmitter stimulation in the context of collagen II-induced arthritis. Arthritis Res. Ther. 2015, 17, 169. [Google Scholar] [CrossRef] [PubMed]
Subject | Fermentation | Rg3 Amount (mg/g) | Increase Ratio Compared with PAE |
---|---|---|---|
Panax ginseng extract (PAE) | – | 0.15 | – |
L. plantarum | 1.15 | 7.6 | |
B. subtilis | 0.87 | 5.8 |
Parameters | Sham | OVX | +E2 | +Rex | +Rex-AG |
---|---|---|---|---|---|
E2 (pg/mL) | 35.53 ± 3.78 | 14.99 ± 1.54 *** | 35.86 ± 2.32 ### | 29.51 ± 2.32 ## | 25.67 ± 3.67 # |
Ca (mg/dL) | 9.9 ± 0.24 | 9.7 ± 0.08 | 10.0 ± 0.24 | 9.9 ± 0.08 | 9.9 ± 0.08 |
AST (U/L) | 141.45 ± 12.29 | 290.05 ± 39.4 ** | 131.05 ± 26.01 ### | 98.75 ± 6.9 ### | 190.25 ± 30.74 # |
ALP (U/L) | 45.05 ± 0.12 | 69.00 ± 4.33 *** | 51.85 ± 2.9 ## | 45.60 ± 6.12 ## | 62.10 ± 3.59 |
TG (mg/dL) | 19.50 ± 4.08 | 48.65 ± 5.10 *** | 54.30 ± 1.96 | 21.40 ± 0.41 ### | 30.25 ± 4.78 ## |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.-W.; Kim, H.-S.; Damodar, K.; Shin, H.-H.; Kim, K.-M.; Park, J.-Y.; Yoo, Y.-M.; Jung, J.-C.; Joo, S.-S. Therapeutic Advantages of Isoflavone Glycoside and Aglycone Forms of Sophoricoside in the Amelioration of Postmenopausal Symptoms: Bone Health, Metabolic Regulation, and Systemic Inflammation. Molecules 2025, 30, 2218. https://doi.org/10.3390/molecules30102218
Ahn J-W, Kim H-S, Damodar K, Shin H-H, Kim K-M, Park J-Y, Yoo Y-M, Jung J-C, Joo S-S. Therapeutic Advantages of Isoflavone Glycoside and Aglycone Forms of Sophoricoside in the Amelioration of Postmenopausal Symptoms: Bone Health, Metabolic Regulation, and Systemic Inflammation. Molecules. 2025; 30(10):2218. https://doi.org/10.3390/molecules30102218
Chicago/Turabian StyleAhn, Jeong-Won, Hyun-Soo Kim, Kongara Damodar, Hee-Hyun Shin, Kyung-Mi Kim, Jung-Youl Park, Yeong-Min Yoo, Jae-Chul Jung, and Seong-Soo Joo. 2025. "Therapeutic Advantages of Isoflavone Glycoside and Aglycone Forms of Sophoricoside in the Amelioration of Postmenopausal Symptoms: Bone Health, Metabolic Regulation, and Systemic Inflammation" Molecules 30, no. 10: 2218. https://doi.org/10.3390/molecules30102218
APA StyleAhn, J.-W., Kim, H.-S., Damodar, K., Shin, H.-H., Kim, K.-M., Park, J.-Y., Yoo, Y.-M., Jung, J.-C., & Joo, S.-S. (2025). Therapeutic Advantages of Isoflavone Glycoside and Aglycone Forms of Sophoricoside in the Amelioration of Postmenopausal Symptoms: Bone Health, Metabolic Regulation, and Systemic Inflammation. Molecules, 30(10), 2218. https://doi.org/10.3390/molecules30102218